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Abstract

We describe the asymptotic behaviour of large degrees in random hyperbolic graphs for
all values of the curvature parameter α. We prove that, with high probability, the node
degrees satisfy the following ordering property: the ranking of the nodes by decreasing
degree coincides with the ranking of the nodes by increasing distance to the centre, at
least up to any constant rank. In the sparse regime α > 1

2 , the rank at which these two
rankings cease to coincide is n1/(1+8α)+o(1). We also provide a quantitative description
of the large degrees by proving the convergence in distribution of the normalised degree
process towards a Poisson point process. In particular, this establishes the convergence
in distribution of the normalised maximum degree of the graph. A transition occurs at
α = 1

2 , which corresponds to the connectivity threshold of the model. For α < 1
2 , the

maximum degree is of order n − O(nα+1/2), whereas for α ≥ 1
2 , the maximum degree

is of order n1/(2α). In the α < 1
2 and α > 1

2 cases, the limit distribution of the maxi-

mum degree belongs to the class of extreme value distributions (Weibull for α < 1
2 and

Fréchet for α > 1
2 ). This refines previous estimates on the maximum degree for α > 1

2
and extends the study of large degrees to the dense regime α ≤ 1

2 .
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1. Introduction

The class of complex networks consists of large real-life networks that primarily arise from
human interactions, such as social networks and the Internet, as well as from other fields like
biology [2]. Networks in this class exhibit four essential features: high clustering, the small-
world property, sparseness, and a scale-free degree distribution [11]. Krioukov, Papadopoulos,
Kitsak, Vahdat, and Boguñá empirically showed that these four properties naturally emerge in
graphs constructed on hyperbolic spaces. This led them to introduce the random hyperbolic
graph (RHG) as a model for complex networks [17]. Boguñá, Papadopoulos, and Krioukov
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2 L. GASSMANN

further illustrated this point by providing an embedding of the Internet graph into a hyperbolic
space [6]. For modelling purposes, the model can be tuned through a curvature parameter α

and a parameter ν determining the average degree.
It has now been rigorously proven that, in the regime α > 1

2 , the RHG exhibits all the prop-
erties of complex networks listed above. Sparseness is proven in [19], the small-world property
is shown in [1], the high clustering is also fully tested [10], [13], [14], and the scale-free degree
distribution of the RHG has been proven in [14]. In this regime, the RHG is a particular case
of the geometric inhomogeneous random graph (GIRG) [8]. In the GIRG model, nodes are
sampled on a torus and inhomogeneity is obtained via power law weights on the nodes, which
determine the connection probabilities. It is established in [8] and [9] that the GIRG model
possesses the main properties of complex networks listed above, thereby reproving, in a more
conceptual way, that the RHG exhibits all the properties of complex networks.

A graph is said to have a scale-free degree distribution when its degree sequence follows a
power law distribution, meaning that, for large k, the number of nodes with degree k behaves
like an inverse power of k. In this case, the graph has a large number of hubs (nodes with
degrees much larger than the average degree). A RHG is typically structured as follows: high-
degree nodes are well connected to each other and serve as hubs for nodes with slightly lower
degrees. These intermediate-degree nodes, in turn, connect to nodes with even lower degrees,
and so on, forming a hierarchical, tree-like structure. In addition to this tree-like organization,
there are also connections between nodes with similar angular coordinates. This structure pro-
vides an intuitive explanation for the small-world phenomenon observed in these graphs, as
short paths naturally emerge by travelling from hub to hub.

In the α ≤ 1
2 case, the RHG is no longer sparse nor scale-free. However, the model remains

highly inhomogeneous in the sense that the degree distribution of a node depends heavily on
its position in the hyperbolic space, leading to the presence of a large number of hubs. This
regime is referred to as the dense regime. The value α = 1

2 is also the transition point between
the connected and the non-connected regime: for α < 1

2 , the graph has a high probability of
being connected, with connectivity being entirely ensured by a few large hubs located near the
centre. Conversely, for α > 1

2 , the graph has a high probability of being disconnected. In the
critical phase α = 1

2 , the probability of connectivity tends to a constant that depends on the
parameter ν. This constant takes the value 1 if and only if ν ≥ π (see [5]).

1.1 Main results

In this paper we are interested in the nodes with the largest degrees, which are the most
important hubs of the graph. Theorem 3.1 proves the ordering of these nodes, namely that,
for k fixed, with high probability, the node with the kth largest degree is the node with the
kth smallest distance to the centre of the underlying space. In the regime α > 1

2 , Theorem
3.2 even shows that this ordering property holds up to rank n1/(1+8α)+o(1) and fails beyond.
Finally, Theorem 3.3 states the convergence in distribution of the normalised point process of
the degrees towards a Poisson point process. In particular, it establishes the convergence in
distribution of the normalised maximum degree of the graph for all α > 0.

Node degrees in RHGs are closely related to the measures of certain regions of the underly-
ing hyperbolic space. The exact expressions of these quantities are seldom tractable, but since
we are seeking asymptotic results, we only need to approximate them. The approximations
we employ depend on the value of the curvature parameter α, as the asymptotic position of
the closest node to the centre is strongly influenced by this parameter. In the regime α > 1

2 ,
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Large degrees in random hyperbolic graphs 3

we use the approximations from [14, Lemma 3.2] (see Lemma 5.3 for another version of this
result and Lemma 8.1 for a refinement). In the two regimes α < 1

2 and α = 1
2 , we use new

approximations (given by Lemmas 5.4 and 5.5, respectively).

1.2. Structure of the paper

Section 2 contains a presentation of the RHG model. Our main results are given in Section 3.
In Section 4 we prove the convergence of the node radii. Section 5 is dedicated to estimations
of the measure of the balls involved in the connection rule. The results of these two last sec-
tions are used to prove Theorem 3.1 (Section 6), Theorem 3.3 (Section 7), and Theorem 3.2
(Section 8).

2. Definition of the model

2.1. Hyperbolic geometry

Before introducing the RHG model, let us review some definitions and notation concerning
hyperbolic geometry. We refer to the book of Stillwell [21] for a broader introduction to hyper-
bolic geometry. The Poincaré disc, denoted by H, is the open unit disc of C equipped with the
Riemannian metric gH, defined at w ∈H by

gH := 4gC
(1 − |w|2)2

, where gC is the Euclidean metric on C.

We denote by dH the distance induced by gH on H. Throughout this paper, we make extensive
use of the polar coordinates to describe points in the Poincaré disc. The polar coordinates of a
point w in H are given by the pair (r(w), θ (w)), where r(w) denotes its hyperbolic distance to
the origin and θ (w) denotes its angle in the complex plane. The quantity r(w) is also referred
to as the radius of w. If x and y are two points of H with respective polar coordinates (r, θ )
and (s, β), the hyperbolic distance between x and y is given by the celebrated hyperbolic law
of cosines:

cosh (dH(x, y)) = cosh (r) cosh (s) − sinh (r) sinh (s) cos (θ − β). (2.1)

For visualization purposes, we use the native representation to draw pictures of the RHG, as
done in [17]. This means that instead of representing the RHG directly in H, we represent its
image under the mapping ω �→ r(w)eiθ(w), defined from H to C. This transformation dilates all
distances to the origin, ensuring that every point (r, θ ) is represented with a Euclidean distance
to the origin equal to its radial coordinate r.

For a point x with polar coordinates (r, θ ) in H and a radius s > 0, we denote by Bx(s) or
B(r,θ)(s) the open hyperbolic ball of radius s centred at x. For 0 < r1 < r2, we define C(r1, r2)
as the annulus with inner radius r1 and outer radius r2, i.e. C(r1, r2) := B0(r2) \B0(r1).

2.2. RHG

We now proceed with the formal definition of the RHG Gα,ν(n), as defined in [17]. Fix two
parameters α > 0 and ν > 0 and, for n ∈N

∗, set

Rn := 2 log

(
n

ν

)
. (2.2)
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4 L. GASSMANN

FIGURE 1. Simulations of RHGs (native representation) with n = 500, ν = 1, α = 0.45 (left), α = 0.50
(middle), and α = 0.55 (right). The boundary of B0(Rn) is represented by a black circle and its centre by
a larger dot.

Define a probability measure μn on H such that, if a point (r, θ ) (in polar coordinates) is chosen
according to μn, then r and θ are independent, θ is uniformly distributed in ( − π, π ], and the
probability distribution of r has a density function on R+ given by

ρn(r) := α sinh (αr)

cosh (αRn) − 1
1{r<Rn}. (2.3)

Let Xn
1, Xn

2, . . . , Xn
n be a sequence of n independent points sampled from the Poincaré disc

according to the distribution μn (for brevity, the superscript n in Xn
i will often be omitted). We

denote by Gα,ν(n) the RHG with n nodes and parameters α and ν. It is defined as the undirected
graph with nodes at the points Xn

1, Xn
2, . . . , Xn

n , where an edge exists between two nodes if and
only if their hyperbolic distance is at most Rn. The degree of a node Xi in the graph Gα,ν(n) is
defined as the number of its direct neighbours in Gα,ν(n) and is denoted by deg (Xi). Since we
focus on the behaviour of large graphs, the value of n will always be considered large, while
the parameters α and ν are fixed.

Observe that the n nodes of the graph Gα,ν(n) are located within B0(Rn). Moreover, due to
the choice of the measure, the points tend to concentrate near the boundary of B0(Rn). Also
note that the measure μn(B(r,θ)(s)) of a ball centred at (r, θ ) is independent of θ . Therefore, we
omit the angle θ to shorten notation and instead write μn(Br(s)). Likewise, we write μn(Br(s) \
B0(s′)) instead of μn(B(r,θ)(s) \B0(s′)).

In the special case α = 1, μn is the uniform measure on B0(Rn) associated with the
Riemannian metric gH. In the general case α > 0, μn corresponds to a uniform measure on
the hyperbolic plane Hα of curvature −α2. More precisely, for fixed α > 0, multiplying the
differential form in the Poincaré disc model by a factor 1/α2, we obtain a hyperbolic plane
of curvature −α2. Choosing a point according to the measure μn amounts to choosing a point
uniformly in the ball of radius Rn of Hα and projecting it on H, by keeping the same polar
coordinates. The measure of a ball of radius r in Hα is

2π

α2
(cosh (αr) − 1);

thus, the larger α is, the faster it increases with r. Therefore, the larger α is, the more the points
of the graph Gα,ν(n) concentrate near the boundary of B0(Rn). Thus, the maximum degree is
expected to decrease with α (see Figure 1). The degree distribution is also influenced by the
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Large degrees in random hyperbolic graphs 5

parameter ν. Increasing ν makes the domain smaller, which limits the concentration of the
nodes near the boundary of the domain, resulting in a higher expected degree. In the sparse
regime α > 1

2 , the expected degree evolves linearly with ν [14].
The Poissonised RHG GPoi

α,ν(n) is obtained by choosing the nodes according to a Poisson
point process with intensity measure nμn, instead of choosing n points according to the mea-
sure μn. All the results proved in this paper also hold for the Poissonised model. In the proof of
the non-ordering result (3.2), the use of a classical Poissonisation/de-Poissonisation procedure
allows us to avoid some technicalities by using the properties of Poisson processes.

3. Results

3.1. Ordering of large degrees

We denote by Xn
(1), Xn

(2), . . . , Xn
(n) a reordering of the nodes of Gα,ν(n) by increasing radius,

i.e. r(Xn
(1)) ≤ r(Xn

(2)) ≤ · · · ≤ r(Xn
(n)). To shorten notation, we often omit the superscript n. Our

first result shows that this ranking of the nodes coincide with the ranking of the nodes by
decreasing degree, at least up to any constant rank. We say that an event occurs with high
probability if its probability tends to 1 as n → ∞.

