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Abstract
This paper considers two supercritical branching processes with immigration in different random environments,
denoted by {Z1,n} and {Z2,m}, with criticality parameters µ1 and µ2, respectively. Under certain conditions, it
is known that 1

n log Z1,n → `1 and 1
m log Z2,m → `2 converge in probability as m, n → ∞. We present basic

properties about a central limit theorem, a non-uniform Berry–Esseen’s bound, and Cramér’s moderate deviations
for 1

n log Z1,n − 1
m log Z2,m as m, n → ∞. To this end, applications to construction of confidence intervals and

simulations are also given.

1. Introduction

As a significant extension of the branching process in a random environment (see [7, 8, 15, 18, 24, 25]
and their references), the branching process with immigration in a random environment (BPIRE) has
received extensive attention, Bansaye [1] investigated BPIRE by studying a model of cell contamina-
tion. Kesten [13] obtained the limiting distribution of random walks in random environments by using
branching processes with one immigration at each generation in an i.i.d. environment. Wang and Liu
have obtained the almost surely convergence, Lp convergence, the conditional moments, the quenched
moments, the harmonic moments, the exponential decay rate, and the Lp convergence rate under the
annealed law about (Wn); and the nondegeneracy, the existence of the p-th moments and the harmonic
moments for its limit W ; central limit theorem (CLT), the large and moderate deviation principles, and
the Berry–Esseen bound for log Zn [26–28]. Wang et al. provide the Cramér’s large deviation expansion
for log Zn [29]. Li and Huang [16] investigated a polynomial convergence rate of the submartingale to its
limit on BPIRE, and the almost surely convergence rate for a submartingale associated with branching
process in a varying environment. In [17], Li et al. considered the convergence rate in probability or dis-
tribution, and two forms of the CLTs about (Wn). Huang et al. [12] considered the rate of convergence
of the CLT under a moment condition of order 2+ X, with fixed X ∈ (0, 1]. Huang et al. [10, 11] showed
the moments and the harmonic moments of Zn, the large deviation principle and large deviations for
log Zn, and described the decay rates of n-step transition probabilities. For the subcritical and critical
cases (with multi-type), Key [14] demonstrated the convergence to a limit distribution. Roitershtein [21]
investigated CLTs and strong laws of large numbers for the partial sums of this process. Additionally,
Vatutin [22] applied a multi-type BPIRE to study polling systems with random service regimes.
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Despite these contributions, there is no result for comparison on the criticality parameters for two
supercritical BPIRE, which hinders their practical application. The objective of the paper is to fill this
gap.

Let (b1, b2)T = ((b1,n, b2,n)T )n≥0 be a sequence of i.i.d. two-dimensional random vectors, where
T is the transport operator and (b1,n, b2,n)T ∈ R2 stands for the random environment at generation n.
Thus, (b1,n, b2,n)T

n≥0 are independent random vectors, but notice that for given n, b1,n and b2,n may not
be independent. For any n ∈ N and i = 1, 2, each realization of bi,n corresponds to two probability
distributions on N = {0, 1, 2, · · · }: one is the offspring distribution denoted by

p(bi,n) = {pk (bi,n) : k ∈ N}, where pk (bi,n) ≥ 0,
∑

k
pk (bi,n) = 1,

the other is the distribution of the number of immigrants denoted by

p̂(bi,n) = {p̂k (bi,n); k ∈ N}, where p̂(bi,n) ≥ 0,
∑

k
p̂k (bi,n) = 1.

Let {Z1,n, n ≥ 0} and {Z2,n, n ≥ 0} be two branching processes with immigration in the random
environmentsb1,n and b2,n, respectively. Then, {Z1,n, n ≥ 0} and {Z2,n, n ≥ 0} can be described as
follows: for n ≥ 0,

Z1,0 = 1, Z1,n+1 = Y1,n +
Z1,n∑
i=1

X1,n,i, Z2,0 = 1, Z2,n+1 = Y2,n +
Z2,n∑
i=1

X2,n,i,

where X1,n,i and X2,n,i are the number of offspring of the i-th individual in generation n with environments
b1,n and b2,n, respectively. Y1,n and Y2,n are the number of new immigrants in the n-th generation with
environments b1,n and b2,n. Given (b1,n, b2,n)T , the random variables {X1,n,i, X2,n,i, i ≥ 1} and {Y1,n, Y2,n}
are mutually independent.

Let (Γ,Pb ) be the probability space under which the process is defined when the environment b is
given. The total probability space can be formulated as the product space (Γ×ΘN,P), with P(dx