Theorem 3.1. For fixed α > 0, ν > 0, and k ∈N
∗, the following event occurs with high

probability:

deg (Xn
(1)) > deg (Xn

(2)) > · · · > deg (Xn
(k)) > deg (Xn

(i)) for all i > k.

In the regime α > 1
2 , we will even prove the following result, which provides an estimate of

the rank at which the ranking of the nodes by increasing radius and the ranking of the nodes by
decreasing degree cease to coincide. We believe that similar polynomial rank orderings hold in
the other regimes, but we choose to present this refined result only for the case α > 1

2 to avoid
additional computations.

Theorem 3.2. Let us fix α > 1
2 , ν > 0, and a sequence an → ∞. Define

β := 1

1 + 8α
and kn := nβ log (n)−2α .

We have, with high probability,

deg (Xn
(1)) > deg (Xn

(2)) > · · · > deg (Xn
(kn)) > deg (Xn

(i)) for all i > kn, (3.1)

and there exists i ∈ [nβ, nβan] such that

deg (Xn
(i)) < deg (Xn

(i+1)). (3.2)

If we choose an = log (n), the result shows that, with high probability, the ordering of the
degrees holds up to rank nβ−o(1) and fails before rank nβ+o(1). This proves the optimality of
the exponent β as the ordering exponent.

The ordering results above show that the position of a node in the underlying hyperbolic
space is a precise estimate of its position in the hierarchy of hubs. This is natural, as the
degrees of the k closest nodes to the centre stochastically dominate the degrees of the n − k
following nodes. However, this observation alone is insufficient to prove our ordering results,
since having more connections than these n − k nodes requires competing with a polynomial
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number of nodes. For example, in the random recursive tree model, similar ordering results do
not hold: the root has the highest expected degree but does not necessarily have the highest
degree (see [12]). In RHGs we use the fast decay of degree with distance to the centre to show
that the k (or kn) closest nodes to the centre can compete with the remaining n − k (or n − kn)
nodes.

3.2. Convergence of large degrees

For every subspace E of the compactified real line [−∞, ∞], we denote by Mp(E) the space
of locally finite point measures on E. A point process on E is a random element of Mp(E)

(see [7], [15], and [20] for details on point processes). We denote by ‘
d−→’ the convergence in

distribution (or weak convergence) of point processes in Mp(E). We also use the notation ‘
d−→’

for the convergence in distribution of random variables or random vectors. For x ∈ [−∞, ∞],
we write δx for the Dirac measure at x.

We want to describe the asymptotic behaviour of the point process of node degrees∑n
i=1 δdeg (Xn

i ). We consider this point process as an element of Mp((0, ∞]). Since the inter-
val includes +∞, this point process captures information about the largest degrees of the
graph. Given that the expected value of the maximum degree goes to ∞ with n, we normalise
the degree process by a quantity depending on the expected value of the maximum degree.
This quantity heavily depends on the curvature parameter α. As with connectivity, a transition
occurs at α = 1

2 : for α < 1
2 , the maximum degree is of order n − O(nα+1/2), whereas for α ≥ 1

2 ,
the maximum degree is of order n1/(2α). This compels us to treat the three regimes α < 1

2 ,
α = 1

2 , and α > 1
2 separately. The result below states the convergence in distribution of the nor-

malised point process. We recall that, for β > 0, a random variable Z follows the distribution
Weibull(β) if, for all z ≥ 0, P[Z ≤ z] = 1 − e−zβ and it follows the distribution Fréchet(β) if,
for all z ≥ 0, P[Z ≤ z] = e−z−β

.

Theorem 3.3. Let us fix α, ν > 0 and denote by Dmax
n the maximum degree of the graph Gα,ν(n).

We have the following convergences.

• For α < 1
2 ,

n∑
i=1

δn−(α+1/2)(deg (Xn
i )−n)

d−−−→
n→∞ ηg1 in Mp((−∞, 0]), (3.3)

where ηg1 is the Poisson process whose intensity measure has density g1, given by

g1(y) = 2π2ν2α|y| for all y ∈ (−∞, 0].

In particular,

πνα n − Dmax
n

nα+1/2
d−−−→

n→∞ Weibull(2).

• For α = 1
2 ,

n∑
i=1

δn−1 deg (Xn
i )

d−−−→
n→∞ ηg2 in Mp((0, 1]), (3.4)
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where ηg2 is the Poisson process whose intensity measure has density g2, given by

g2(y) = ν|(V−1
1/2)′(y)| sinh

(V−1
1/2(y)

2

)
for all y ∈ (0, 1],

where V1/2 is the diffeomorphism from [0, ∞) to (0, 1] defined by

V1/2(r) := 1

π

∫ 1

0
arccos

(
max

(
− 1,

cosh (r) − x−2

sinh (r)

))
dx for all r > 0.

In particular,

n−1Dmax
n

d−−−→
n→∞ V1/2(2 arcosh(Exponential(2ν) + 1)).

• For α > 1
2 ,

n∑
i=1

δn−1/(2α) deg (Xn
i )

d−−−→
n→∞ ηg3 in Mp((0, ∞]), (3.5)

where ηg3 is the Poisson process whose intensity measure has density g3, given by

g3(y) = 2α(Cαν)2αy−2α−1 for all y ∈ (0, ∞],

where Cα := 2α/π (α − 1
2 ). In particular,

Dmax
n

Cανn1/(2α)
d−−−→

n→∞ Fréchet(2α).

Remark 3.1. Convergence in distribution of a sequence of point processes (Pn)n∈N towards
a point process P in Mp((a, b]) (with a, b ∈ [−∞, ∞]) is equivalent to the convergence in
distribution of the vectors (Yn

1 , Yn
2 , . . . , Yn

k ) towards (Y1, Y2, . . . , Yk) in R
k for every positive

integer k, where Yn
1 ≥ Yn

2 ≥ · · · ≥ Yn
k are the k largest points of Pn and Y1 ≥ Y2 ≥ · · · ≥ Yk are

the k largest points of P (assuming that P almost surely has infinitely many points). One gets
a similar characterisation of convergence in distribution in Mp([a, b)) by inverting the order.
Convergence in distribution in Mp(E) can be characterised in many other ways, such as via the
convergence of evaluation functions or the convergence of Laplace transforms (see [7], [15],
and [20]).

In the regime α > 1
2 , Theorem 3.3 refines the estimate of n1/(2α)+o(1) for the maximum

degree given in [14]. It also supplements the description of the scale-free degree sequence
presented in the same paper by describing precisely the sequence of the k largest degrees for k
fixed. Also note that, in the regime α > 1

2 , a more general result can be found in [3], where the
convergence towards a Poisson point process with a power law intensity is proven for a general
class of scale-free inhomogeneous random graphs. By refining the proof of the representation
of the RHG as a GIRG from [8], it can be shown that the RHG in the regime α > 1

2 is indeed
part of the more general model considered in [3]. This provides an alternative proof of Theorem
3.3 for α > 1

2 . Note that this result would not hold directly for GIRGs, even with unspecified
limit distributions, because the O notation appearing in the definition of the edge probabilities
may allow large degrees to oscillate instead of converging. Also note that, in the present paper,
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8 L. GASSMANN

we propose proof strategies that work for both the sparse regime α > 1
2 and the dense regime

α ≤ 1
2 .

In the α < 1
2 and α > 1

2 cases, we obtain extreme value distribution limits for the maximum
degree Dmax

n . This is not surprising, as Dmax
n is the maximum of a weakly correlated sequence

of variables. However, a difficulty in proving a formal result using a standard extreme value
theorem (see, for example, [18] and [20]) arises from the fact that the distribution of the typical
degree depends on n. Nevertheless, we can still use extreme value theory to give an intuitive
explanation of the limit distributions of Dmax

n as follows. In the regime α > 1
2 , the limit distri-

bution is easy to interpret since the degree of a typical node converges to a power law with
exponent 2α + 1, which belongs to the domain of attraction of Fréchet(2α). In the regime
α < 1

2 , the degree distribution does not converge, but since the largest degrees are attained by
nodes that are close to the centre, we can focus on a variable Dn distributed as the degree of
a typical node in the annulus C(0, nα−1/2+ε), with ε > 0 small. A direct computation using
Lemma 5.4 shows that (n − Dn)n−(1/2+α+ε) converges in distribution towards the inverse of a
power law with exponent 1, which belongs to the domain of attraction of Weibull(2). Similar
arguments using polynomial normalisations cannot hold in the regime α = 1

2 as, in this regime,
the highest degrees are too much influenced by the geometry of the model. The influence of the
geometry can be seen in the function V1/2(2arcosh( · +1)) appearing in the limit and explains
why we do not obtain an extreme value distribution in this case.

In a soft version of the RHG model [6], the threshold rule for connection is replaced by
the following connection rule: conditionally on their positions, the two nodes Xi and Xj are
connected with probability

pij = 1

1 + exp ((dH(Xi, Xj) − Rn)/(2T))
,

where T > 0 is a temperature parameter. We recover our initial model by taking the limit T → 0
in the soft model. We believe that the results of Theorems 3.1 and 3.3 remain valid in the soft
model (with different limit distributions in Theorem 3.3), as the expected degrees of the nodes
should stay of the same order in the soft model. In the α > 1

2 case, this can be proven by
combining [3] and [8]. The computation of the limit measures in the soft case would require
replacing volume estimates with estimates of the integrals of the connection probability, so as
to approximate the expected degrees of the nodes under the new connection rule.

3.2.1. Landau’s notation. In this paper, we use the Landau notation o and O to describe the
asymptotic behaviour of certain quantities as the number of nodes n tends to ∞. Specifically,
we use a version of this notation that allows us to express uniformity in some other variables
y1, y2, . . . , yd. More precisely, for (Jn)n∈N, a sequence of subsets of R

d and two functions
f , g : N×R

d →R, we write

g(n, y) = oy∈Jn (f (n, y)) if ∀ε > 0, ∃n0, ∀n ≥ n0, ∀y ∈ Jn, |g(n, y)| ≤ ε|f (n, y)|,
and we write

g(n, y) = Oy∈Jn(f (n, y)) if ∃c > 0, ∃n0, ∀n ≥ n0, ∀y ∈ Jn, |g(n, y)| ≤ c|f (n, y)|.
Note that the subscript ‘y ∈ Jn’ indicates that the comparison holds uniformly for y in the set
Jn as n tends to ∞. To simplify notation, this subscript is specified beforehand and omitted in
most cases. When f and g are functions of the variable n only, we keep the same definitions.
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4. Convergence of the radii

The particularity of RHGs, compared with graphs constructed in Euclidean spaces, is that
the degree of a node strongly depends on its position in the underlying space, specifically on its
radius. In this section we study the asymptotic behaviour of the radii of the closest points to the
centre by proving the convergence of the point process of the radii

∑n
i=1 δr(Xn

i ) in Mp([0, ∞)).
Since the interval includes 0, this point process captures information about the smallest degrees
of the graph (see Remark 3.1). As in Theorem 3.1, normalisation by the expected value of the
smallest radius is required.

Proposition 4.1. We have the following convergences.

• For α < 1
2 ,

n∑
i=1

δn1/2−αr(Xn
i )

d−−−→
n→∞ ηγ1 in Mp([0, ∞)),

where ηγ1 is the Poisson process whose intensity measure has density γ1, given by

γ1(u) = 2α2ν2αu for all u ∈ [0, ∞).

• For α = 1
2 ,

n∑
i=1

δr(Xn
i )

d−−−→
n→∞ ηγ2 in Mp([0, ∞)),

where ηγ2 is the Poisson process whose intensity measure has density γ2, given by

γ2(u) = ν sinh

(
u

2

)
for all u ∈ [0, ∞).

• For α > 1
2 ,

n∑
i=1

δr(Xn
i )−(1−1/(2α))Rn

d−−−→
n→∞ ηγ3 in Mp([−∞, ∞)),

where ηγ3 is the Poisson process whose intensity measure has density γ3, given by

γ3(u) = ανeαu for all u ∈ [−∞, ∞).

Proof. We introduce the functions γ1, γ2, and γ3 exactly like in the statement of Proposition
4.1. For E a subspace of [−∞, ∞], let us write C+

K (E) for the set of continuous, real-valued
and non-negative functions on E with compact support. We begin with the α < 1

2 case. Fix
ϕ ∈ C+

K ([0, ∞)). By a simple change of variables, we get

nE[ϕ(n1/2−αr(Xn
1))] = n

∫ ∞

0
ϕ(n1/2−αr)ρn(r) dr

=
∫ ∞

0
ϕ(u)

α sinh (αunα−1/2)

cosh (αRn) − 1
n1/2+α1{u≤n1/2−αRn} du.
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Using the fact that sinh (x) ∼ x for x close to 0 and that cosh (αRn) ∼ 1
2 (n/ν)2α for large n, we

get by the dominated convergence theorem,

nE[ϕ(n1/2−αr(Xn
1))] −−−→

n→∞

∫ ∞

0
ϕ(u)γ1(u) du. (4.1)

Note that the above states that the measures nP[n1/2−αr(Xn
1) ∈ ·] converge vaguely on [0, ∞)

towards a measure with density γ1 with respect to the Lebesgue measure. For all n ∈N
∗, we

denote by �n the Laplace functional associated with the point process
∑n

i=1 δn1/2−αr(Xn
i ) and we

denote by � the Laplace functional associated with ηγ1 . Since the variables r(Xn
1), . . . , r(Xn

n)
are independent, it follows from (4.1) and a classical computation that, for all f ∈ C+

K ([0, ∞)),
�n(f ) → �(f ) (see [20, Proposition 3.21] for a detailed computation). This is sufficient to
establish the desired convergence in distribution for α < 1

2 .

In the α = 1
2 case, for ϕ ∈ C+

K ([0, ∞)), we have

nE[ϕ(r(Xn
1))] = n

∫ ∞

0
ϕ(r)

sinh (r/2)

2(cosh (Rn/2) − 1)
1{r≤Rn} dr

−−−→
n→∞

∫ ∞

0
ϕ(r)γ2(r) dr,

where the convergence follows from approximating cosh (Rn/2) by n/(2ν) and applying the
dominated convergence theorem. Thus, we can conclude exactly like in the α < 1

2 case.
In the α > 1

2 case, a simple change of variables gives, for ϕ ∈ C+
K ([−∞, ∞)),

nE

[
ϕ

(
r(Xn

1) −
(

1 − 1

2α

)
Rn

)]
= n

∫ ∞

0
ϕ

(
r −

(
1 − 1

2α

)
Rn

)
ρn(r) dr

=
∫ Rn/(2α)

−(1−1/2α)Rn

ϕ(u)
αn sinh (α(u + (1 − 1/2α)Rn))

cosh (αRn) − 1
du.

(4.2)

Moreover, there exists K > 0 such that, for all sufficiently large n ∈N
∗ and all u ∈R,

ϕ(u)
αn sinh (α(u + (1 − 1/2α)Rn))

cosh (αRn) − 1
≤ Kϕ(u) exp (αu).

The bound above is integrable on R. Applying the dominated convergence theorem to (4.2)
and using the fact that cosh (x) ∼ ex/2 and sinh (x) ∼ ex/2 for large x, we get

nE

[
ϕ

(
r(Xn

1) −
(

1 − 1

2α

)
Rn

)]
−−−→
n→∞

∫ ∞

−∞
ϕ(u)γ3(u) du.

We conclude exactly like in the α < 1
2 case. �

5. Measures of the connection balls

A node in the RHG Gα,ν(n) is connected to all other nodes that are at a distance smaller than
Rn from it. Thus, conditionally on the position of the node X, the degree of X follows a binomial
distribution with n − 1 trials and success probability μn(Br(X)(Rn)). The previous section gives
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FIGURE 2. Depiction of a ball BX(Rn) (native representation).

a good understanding of the radii of the closest nodes to the centre r(X(1)). In order to obtain
information about the degrees of the closest nodes to the centre, we now study μn(Br(Rn))
as a function of r. Unfortunately, this quantity cannot be expressed by a tractable closed-form
formula. However, since we are principally concerned with the asymptotic behaviour of Gα,ν(n)
as n → ∞, it is sufficient to provide approximations of this quantity.

Before dealing with quantitative results, we state the following lemma, which gives an intu-
itive inclusion between hyperbolic balls. Its proof follows readily from [4, Lemma 2.3]. The
fact that μn(Br(Rn)) decreases with r shows that the expected degree of a node X is a decreasing
function of r(X). Indeed, we can see in Figure 1 that the ball BX(Rn) is not entirely contained in
the domain B0(Rn). If we let r(X) increase, then more mass is lost outside the domain B0(Rn),
leading to a smaller expected degree. This strongly suggests that the nodes with the highest
degrees are likely to be located near the origin of the underlying space.

Lemma 5.1 (Lemma 2.3 of [4].) For all α, ν > 0, n ∈N
∗, and 0 ≤ r ≤ r′ ≤ Rn, the following

holds:

B(r′,0)(Rn) ∩B0(Rn) ⊂B(r,0)(Rn) ∩B0(Rn).

In particular, the function r �→ μn(Br(Rn)) is decreasing.

Now, to get quantitative results on μn(Br(X)(Rn)), we first give an integral expression of
μn(Br(Rn)) for r ∈ [0, Rn). In the following definitions, we take α > 0 and we fix an integer
n ∈N

∗. We also take r and y in [0, Rn). Using polar coordinates for points in the Poincaré disc,
we define the set Iy(r) by

Iy(r) := {θ ∈ [0, π ] : (y, θ ) ∈B(r,0)(Rn)}.
It follows from a direct use of the hyperbolic law of cosines (2.1) that Iy(r) is a non-empty
interval containing 0. Thus, defining θr(y) by

θr(y) := sup Iy(r),

we get

μn(Br(Rn)) = 1

π

∫ Rn

0
θr(y)ρn(y) dy. (5.1)
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FIGURE 3. Representation of θr(y) (in a Euclidean setting).

Figure 3 provides a graphical representation of the angle θr(y) (in a Euclidean setting to ease
the representation). Let us fix r ∈ [0, Rn). We want to compute θr(y) for y ∈ [0, Rn). It is clear
that B0(Rn − r) ⊂B(r,0)(Rn), so

θr(y) = π for all y ∈ [0, Rn − r]. (5.2)

When y ≥ Rn − r, the point (y, θr(y)) is at a distance Rn from the point (r,0), so by the
hyperbolic law of cosines (2.1), we get

cos (θr(y)) = cosh (r) cosh (y) − cosh (Rn)

sinh (r) sinh (y)
for all y ∈ [Rn − r, Rn). (5.3)

One may check that (5.2) and (5.3) can be rewritten as

θr(y) = arccos

(
max

(
− 1,

cosh (r) cosh (y) − cosh (Rn)

sinh (r) sinh (y)

))
for all r, y ∈ [0, Rn). (5.4)

To estimate the degrees of the closest nodes to the centre (X(1), X(2), . . . , X(k)) (with k fixed),
we need an estimate of μn(Br(Rn)) that holds for r in intervals containing the radii of these
nodes with high probability. The convergence of the radii given in Proposition 4.1 shows that
the choice of this interval highly depends on the value of α: going from small radii when α < 1

2
to large radii for α > 1

2 . This requires treating the three regimes separately.
In the α > 1

2 case, we recall the following crucial estimate for the angle θr(y) from [14,
Lemma 3.1].

Lemma 5.2. Suppose that α > 1
2 . For r ∈ [0, Rn) and y ∈ [Rn − r, Rn),

θr(y) = 2e(Rn−r−y)/2(1 + O(eRn−r−y)).

It is shown in [14] how this estimate can be combined with (5.1) to approximate quantities
related to the measure of the ball Br(Rn). In the following lemma, the first estimate is a weaker
but more convenient version of the approximation of the quantity μn(Br(Rn) \B0(x)) given in
[14, Lemma 3.2]. The second estimate shows that most of the mass of Br(Rn) is contained in
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the part of the ball that is outside of the disc of radius (1 − ε)Rn. This is in line with the fact
that most of the nodes of Gα,ν(n) concentrate near the boundary of B0(Rn).

Lemma 5.3. Suppose that α > 1
2 and set Cα := 2α/π (α − 1

2 ). Fix η > 0 and a sequence (un)
that diverges to +∞. For r ∈ [un, Rn) and x ∈ [0, (1 − η)Rn], we have

μn(Br(Rn) \B0(x)) = Cαe−r/2(1 + o(1)). (5.5)

Fix ε ∈ (0, 1) and set Rε
n := (1 − ε)Rn, we have, for r ∈ [εRn, Rn),

μn(Br(Rn) ∩B0(Rε
n)) = O(e−r/2−ε(α−1/2)Rn ). (5.6)

Proof. Since the measure μn is supported on the ball B0(Rn), the estimates of [14, Lemma
3.2] can be rewritten as follows.

• For x ≤ Rn − r,

μn(Br(Rn) \B0(x)) = Cαe−r/2(1 + O(e−(α−1/2)r + e−r)). (5.7)

• For x ≥ Rn − r,

μn(Br(Rn) \B0(x)) = Cαe−r/2
(

1 −
(

1 + α − 1/2

α + 1/2
e−2αx

)
e−(α−1/2)(Rn−x)

)
(1 + O(e−r + e−r−(Rn−x)(α−3/2))). (5.8)

The proof of (5.5) follows by observing that, for r ∈ [un, Rn) and x ∈ [0, (1 − η)Rn], the O
terms and the term e−(α−1/2)(Rn−x) appearing in (5.7) and (5.8) are of order o(1).

For the proof of (5.6), we begin with the following equation, which is obtained in a similar
fashion to (5.1) and is valid for all r ∈ [0, Rn),

μn(Br(Rn) ∩B0(Rε
n)) = 1

π

∫ Rε
n

0
θr(y)ρn(y) dy.

Using (5.2), it follows that, for r ∈ [εRn, Rn),

μn(Br(Rn) ∩B0(Rε
n)) = μn(B0(Rn − r)) + 1

π

∫ Rε
n

Rn−r
θr(y)ρn(y) dy.

For the first term, we have, for r ∈ [εRn, Rn),

μn(B0(Rn − r)) = cosh (α(Rn − r)) − 1

cosh (αRn) − 1
= O(e−αr) = O(e−r/2−ε(α−1/2)Rn )

and for the second term, Lemma 5.2 yields, for r ∈ [εRn, Rn),

1

π

∫ Rε
n

Rn−r
θr(y)ρn(y) dy = O

( ∫ Rε
n

Rn−r
e(Rn−r−y)/2eα(y−Rn) dy

)
= O(e−r/2−ε(α−1/2)Rn ).

We conclude that (5.6) holds in the regime r ∈ [εRn, Rn). �
In the α < 1

2 case, we give the following approximation of μn(Br(Rn)). Our estimate holds
for r in intervals Jn whose bounds tend to 0 more slowly than n−1. By the convergence result of
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Proposition 4.1, the radii of the closest nodes to the centre are of order nα−1/2, so the approxi-
mation is valid in an appropriate regime for estimating the expected degree of the closest node
to the centre. Since we look at small values of r, it is not surprising that μn(Br(Rn)) is close to
1. Here, we provide additional information on the rate at which this quantity decreases with r.
The result is stated for all possible values of α, as this comes without extra cost.

Lemma 5.4. Fix α > 0 and define a sequence of intervals (Jn) by Jn := [an, bn], with nan → ∞
and bn → 0. Then, for r ∈ Jn, we have

μn(Br(Rn)) = 1 − αr

π
+ o(r).

Proof. Let r ∈ Jn. By (5.1) and (5.2) we get

μn(Br(Rn)) = 1 − 1

π

∫ Rn

Rn−r
(π − θr(y))ρn(y) dy. (5.9)

Now, to find a good approximation of θr(y), we use (5.3). Note that bn → 0, so we can approx-
imate all the hyperbolic terms in r that appear in the identity given by (5.3). This yields, for
r ∈ Jn and y ∈ [Rn − r, Rn),

cos (θr(y)) = (1 + O(r2))(1 + e−2y) − (eRn−y + e−Rn−y)

(r + O(r3))(1 − e−2y)
. (5.10)

Moreover, it holds that

e−y ≤ e−Rn+bn = O(n−2).

Since nan → +∞, it follows that

e−y = o(r2).

Substituting this in (5.10) yields, for r ∈ Jn and y ∈ [Rn − r, Rn),

cos (θr(y)) = −Rn − y

r
+ O(r). (5.11)

For r ∈ Jn, we define

Un(r) := 1 − 1

π

∫ Rn

Rn−r

(
π − arccos

(
− Rn − y

r

))
ρn(y) dy. (5.12)

Let us show that Un(r) is a good approximation of μn(Br(Rn)). Since the function arccos is
1
2 -Hölder, it follows from (5.11) that, for r ∈ Jn and for y ∈ [Rn − r, Rn),

θr(y) = arccos

(
− Rn − y

r

)
+ O

(√
r
)
.
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Combining this estimate of θr(y) with (5.9) yields, for r ∈ Jn,

μn(Br(Rn)) = Un(r) + O

(√
r
∫ Rn

Rn−r
ρn(y) dy

)
= Un(r) + O(r3/2). (5.13)

Now, it remains to estimate Un(r). Let n ∈N
∗ and r ∈ Jn. Integrating (5.12) by parts gives

Un(r) = 1 − 1

π

∫ 1

0

1√
1 − z2

cosh (αRn) − cosh (α(Rn − rz))

cosh (αRn) − 1
dz.

Furthermore, the mean value theorem yields, for r ∈ Jn and z ∈ [0, 1],

cosh (αRn) − cosh (α(Rn − rz))

cosh (αRn) − 1
= αrz(1 + o(1)),

so

Un(r) = 1 − αr

π

∫ 1

0

z√
1 − z2

(1 + or∈Jn,z∈[0,1](1)) dz

= 1 − αr

π
+ or∈Jn (r).

Combining this with (5.13) yields

μn(Br(Rn)) = 1 − αr

π
+ or∈Jn (r).

This completes the proof. �
In the α = 1

2 case, the radii of the closest nodes to the centre (without normalisation) con-
verge in distribution (see Proposition 4.1); thus, we need to approximate μn(Br(Rn)) for fixed
r. This is the purpose of the following lemma.

Lemma 5.5. Suppose that α > 0 is fixed. Then,

μn(Br(Rn)) −−−→
n→∞ Vα(r) uniformly for r ∈ [0, ∞),

where Vα is a decreasing diffeomorphism from [0, ∞) to (0, 1] defined by

Vα(r) := 1

π

∫ 1

0
arccos

(
max

(
− 1,

cosh (r) − x−1/α

sinh (r)

))
dx for all r > 0. (5.14)

Proof. Let us fix α > 0 and r > 0. For all n ∈N
∗ and x ∈ (0, 1), we define hn(x) as the only

positive real number such that

cosh (αhn(x)) − 1

cosh (αRn) − 1
= x.

By the change of variable x = (cosh (αy) − 1)/(cosh (αRn) − 1) in (5.1), we obtain

μn(Br(Rn)) = 1

π

∫ 1

0
θr(hn(x)) dx. (5.15)
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Let us fix x ∈ (0, 1). By the definition of hn, we have

hn(x) = Rn + log (x)

α
+ o(1).

Combining this with the expression of θr(y) given by (5.4) yields

θr(hn(x)) −−−→
n→∞ arccos

(
max

(
− 1,

cosh (r) − x−1/α

sinh (r)

))
.

Thus, by dominated convergence, the functions r �→ μn(Br(Rn)) converge pointwise towards
the function Vα defined by (5.14). The fact that Vα is a decreasing diffeomorphism from
[0, +∞) to (0, 1] follows directly from its expression. Combining this with the fact that
the functions r �→ μn(Br(Rn)) are decreasing and take values in (0, 1], we conclude that the
convergence is necessarily uniform on [0, ∞). �

We conclude this section by providing estimates for the volume of balls centred at the origin.
These volumes are much easier to obtain than those of the balls studied earlier, as integrating
the density ρn directly gives, for all r ∈ (0, Rn),

μn(B0(r)) = cosh (αr) − 1

cosh (αRn) − 1
.

Approximating the hyperbolic terms, we get the following estimates.

Lemma 5.6. Let us fix α > 0 and a sequence un → 0. We have, for r ∈ [0, un],

μn(B0(r)) = (αr)2e−αRn (1 + o(1)). (5.16)

Let us fix α > 0 and a sequence vn → ∞. We have, for r ∈ [vn, Rn),

μn(B0(r)) = eα(r−Rn)(1 + o(1)). (5.17)

6. Constant rank ordering (proof of Theorem 3.1)

The results of the two previous sections give enough information on the degrees of the clos-
est nodes to the centre to proceed with the proof of Theorem 3.1. Indeed, the convergence of
the (normalised) point process of the radii, as stated in Proposition 4.1, also gives estimates for
the radius gap between consecutive nodes, r(X(i+1)) − r(X(i)). This, combined with the volume
estimates of the previous part allows us to get a lower bound on the difference of the expected
degrees of the nodes X(i) and X(j) with i < j. The following lemma provides a way to translate
this information into a bound on the probability that X(i) has a smaller degree than X(j). Note
that the two variables A and B are not required to be independent. Thus, A and B may be legiti-
mately replaced by two node degrees that we want to compare. In the following, we denote by
Bin(m, p) the binomial distribution with parameters m ∈N

∗ and p ∈ [0, 1].

Lemma 6.1. Let A ∼ Bin(n, a) and B ∼ Bin(n, b). If 0 < b ≤ a then

P[A ≤ B] ≤ 2 exp

(
− (a − b)2n

8a

)
.
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Proof. By splitting at n(a + b)/2, we get

P[A ≤ B] ≤ P

[
B ≥ n

a + b

2

]
+ P

[
A ≤ n

a + b

2

]
= P

[
B ≥

(
1 + a − b

2b

)
nb

]
+ P

[
A ≤

(
1 − a − b

2a

)
na

]
.

For Z ∼ Bin(n, p) and μ = np, we recall the multiplicative Chernoff bounds

P[Z ≥ (1 + δ)μ] ≤ e−μδ2/(2+δ) for all δ ≥ 0,

P[Z ≤ (1 − δ)μ] ≤ e−μδ2/2 for all δ ∈ [0, 1).

Since (a − b)/2b ≥ 0 and 0 ≤ (a − b)/2a < 1, we can use these bounds to obtain

P[A ≤ B] ≤ exp

(
− (a − b)2n

2(a + 3b)

)
+ exp

(
− (a − b)2n

8a

)
≤ 2 exp

(
− (a − b)2n

8a

)
.

This proves our claim. �
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us fix k ∈N
∗ and define the ordering event On as

deg (X(1)) > deg (X(2)) > . . . > deg (X(k)) > deg (X(i)) for all i > k.

We want to show that the complementary Oc
n of this event has probability converging to 0. We

start with the α < 1
2 case. The α > 1

2 case can be handled in a similar fashion, but we do not
present it here, since the result in this case follows from the stronger statement of Theorem 3.2
(proved without using Theorem 3.1). We deal with the α = 1

2 case at the end of the proof.
Define the localisation event Ln and the gap event Gn by

Ln := {tn ≤ r(X(1)) and r(X(k)) ≤ rn},
Gn := {for all i ≤ k, r(X(i+1)) − r(X(i)) ≥ λn},

where the sequences (tn), (rn), and (λn) are defined for n ∈N
∗ by

tn := nα−1/2 log (n)−1, rn := nα−1/2 log (n), λn := nα−1/2 log (n)−1.

By the convergence result stated in Proposition 4.1 and the characterisation of convergence
in distribution in Mp([a, b)) given in Remark 3.1, we know that the vector (n1/2−αr(X(i)),
i ≤ k + 1) converges in distribution in R

k towards the vector of the k first points of the point
process ηγ1 . In particular, the normalised variables n1/2−αr(X(1)) and n1/2−αr(X(k)), as well
as the differences n1/2−α(r(X(i+1)) − r(X(i))), for 1 ≤ i ≤ k, converge in distribution. Since
tn = o(nα−1/2), nα−1/2 = o(rn), and λn = o(nα−1/2), it follows that

P[Ln ∩ Gn] −−−→
n→∞ 1.
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Thus, it suffices to show that

P[Oc
n ∩ Ln ∩ Gn] −−−→

n→∞ 0. (6.1)

If the event Oc
n occurs then there must exist two indices i < j such that i ≤ k and deg (X(i)) ≤

deg (X(j)). If the event Ln ∩ Gn also occurs, these indices also satisfy

tn ≤ r(X(i)) ≤ rn and r(X(j)) − r(X(i)) ≥ λn.

Thus, the probability to control can be bounded as follows (note that the bound does not refer
to the reordering of the nodes):

P[Oc
n ∩ Ln ∩ Gn]

≤ P[∃i �= j, tn ≤ r(Xi) ≤ rn, r(Xj) − r(Xi) ≥ λn, deg (Xi) ≤ deg (Xj)].

Using a union bound and writing P(X1,X2)[ · ] for the conditional probability with respect to
(X1, X2), we finally get

P[Oc
n ∩ Ln ∩ Gn]

≤ n2
E[P(X1,X2)[ deg (X1) ≤ deg (X2)]1{tn≤r(X1)≤rn, r(X2)−r(X1)≥λn}].

Conditionally on the couple (X1, X2), the variables deg (X1) and deg (X2) have binomial distri-
butions with n − 2 trials and probabilities μn(Br(X1)(Rn)) and μn(Br(X2)(Rn)), respectively (we
neglect the potential connection between X1 and X2 since it does not contribute to the inequal-
ity between their degrees). Given that μn(Br(X1)(Rn)) is larger than μn(Br(X2)(Rn)) (see Lemma
5.1), we can apply Lemma 6.1 to bound the conditional probability of the previous display. It
follows that

P[Oc
n ∩ Ln ∩ Gn] ≤ max

(s1,s2)
2n2 exp

(
− (n − 2)(μn(Bs1 (Rn)) − μn(Bs2 (Rn)))2

8μn(Bs1 (Rn))

)
, (6.2)

where the maximum is taken over the couples (s1, s2) belonging to the set

En := {(s1, s2) ∈ [0, Rn)2 : tn ≤ s1 ≤ rn, s2 − s1 ≥ λn}.
Using Lemma 5.4 to approximate the volume of the balls μn(Bsj (Rn)) for j = 1, 2, we get

K > 0 such that, for large n and (s1, s2) ∈ En,

(n − 2)(μn(Bs1 (Rn)) − μn(Bs2 (Rn)))2

8μn(Bs1 (Rn))
≥ Knλ2

n = Kn2α log (n)−2.

Substituting this in (6.2) yields

P[Oc
n ∩ Ln ∩ Gn] ≤ 2n2e−Kn2α log (n)−2 −−−→

n→∞ 0. (6.3)

This proves (6.1) and concludes the proof of this case.
Now, let us proceed with the α = 1

2 case. We take ε > 0 and for all δ, λ > 0, we introduce
the set

L(λ, δ) := {r ≥ 0: Vα(r) − Vα(r + λ) > δ},
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where Vα is the function defined in Lemma 5.5. In the present case, we define the localisation
event Ln and the gap event Gn by

Ln := {for all i ≤ k, r(X(i)) ∈L(λ, δ)},
Gn := {for all i ≤ k, r(X(i+1)) − r(X(i)) ≥ λ}.

The convergence stated in Proposition 4.1, together with the characterisation of convergence
in distribution in Mp([a, b)), given in Remark 3.1, implies that the vector (r(X(i)), i ≤ k + 1)
converges in distribution towards the k first points of the point process ηγ2 . In particular, the dif-
ferences r(X(i+1)) − r(X(i)) for 1 ≤ i ≤ k, also converge in distribution. Therefore, by choosing
λ > 0 small enough, we can ensure that, for large enough n,

P[Gc
n] ≤ ε.

Since the function Vα is strictly decreasing, we find that, for every λ > 0, the set
⋃

δ>0 L(λ, δ)
covers the entire interval [0, +∞). Hence, if δ > 0 is also chosen sufficiently small, the prob-
ability that the k first points of the limit process ηγ2 are not in L(λ, δ) is less than ε. It follows
that, for large enough n,

P[Lc
n] ≤ 2ε.

Therefore, it remains to prove that

P[Oc
n ∩ Ln ∩ Gn] −−−→

n→∞ 0. (6.4)

Proceeding exactly as we did for proving (6.2) in the previous case, we get

P[Oc
n ∩ Ln ∩ Gn] ≤ max

(s1,s2)
2n2 exp

(
− (n − 2)(μn(Bs1 (Rn)) − μn(Bs2 (Rn)))2

8μn(Bs1 (Rn))

)
, (6.5)

where the maximum is taken over the couples (s1, s2) belonging to the set

En := {(s1, s2) ∈ [0, Rn)2 : s1 ∈L(λ, δ), s2 − s1 ≥ λ}.
By the definition of L(λ, δ) and the uniform convergence of μn(Br(Rn)) towards Vα(r) (see
Lemma 5.5), it follows that, for sufficiently large n,

μn(Bs1 (Rn)) − μn(Bs2 (Rn)) ≥ δ

2
for all (s1, s2) ∈ En.

Substituting this in (6.5) and bounding μn(Bs1 (Rn)) by 1 proves (6.4) and concludes the proof
of this case. �

7. Convergence of the degrees (proof of Theorem 3.3)

The key to proving the convergence of the largest degrees is to show that the degrees of
the closest nodes to the centre concentrate around their conditional expected values, given the
positions of the corresponding nodes. This implies that the point process of the degrees is
comparable to the image of the point process of the radii under the mapping r �→ μn(Br(Rn)).
The conclusion then follows from the convergence of the point process of the radii.

Proof of Theorem 3.3. Let us begin with the α > 1
2 case. The convergence of the normalised

degree process towards a point process P will be stated if we prove that, for all k, the nor-
malised vector of the k highest degrees converges in distribution to the vector of the k largest
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points of P (see Remark 3.1). By Theorem 3.1, with high probability, the vector of the k high-
est degrees is the vector of the degrees of the k closest points to the centre (in the same order).
Thus, to prove the convergence of the normalised degree process towards a point process P , it
suffices to prove that, for all k,

n−1/(2α)(deg (X(1)), deg (X(2)), . . . deg (X(k)))
d−−−→

n→∞ (Y1, Y2, . . . , Yk), (7.1)

where the variables Y1 ≥ · · · ≥ Yk are the k largest points of the point process P . For all s ∈R,
we set

pn(s) := μn(Bs(Rn) \B0(s))

1 − μn(B0(s))
1{s∈[0,Rn)}

and we define the vectors �n
k , �̃n

k , and Wn
k by

�n
k := (deg (X(1)), deg (X(2)) . . . , deg (X(k))),

�̃n
k := (d̃eg(X(1)), d̃eg(X(2)) . . . , d̃eg(X(k))),

Wn
k := ((n − i)pn(r(X(i))), 1 ≤ i ≤ k),

where d̃eg(X(k)) denotes the number of neighbours of the point X(k) that are in the annulus
C(r(X(k)), Rn). We first show that n−1/(2α)�n

k can be approximated by n−1/(2α)Wn
k and in a

second step we prove the convergence of n−1/(2α)Wn
k .

Since the difference �n
k − �̃n

k is bounded by k, it is clear that

n−1/(2α)(�n
k − �̃n

k)
P−−−→

n→∞ 0. (7.2)

For all i, conditionally on X(i), the n − i nodes with radius larger than r(X(i)) are independently
and identically distributed according to the restriction of μn to the annulus C(r(X(i)), Rn).
Thus, conditionally on X(i), the variable d̃eg(X(i)) is distributed according to the binomial
distribution

Bin(n − i, pn(r(X(i)))). (7.3)

Let us fix K > 0 and denote by Ln the event that all the variables r(X(i)), i ≤ k belong to the
interval [(1 − 1/2α)Rn − K, (1 − 1/2α)Rn + K]. Let us fix ε > 0. By the convergence of the
radii stated in Proposition 4.1, we can choose K > 0 such that, for sufficiently large n, the
event Ln occurs with probability greater than 1 − ε. By the volume estimates (5.5) and (5.17),
we know that there exists K′ > 1 such that, on the event Ln, for large n and i ≤ k, we have

1

K′ n
1/(2α) ≤E[d̃eg(X(i)) | X(i)] ≤ K′n1/(2α). (7.4)

Let us fix δ > 0. Denoting by PLn the probability measure conditioned on the event Ln, it
follows from (7.3) and (7.4) that, for large n and i ≤ k,

PLn [|d̃eg(X(i)) − (n − i)pn(r(X(i)))| ≥ n1/(2α)δ]

≤ PLn

[
|d̃eg(X(i)) −E[d̃eg(X(i)) | X(i)]| ≥ δE

[
d̃eg(X(i)) | X(i)

]
K′

]
.
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Combining this with a Chernoff bound and using (7.4) again yields

PLn [|d̃eg(X(i)) − (n − i)pn(r(X(i)))| ≥ n1/(2α)δ] −−−→
n→∞ 0.

From this and (7.2) we conclude that

n−1/(2α)(�n
k − Wn

k )
P−−−→

n→∞ 0. (7.5)

Now, it remains to prove the convergence in distribution of the vector n−1/(2α)Wn
k . For this

purpose, we remark that

n−1/(2α)Wn
k = ϕn

(
r(X(i)) −

(
1 − 1

2α

)
Rn, 1 ≤ i ≤ k

)
, (7.6)

where for all n, the application ϕn is defined from R
k to R

k by

ϕn(zi, 1 ≤ i ≤ k) :=
(

n−1/(2α)(n − i)pn

(
zi +

(
1 − 1

2α

)
Rn

)
, 1 ≤ i ≤ k

)
.

By the volume estimates (5.5) and (5.17), the applications ϕn converges uniformly on every
compact of Rk towards the function ϕ defined by

ϕ(zi, 1 ≤ i ≤ k) := (T(zi), 1 ≤ i ≤ k),

where the application T is a diffeomorphism from [−∞, ∞) to (0, ∞] given by

T(z) := Cαν1−1/(2α)e−z/2.

Let us denote by Z1 ≤ · · · ≤ Zk the k smallest points of the point process ηγ3 (see Proposition
4.1 for the definition of γ3). By the convergence of the radii stated in Proposition 4.1, the vector
(r(X(i)) − (1 − 1/2α)Rn, 1 ≤ i ≤ k) converges in distribution to (Zi, 1 ≤ i ≤ k). Consequently,
from (7.6) and the continuous mapping theorem (see, for example, [16, Theorem 5.27] for a
version of the continuous mapping theorem with mappings depending on n), we obtain

n−1/(2α)Wn
k

d−−−→
n→∞ ϕ(Zi, 1 ≤ i ≤ k). (7.7)

Combining (7.5) and (7.7) with Slutsky theorem finally gives

n−1/(2α)�n
k

d−−−→
n→∞ ϕ(Zi, 1 ≤ i ≤ k).

This proves that (7.1) holds for all k, with the limit measure ηγ3 ◦ T−1. Thus,

n∑
i=1

δn−1/(2α) deg (Xn
i )

d−−−→
n→∞ ηγ3 ◦ T−1 in Mp((0, ∞]).

By classical results on transformations of Poisson processes, the point process ηγ3 ◦ T−1 is
a Poisson process with an intensity measure whose density g3 with respect to the Lebesgue
measure is given by

g3(y) = γ3(T−1(y))

|T ′(T−1(y))| = 2α(Cαν)2αy−2α−1 for all y ∈ (0, ∞].
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This concludes the proof of (3.5). Now to state the convergence of the maximum degree Dmax
n ,

observe that, for all z > 0,

P[n−1/(2α)Dmax
n ≤ z] = P

[ n∑
i=1

δn−1/(2α) deg (Xn
i )((z, ∞]) = 0

]
−−−→
n→∞ P[ηg3 ((z, ∞]) = 0],

where the last convergence follows from the convergence in Mp((0, ∞]) stated in (3.5). A
straightforward computation allows us to compute the limit above. This gives the limit of the
cumulative distribution function of n−1/(2α)Dmax

n and yields

Dmax
n

Cανn1/(2α)
d−−−→

n→∞ Fréchet(2α).

This concludes the proof of this case.
The proofs for the two other regimes follow the same method. We omit the parts that are

too much similar to the proof of the previous case.
In the α = 1

2 case, we are interested in proving convergence in distribution of the vector

n−1(deg (X(1)), deg (X(2)) . . . deg (X(k))).

We define the functions pn and the vectors �n
k and Wn

k as in the previous case. Using the
convergence of the radii stated in Proposition 4.1, along with the volume estimates given by
(5.17) and Lemma 5.5, we fint that, conditionally on the position of X(i), with high probability,
the expected value of d̃eg(X(i)) is comparable to n. Thus, by copying the proof of (7.5), we get
in this case

n−1(�n
k − Wn

k )
P−−−→

n→∞ 0.

It remains to prove the convergence in distribution of the vector n−1Wn
k . For this purpose, we

remark that

n−1Wn
k = ϕn(r(X(i)), 1 ≤ i ≤ k), (7.8)

where the application ϕn is defined from R
k+ to R

k+ by

ϕn(zi, 1 ≤ i ≤ k) := (pn(zi), 1 ≤ i ≤ k).

By the volume estimates given by (5.17) and Lemma 5.5, the applications ϕn converges
uniformly on every compact of Rk+ towards the function ϕ defined by

ϕ(zi, 1 ≤ i ≤ k) := (V1/2(zi), 1 ≤ i ≤ k).

Thus, combining (7.8) with the convergence of the radii to ηγ2 exactly as we did in the α > 1
2

case, we obtain

n∑
i=1

δn−1 deg (Xn
i )

d−−−→
n→∞ η in Mp((0, 1]),
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where η is a Poisson process with an intensity measure whose density g2 with respect to the
Lebesgue measure is given by

g2(y) = γ2(V−1
1/2 (y))

|V ′
1/2(V−1

1/2(y))| = ν|(V−1
1/2)′(y)| sinh

(V−1
1/2(y)

2

)
for all y ∈ (0, 1].

This concludes the proof of (3.4). The convergence of the normalised maximum degree n−1Dmax
n

follows by a direct computation exactly like in the α > 1
2 case.

In the α < 1
2 case, we are interested in proving convergence in distribution of the vector

n−(α+1/2)(deg (X(1)) − n, deg (X(2)) − n, . . . deg (X(k)) − n).

Because of the additional normalisation by n, we shall define the vectors �n
k and Wn

k in a
different manner in this case, by letting

�n
k := (deg (X(1)) − n, deg (X(2)) − n . . . deg (X(k)) − n),

Wn
k := ((n − i)(pn(r(X(i))) − 1), 1 ≤ i ≤ k).

Using the convergence of the radii stated in Proposition 4.1, together with the volume estimates
given by (5.16) and Lemma 5.4, we find that, conditionally on the position of X(i), with high
probability, the expected value of d̃eg(X(i)) − n is comparable to −nα+1/2. Thus, by copying
the proof of (7.5), we get in this case

n−(α+1/2)(�n
k − Wn

k )
P−−−→

n→∞ 0.

It remains to prove the convergence in distribution of the vector n−(α+1/2)Wn
k . For this purpose,

we remark that

n−(α+1/2)Wn
k = ϕn(n1/2−αr(X(i)), 1 ≤ i ≤ k), (7.9)

where, the application ϕn is defined from R
k+ to R

k− by

ϕn(zi, 1 ≤ i ≤ k) := (n−(α+1/2)(n − i)(pn(nα−1/2zi) − 1), 1 ≤ i ≤ k).

By the volume estimates given by (5.16) and Lemma 5.4, the applications ϕn converge
uniformly on every compact of Rk+ towards the function ϕ defined by

ϕ(zi, 1 ≤ i ≤ k) := (T(zi), 1 ≤ i ≤ k),

where T is a diffeomorphism from [0, +∞) to (−∞, 0] given by

T(z) := −αz

π
.

Thus, proceeding exactly as in the α > 1
2 case, we obtain

n∑
i=1

δn−(α+1/2)(deg (Xn
i )−n)

d−−−→
n→∞ η in Mp((−∞, 0]),
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where η is a Poisson process with an intensity measure whose density g1 with respect to the
Lebesgue measure is given by

g1(y) = γ1(T−1(y))

|T ′(T−1(y))| = 2π2ν2α|y| for all y ∈ (−∞, 0].

This concludes the proof of (3.3). The convergence of the normalised maximum degree follows
by a direct computation exactly like in the α > 1

2 case. �

8. Ordering/non-ordering transition (proof of Theorem 3.2)

From the proof of Theorem 3.1, we observe that the key quantities determining the ordering
properties of the node degrees are the differences between the volumes of successive balls,
μn(BX(i) (Rn)) − μn(BX(i+1) (Rn)). We expect the ordering to break around the first i for which
this difference is sufficiently small. The following lemma is a refinement of Lemma 5.3 that
allows us to obtain fine estimates on these differences.

Lemma 8.1. For α > 1
2 , there exists r0 > 0 such that, for r ∈ (r0, Rn),

∂

∂r
μn(Br(Rn)) = −Cα

2
e−r/2(1 + O(e−(α−1/2)r + re−r)),

where Cα := 2α/π (α − 1
2 ) (as in Lemma 5.3).

We explain in Remark 8.1 why this estimate is necessary for proving Theorem 3.2 when α

is close to 1
2 . We defer the proof of this lemma to the end of the section and proceed directly

with the proof of Theorem 3.2.

Proof of Theorem 3.2. In this proof K stands for a positive constant (depending only on α

and ν) whose value may change throughout the proof. We define the sequence (kn), as in the
statement of the theorem, by kn := nβ log (n)−2α , where β := 1/(1 + 8α). The proof of the
two assertions (3.1) and (3.2) are done separately.

8.1. Ordering up to rank kn (proof of (3.1))

The proof of (3.1) follows the same general idea as the proof of Theorem 3.1, but in a more
precise form. The argument is divided into three steps. The first two steps consist in localising
the kn first nodes and showing that there are large gaps between their radii. Actually, this is
done by proving that two specific events, Ln and Gn, occur with high probability. In the third
step, we show that, under the event Ln ∩ Gn, there are large differences between the expected
degrees of the kn first nodes. The conclusion then follows from a Chernoff bound.

Step 1: Localisation of the kn first nodes. Let wn := log ( log (n)) and define the localisation
event Ln by

Ln := {tn ≤ r(X(1)) and r(X(kn)) ≤ rn},
where

tn :=
(

1 − 1

2α

)
Rn − wn and rn := tn + β

α
log (n).

Let us prove that, with this choice of tn and rn, the event Ln is realised with high probability.
We already know from Proposition 4.1 that tn ≤ r(X(1)) holds with high probability. On the
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other hand, we note that r(X(kn)) ≤ rn holds if and only if the number of nodes in the ball
B0(rn) is larger than kn. The number of points falling in this ball has a binomial distribution
with expected value

nμn(B0(rn)) ∼
n→∞ νnβ log (n)−α � kn.

Using a Chernoff bound it follows that r(X(kn)) ≤ rn holds with high probability, so

P[Ln] −−−→
n→∞ 1.

Step 2: Proving the existence of large gaps between the kn first nodes. We define the gap
event Gn by

Gn := {for all i ≤ kn, r(X(i+1)) − r(X(i)) ≥ λn(r(X(i)))},
where, for all n, the function λn is defined by

λn(s) := eα(Rn−s)n−(β+1) for all s ≥ 0.

Let us prove that with this choice of λn, the event Gn is realised with high probability, which
will prove that the radius gaps between the nβ first nodes are relatively large.

The first kn + 1 nodes (i.e. X(1), X(2), . . . , X(kn+1)) can be sampled in the following way.
First, sample n nodes in B0(Rn) according to the distribution μn, select the closest to the centre
as X(1) and erase the (n − 1) other points. Next, sample (n − 1) points according to the restric-
tion of μn to the annulus C(r(X(1)), Rn), choose the closest to the centre as X(2) and erase the
other ones. Repeat this process until the (kn + 1) first nodes have been sampled (at step (i + 1)
sample (n − i) points in the annulus C(r(X(i)), Rn), choose the closest to the centre as X(i+1)
and erase the other ones). Considering this process, we get

P[Gc
n, Ln] ≤

kn∑
i=1

P[Zn
i �= 0, Ln],

where the random variable Zn
i counts the number of points falling in the annulus C(r(X(i)),

r(X(i)) + λn(r(X(i)))) at step (i + 1). Conditionally on the position of X(i), the variable Zn
i

follows a binomial distribution with (n − i) trials and probability pn
i given by

pn
i := μn(C(r(X(i)), r(X(i)) + λn(r(X(i)))))

μn(C(r(X(i)), Rn))

= cosh (α(r(X(i)) + λn(r(X(i))))) − cosh (αr(X(i)))

cosh (αRn) − cosh (αr(X(i)))
.

For r(X(i)) ≤ rn and as n → ∞, the denominator is asymptotically equivalent to eαRn/2.
Moreover, for r(X(i)) ≥ tn, we have λn(r(X(i))) = o(1). Applying the mean value theorem to
the numerator, it follows that, for large enough n and tn ≤ r(X(i)) ≤ rn,

pn
i ≤ Kλn(r(X(i))) exp (α(r(X(i)) − Rn)) = Kn−(β+1).
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Writing PX(i)
[ · ] for conditional probability with respect to the variable X(i), we get

P[Gc
n ∩ Ln] ≤

kn∑
i=1

E[PX(i)
[Zn

i �= 0]1{tn≤r(X(i))≤rn}]

≤ kn(1 − (1 − Kn−(β+1))n)

∼
n→∞ K log (n)−2α

−−−→
n→∞ 0.

Since Ln occurs with high probability, we conclude that

P[Gn] −−−→
n→∞ 1.

Step 3: Comparing the successive expected values of the degrees. Let us denote by On the
ordering event described in (3.1). By the previous two steps, it remains to prove that

P[Oc
n ∩ Ln ∩ Gn] −−−→

n→∞ 0. (8.1)

Proceeding as we did for proving (6.2) in the proof of Theorem 3.1, we get the upper bound

P[Oc
n ∩ Ln ∩ Gn] ≤ max

(s1,s2)
2n2 exp

(
− (n − 2)(μn(Bs1 (Rn)) − μn(Bs2 (Rn)))2

8μn(Bs1 (Rn))

)
, (8.2)

where the maximum is taken over the couples (s1, s2) belonging to the set

En := {(s1, s2) ∈ [0, Rn)2 : tn ≤ s1 ≤ rn, s2 − s1 ≥ λn(s1)}.
We are now interested in bounding the fraction appearing in the exponential term. For (s1, s2) ∈
En and n large, we have

μn(Bs1 (Rn)) − μn(Bs2 (Rn)) = −
∫ s2

s1

∂

∂r
μn(Br(Rn)) dr

≥ K(1 + O(e−(α−1/2)tn + tne−tn ))
∫ s2

s1

e−r/2 dr

= Ke−s1/2(1 − e−(s2−s1)/2),

where the second line follows from Lemma 8.1. Using (5.5) to estimate the denominator in the
expression below, it follows that, for (s1, s2) ∈ En and large n,

(n − 2)(μn(Bs1 (Rn)) − μn(Bs2 (Rn)))2

8μn(Bs1 (Rn))
≥ Kne−s1/2(1 − e−(s2−s1)/2)2

≥ Kne−rn/2λn(rn)2, (8.3)

Moreover, straightforward computations give

ne−rn/2 = Kn(1−β)/2α log (n)1/2 and λn(rn) = Kn−2β log (n)α .
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By choice of β, we have (1 − β)/2α = 4β. Thus, substituting the above in (8.3) and combining
with (8.2) gives

P[Oc
n ∩ Ln ∩ Gn] ≤ 2n2 exp (− K log (n)1/2+2α) −−−→

n→∞ 0.

This proves (8.1) and concludes the proof of (3.1).

Remark 8.1. Instead of using Lemma 8.1 to bound the numerator in (8.3), one might consider
using the volume estimate of μn(Br(Rn)) from [14, Lemma 3.2], which is recalled in (5.2).
However, for α ∈ (1/2, (7 + √

33)/16), the error terms appearing in this estimate are larger
than λn(rn), which is not sufficiently precise for our purposes. The estimate of the differential
of μn(Br(Rn)) in r, given by Lemma 8.1, is more suitable for measuring volume differences of
balls with close radii.

8.2. No ordering beyond rank nβ (proof of (3.2))

The proof is divided into four main steps. Before proceeding with these, we first introduce
some notation and a Poissonised version of (3.2), which will serve as an intermediate result. Fix
an arbitrary sequence (an) diverging to +∞. Observe that if (3.2) holds for a given sequence
(an) then it also holds for any sequence larger than (an). Thus, without loss of generality, we
may assume that an ≤ log (n). This assumption on (an) will be used implicitly in the proof
when establishing certain bounds. Let w′

n := log (an) and define

t′n :=
(

1 − 1

2α

)
Rn + β

α
log (n) + w′

n and r′
n := t′n + w′

n.

Recall that we aim at finding an index i ∈ [nβ, nβan] such that deg (Xn
(i)) < deg (Xn

(i+1)). In order
to gain some independence between the degrees of the nodes, we first prove an analogue of
(3.2) for the Poissonised model GPoi

α,ν(n). It turns out that, for i ∈ [nβ, nβan], the nodes X(i) and
X(i+1) have radii that are approximately located in the interval [t′n, r′

n]. Thus, the counterpart of
the non-ordering event (3.2) for the Poissonised model GPoi

α,ν(n) can be written as follows.

• With high probability, there exist two nodes v and v′ in the graph GPoi
α,ν(n), such that

t′n ≤ r(v) ≤ r(v′) ≤ r′
n and deg (v) + δn ≤ deg (v′), (8.4)

where the sequence (δn) is defined by δn :=
√

ne−r′
n/2 = Kn2βe−w′

n/2.

In the first three steps of the proof, we work within the Poissonised model GPoi
α,ν(n) to estab-

lish the Poissonised statement. The final step of the proof is a de-Poissonisation procedure that
gives the result for Gα,ν(n) from the result for GPoi

α,ν(n). The extra gap of size δn that appears in
the Poissonised statement is crucial for this de-Poissonisation step.

Let us fix a small ε ∈ (0, 1) and set Rε
n := (1 − ε)Rn. For x ∈B0(Rn), we denote by Bε

x (Rn)
the part of the ball Bx(Rn) that lies beyond the circle of radius Rε

n, i.e.

Bε
x (Rn) := Bx(Rn) ∩ C(Rε

n, Rn).

The ε degree of a node X is the number of nodes (excluding X itself) contained in Bε
X(Rn). It is

denoted by degε (X). Since the nodes of GPoi
α,ν(n) are concentrated near the boundary of B0(Rn),

the ε degrees provide good estimates of the actual degrees of the nodes. Therefore, we first
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FIGURE 4. Depiction of the closeness event Cn. By condition (8.5), for all i, the radius gap r(v′
i) − r(vi)

is small, ensuring that degε (vi) ≤ degε (v′
i) holds with a probability bounded away from 0. By condition

(8.6), the portions of the balls Bvi (Rn) and Bv′
i
(Rn) that lie beyond the circle of radius Rε

n are all disjoints,
ensuring the independence of the corresponding ε degrees.

focus on the ε degree rather than degrees directly, as it is easier to get independence results
concerning the ε degrees.

We can now proceed with the four steps of the proof. The first step consists in finding a
number cn → ∞ of pairs of points (v, v′) in the Poissonised graph GPoi

α,ν(n) that have a positive
probability of satisfying (8.4). In the second step, we use the independence property of the
Poissonised model GPoi

α,ν(n) to show that, with high probability, at least one of these candidate
pairs satisfies a version of (8.4) in which the degree is replaced by the ε degree. In the third step,
we show that the error induced by replacing the degree with the ε degree is sufficiently small. It
follows that (8.4) holds with high probability. The fourth and final step is the de-Poissonisation
procedure.

Step 1: Finding good pairs of candidates for the couple (v,v’). For all n, set λ′
n := n−2βe−αw′

n

and denote by Cn the following event (see Figure 4).

• There exist two sequences (vi)1≤i≤cn and (v′
i)1≤i≤cn each containing cn nodes of GPoi

α,ν(n),
such that v1, . . . , vcn , v′

1, . . . , v′
cn

are pairwise distinct and, for all i,

t′n ≤ r(vi) ≤ r(v′
i) ≤ r(vi) + λ′

n ≤ r′
n. (8.5)

We also require that, for all x and y distinct in {v1, . . . , vcn , v′
1, . . . , v′

cn
},

Bε
x (Rn) ∩Bε

y (Rn) = ∅. (8.6)

Let us prove that this event is realised with high probability. We prove in the following
two steps of the proof that, when this event occurs, there is a high probability of finding two
nodes satisfying (8.4). We define mn := w′

nn2β and take cn = o(w′
n) such that cn → ∞. For all

1 ≤ j ≤ mn, let In
j := [t′n + jλ′

n, t′n + (j + 1)λ′
n). Note that all of these intervals are contained in

[t′n, r′
n]. We denote by An

j the event that there exist at least two nodes of GPoi
α,ν(n) with radial

coordinates in the interval In
j . The number of nodes having a radial coordinate in the interval
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In
j follows a Poisson distribution with parameter npn

j , with pn
j given by

pn
j = cosh (α(t′n + (j + 1)λ′

n)) − cosh (α(t′n + jλ′
n))

cosh (αRn) − 1
≥ Kλ′

neα(t′n−Rn) = Kn−(β+1).

It follows that

P[An
j ] ≥ Kn−2β .

Moreover, the events An
j are independent, so the number of indices 1 ≤ j ≤ mn for which the

event An
j occurs dominates a binomial distribution with mn trials and an expected value equiv-

alent to Kw′
n. Since cn = o(w′

n), it follows that, with high probability, we can find cn indices
j for which the event An

j is realised. We conclude that, with high probability, there exist two
sequences made of distinct nodes (vi)1≤i≤cn and (v′

i)1≤i≤cn satisfying condition (8.5) of the
event Gn.

Let us prove that these nodes also have a high probability of satisfying condition (8.6). First
remark that, by the estimate of θr(y) (given in Lemma 5.2), if ε is small enough then

θt′n (Rε
n) = 2 exp

(
Rn − t′n − Rε

n

2

)
(1 + O(eRn−t′n−Rε

n )) −−−→
n→∞ 0.

Thus, we may assume that cn was chosen such that c2
nθt′n (Rε

n) → 0.
Sample all the nodes appearing in C(t′n, r′

n) and suppose that there exist two sequences made
of distinct nodes (vi)1≤i≤cn and (v′

i)1≤i≤cn in C(t′n, r′
n) that satisfy condition (8.5) of the event Cn.

Suppose that the angular coordinates of the nodes of these sequences have not been sampled
yet. Note that it is valid to suppose this as condition (8.5) only concerns the radial coordinates
of the nodes. We now sample the angular coordinates of these nodes one by one. Each time we
sample a new angular coordinate, the probability that it differs by less than 2θt′n (Rε

n) with an
already sampled angular coordinate is upper bounded by (2cn/π )θt′n(Rε

n). Thus, the probability
of getting a pair of angular coordinates that differ by less than 2θt′n (Rε

n) is upper bounded
by (4c2

n/π )θt′n (Rε
n), which tends to 0 by our choice of cn. Thus, with high probability, all the

angular coordinates of the nodes v1, . . . , vcn, v′
1, . . . , v′

cn
differ by more than 2θt′n (Rε

n).
For 1 ≤ i ≤ cn, the angle of the smallest cone (with apex at 0) containing Bε

vi
(Rn) is

2θr(vi)(R
ε
n). Since t′n ≤ r(vi), Lemma 5.1 implies that this angle is at most 2θt′n (Rε

n). The same
holds for the nodes v′

i. It follows that the sequences (vi) and (v′
i) also satisfy condition (8.6),

with high probability. Thus,

P[Cn] −−−→
n→∞ 1. (8.7)

Step 2: Finding a pair of nodes (V,V’) with r(V) ≤ r(V ′) such that degε (V) is small and
degε (V ′) is large. Let us sample all the nodes that fall in the annulus C(t′n, r′

n). Since the event
Cn depends only on the point process of the nodes restricted to this region, we can suppose that
the points in this annulus are such that the event Cn occurs. We denote by PCn the probability
measure conditioned on the event Cn.

For all K > 0, we define η(K) by

η(K) = lim inf
n∈N∗ inf

a ≥ nμn(Bε

r′n (Rn))
P[Poi(a) ≥ a + K

√
a],
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where Poi(a) denotes a Poisson variable with parameter a. Using (5.5) and (5.6), one checks
that, if ε is chosen sufficiently small, then nμn(Bε

r′
n
(Rn)) → ∞ as n → ∞. By the central limit

theorem, η(K) is then equal to the probability that a standard normal random variable exceeds
K. In particular, η(K) > 0.

Select two sequences (vi)1≤i≤cn and (v′
i)1≤i≤cn as provided by the event Cn (choose them

according to a fixed rule to ensure measurability). For 1 ≤ i ≤ cn, since r(vi) ≤ r′
n, it follows

from Lemma 5.1 that

nμn(Bε
vi

(Rn)) ≥ nμn(Bε
r′
n
(Rn)) = n(μn(Br′

n
(Rn)) − μn(Br′

n
(Rn) ∩B0(Rε

n))). (8.8)

If ε is chosen small enough then r′
n ≥ εRn. Thus, we can use the approximations given by (5.5)

and (5.6) to get, uniformly in 1 ≤ i ≤ cn,

nμn(Bε
v′

i
(Rn)) ≥ Kne−r′

n/2 = Kδ2
n

(the sequence (δn) is defined below (8.4)). It follows that, for a possibly different constant
K > 0, we have, for all 1 ≤ i ≤ cn,

PCn [ degε (v′
i) ≥ nμn(Bε

v′
i
(Rn)) + 2δn]

≥ PCn

[
degε (v′

i) ≥ nμn(Bε
v′

i
(Rn)) + K

√
nμn(Bε

v′
i
(Rn))

]
. (8.9)

Moreover, for all 1 ≤ i ≤ cn, conditionally on the event Cn and on the position of v′
i, the vari-

able degε (v′
i) follows a Poisson distribution with parameter nμn(Bε

v′
i
(Rn)). Since r(v′

i) ≤ r′
n and

μn(Br(Rn)) is decreasing in r, this parameter is at least nμn(Bε
r′
n
(Rn)). Thus, combining (8.8)

with (8.9) provides a constant K > 0 such that, for large enough n and for all 1 ≤ i ≤ cn,

PCn [ degε (v′
i) ≥ nμn(Bε

v′
i
(Rn)) + 2δn] ≥ η(K)

2
. (8.10)

With a similar argument, we get η̂ > 0 such that, for large enough n and 1 ≤ i ≤ cn,

PCn [ degε (vi) ≤ nμn(Bε
vi

(Rn))] ≥ η̂. (8.11)

Conditionally on the event Cn and on the positions of the nodes (vi)1≤i≤cn and (v′
i)1≤i≤cn ,

the variables degε (v1), . . . , degε (vcn), degε (v′
i), . . . , degε (v′

cn
) are independent. Indeed, once

these nodes are fixed, their ε degrees correspond to the number of points of a Poisson point
process in B0(Rn) \B0(Rε

n) falling into certain predetermined regions: by condition (8.6) of
the event Cn, these regions are disjoint (see Figure 4). Since cn → ∞ and both η(K) and η̂

are positive, it follows that, with high probability, there exists an index 1 ≤ i ≤ cn for which
the events in (8.10) and (8.11) occur simultaneously. Define i0 as the smallest such index and
set (V, V ′) = (vi0 , v′

i0
). We verify that this defines a random vector (V , V ′) on an event of high

probability. The definition of (V , V ′) out of this event is not relevant.

Step 3: From degε to deg. The previous step would allow us to conclude immediately if we
were comparing the ε degrees degε of the nodes instead of their actual degrees deg. Thus, it
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remains to show that degε is very close to deg. To achieve this, we introduce the following
subsets of the ball Bx(Rn):

B′
x(Rn) := Bx(Rn) \ (C(t′n, r′

n) ∪ C(Rε
n, Rn)), (8.12)

B′′
x (Rn) := Bx(Rn) ∩ C(t′n, r′

n). (8.13)

For a node X, we write deg′ (X) (respectively deg′′ (X)) for the number of nodes (excluding X)
that are contained in B′

X(Rn) (respectively B′′
X(Rn)). Note that, for any point x, the ball Bx(Rn)

is the union of the balls Bε
x (Rn), B′

x(Rn), and B′′
x (Rn). Thus, the degree of X can be decomposed

as follows:

deg (X) = degε (X) + deg′ (X) + deg′′ (X).

Let us first estimate the error induced by the term deg′. If ε is small enough, we can use (5.6)
and get ε′ > 0 such that, for large enough n,

nμn(B′
V (Rn)) ≤ nμn(BV (Rn) ∩B0(Rε

n)) ≤ n−5ε′
ne−t′n/2 ≤ n−4ε′

δ2
n

(the sequence (δn) is defined below (8.4)). Since B′
V (Rn) does not intersect the annulus C(t′n, r′

n),
we find that, conditionally on Cn and on the position of the node V , the variable deg′ (V) follows
a Poisson distribution with parameter nμn(B′

V (Rn)). Thus, by Chebyshev’s inequality,

PCn [deg′ (V) ≤ nμn(B′
V (Rn)) + n−ε′

δn] −−−→
n→∞ 1. (8.14)

With a similar argument, we also prove that

PCn [ deg′ (V ′) ≥ nμn(B′
V ′ (Rn)) − n−ε′

δn] −−−→
n→∞ 1. (8.15)

Now, concerning deg′′, a direct computation gives, for r ∈ [0, Rn),

nμn(C(t′n, r′
n)) = o(nβ log (n)3α). (8.16)

Since deg′′ (V) is smaller than the number of nodes that fall in the annulus C(t′n, r′
n), it follows

from Chebyshev’s inequality that

PCn [ deg′′ (V) ≤ nβ log (n)3α] −−−→
n→∞ 1. (8.17)

Combining the definition of V with (8.14) and (8.17), it follows that, with high probability,

deg (V) = degε (V) + deg′ (V) + deg′′ (V)

≤ nμn(Bε
V (Rn)) + nμn(B′

V (Rn)) + n−ε′
δn + nβ log (n)3α .

Since Bε
V (Rn) and B′

V (Rn) are disjoint subsets of BV (Rn) and since δn = n2β+o(1), we finally
obtain, with high probability,

deg (V) ≤ nμn(BV (Rn)) + o(δn). (8.18)
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Likewise, combining the definition of V ′ with (8.15) and (8.16) and using the fact that BV ′ (Rn)
is the union of the balls Bε

V ′(Rn), B′
V ′ (Rn), and B′′

V ′ (Rn), it follows that, with high probability,

deg (V ′) ≥ degε (V ′) + deg′ (V ′)
≥ nμn(Bε

V ′(Rn)) + 2δn + nμn(B′
V ′(Rn)) − n−ε′

δn

≥ nμn(BV ′(Rn)) − nμn(B′′
V ′ (Rn)) + 2δn − n−ε′

δn.

It follows from (8.13) and (8.16) that nμn(B′′
V ′(Rn)) = o(δn), so we finally obtain, with high

probability,

deg (V ′) ≥ nμn(BV ′(Rn)) + 2δn + o(δn). (8.19)

On the other hand, using the fact that r(V ′) − r(V) ≤ λ′
n, Lemma 8.1 yields

nμn(BV (Rn)) − nμn(BV ′(Rn)) ≤ Kne−t′n/2λ′
n = o(δn).

Combining this with (8.18) and (8.19) proves that, with high probability,

deg (V) + δn ≤ deg (V ′). (8.20)

Since t′n ≤ r(V) ≤ r(V ′) ≤ r′
n, this concludes the proof of (8.4).

Step 4: de-Poissonisation. Let us now explain how to transfer the result from the Poissonised
model GPoi

α,ν(n) to the original model Gα,ν(n). We use a standard procedure that consists in
coupling the original model with the Poissonised model by sampling the points of Gα,ν(n) in
the following manner: sample the graph GPoi

α,ν(n) and call Nn the number of nodes in this graph.
If Nn > n, randomly remove (Nn − n) nodes from the graph. If Nn < n, add (n − Nn) nodes,
independently sampled from B0(Rn) according to μn and connect all pairs of nodes that are
within distance Rn. The resulting graph follows the same distribution as Gα,ν(n) and is referred
to as the de-Poissonised graph.

For a node x that appears in both the Poissonised and de-Poissonised graph, we denote its
degree in each graph by deg (x) and d̃eg(x), respectively. Fix ε > 0 small enough. The random
variable Nn follows a Poisson distribution with parameter n. Thus,

P[|Nn − n| ≥ n1/2+ε] −−−→
n→∞ 0.

From this, it follows that, with high probability, the nodes V and V ′ are not removed during
the de-Poissonisation procedure. For the remainder of the proof, we work on the event that
V and V ′ are not removed. In the case where Nn < n, conditionally on the position of V , the
variable d̃eg(V) − deg (V) follows a binomial distribution with (n − Nn) trials and probability
parameter μn(BV (Rn)). Thus, with high probability,

d̃eg(V) − deg (V) ≤ n1/2+2εμn(Br′
n
(Rn)) ≤ Kn2β+2ε−1/2e−w′

n/2δn = o(δn),

where the last equality holds if ε is chosen sufficiently small (because β < 1
5 ). In the Nn > n

case, we can also prove with similar arguments that the de-Poissonisation reduces the degree
of V ′ by at most o(δn). Therefore, we finally conclude from (8.20) that d̃eg(V) < d̃eg(V ′) holds
with high probability. In addition, straightforward estimates, using the fact that t′n ≤ r(V) ≤
r(V ′) ≤ r′

n, show that in the de-Poissonised graph the ranks of the nodes V and V ′ in the ranking
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of the nodes by increasing radii are in the interval [nβ, nβa3α
n ], with high probability. It follows

that (3.2) holds with high probability (the power 3α is not problematic, as the sequence (an) is
an arbitrary sequence diverging to +∞). �

Let us conclude by proving Lemma 8.1.

Proof of Lemma 8.1. We recall the integral expression (5.1) of μn(Br(Rn)):

μn(Br(Rn)) = 1

π

∫ Rn

0
θr(y)ρn(y) dy.

Using the expression of θr(y) given by (5.4), we get

∂

∂r
μn(Br(Rn)) = 1

π

∫ Rn

Rn−r
fn,r(y)ρn(y) dy,

where fn,r(y) := (∂/∂r) arccos (cn,r(y)), with cn,r(y) := (cosh (r) cosh (y) − cosh (Rn))/
sinh (r) sinh (y). Since the angle θr(y) is decreasing in r (see Lemma 5.1), the integral above is
always well defined in R∪ {−∞}. The contribution of the integral over (Rn − r, Rn − r + r0)
requires special treatment, because the quantity fn,r(y) diverges as y approaches (Rn − r). We
show at the end of the proof that this contribution is O(e−αr) (which can be incorporated into
the first error term of the formula given in the statement). More precisely, we prove at the end
of the proof that, for r ∈ (r0, Rn),

∂

∂r
μn(Br(Rn)) = 1

π

∫ Rn

Rn−r+r0

fn,r(y)ρn(y) dy + O(e−αr). (8.21)

For now, let us estimate the integrand for r ∈ (r0, Rn) and y ∈ (Rn − r + r0, Rn). A direct
computation gives

fn,r(y) = − cosh (Rn) cosh (r) − cosh (y)

sinh (r)2 sinh (y)
√

1 − cn,r(y)2
.

Using cosh (x) = ex(1/2 + O(e−2x)) and sin (x) = ex(1/2 + O(e−2x)), it follows that

fn,r(y) = −2eRn−r−y(1 + O(e−2r) + O(ey−Rn−r))

(1 + O(e−2r + e−2y))
√

1 − cn,r(y)2
. (8.22)

If r0 is chosen large enough, using 1/(1 + x) = 1 + O(x) for |x| < 1
2 , we get

fn,r(y) = −2eRn−r−y(1 + O(ey−Rn−r) + O(e−2y))√
1 − cn,r(y)2

. (8.23)

Note that we used the fact that y − Rn − r ≥ −2r to get rid of the O(e−2r) term. A similar
computation gives, for r ∈ (r0, Rn) and y ∈ (Rn − r + r0, Rn),

cn,r(y) = 1 − 2eRn−r−y + O(e−2r + e−2y).

Thus, if r0 is chosen large enough, we have

1√
1 − cn,r(y)2

= e−(Rn−r−y)/2

2
(1 + O(eRn−r−y)).
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Substituting this into (8.23) yields, for r ∈ (r0, Rn) and y ∈ (Rn − r + r0, Rn),

fn,r(y) = −e(Rn−r−y)/2(1 + O(eRn−r−y)).

Estimating the hyperbolic terms in ρn(y), it follows that

fn,r(y)ρn(y) = −αe(1/2−α)Rn−r/2e(α−1/2)y(1 + O(eRn−r−y) + O(e−αRn )). (8.24)

Solving the integral in (8.21) using (8.24), without taking into account the error terms, gives

−α

π

∫ Rn

Rn−r+r0

e(1/2−α)Rn−r/2e(α−1/2)y dy = −Cα

2
e−r/2(1 + O(e−(α−1/2)r)).

If α �= 3
2 then the integral over the first error term gives

O

( ∫ Rn

Rn−r+r0

e(1/2−α)Rn−r/2e(α−1/2)yeRn−r−y dy

)
= O(e−3r/2) + O(e−αr).

In the α = 3
2 case, the addition of the error term re−r in the statement makes it correct. The

integral over the second error term (corresponding to the O(e−αRn ) term of (8.24)) is of order
O(e−r/2−αRn ), which can be incorporated into the first error term of the result. Thus, the
computation of the integral appearing in (8.21) yields the correct estimate.

It remains to prove (8.21). This requires a bound on the speed of divergence of the function
fn,r(y), as y approaches (Rn − r). To obtain this bound, we first need to bound cn,r(y), for y in
the neighbourhood of (Rn − r). In the following, K stands for a positive constant whose value
depends only on α, ν, and r0 and may change throughout the proof. For two functions f and g,
we denote by f ∧ g (respectively f ∨ g) the minimum (respectively maximum) of f and g. Using
the formula cosh (a + b) = cosh (a) cosh (b) + sinh (a) sinh (b) and the mean value theorem to
bound the difference cosh (r + y) − cosh (Rn), we obtain, for y ∈ (Rn − r, Rn − r + r0),

cn,r(y) = cosh (r + y) − sinh (r) sinh (y) − cosh (Rn)

sinh (r) sinh (y)

≥ K(y − (Rn − r)) e(Rn−r)−y − 1.

Since (Rn − r) − y ≥ −r0, we finally get

cn,r(y) ≥ (K(y − (Rn − r)) − 1) ∧ 0.

On the other hand, for r0 and large enough n, approximating the hyperbolic terms by
exponentials gives, for y ∈ (Rn − r, Rn − r + r0),

cn,r(y) ≤ 1 − K.

Thus, for y ∈ (Rn − r, Rn − r + r0),

1√
1 − cn,r(y)2

≤ 1√
1 − (1 − K)2

∨ 1√
1 − ((K(y − (Rn − r)) − 1) ∧ 0)2

.

It follows that the function 1/
√

1 − cn,r(y)2 is integrable over the interval (Rn − r, Rn − r +
r0) and the integral is bounded by a constant that does not depend on n. From this and the
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approximation of fn,r(y) given in (8.22) (which also holds for y ∈ [Rn − r, Rn − r + r0]), we
get ∫ Rn−r+r0

Rn−r
fn,r(y)ρn(y) dy = O(ρn(Rn − r + r0)) = O(e−αr).

This completes the proof. �
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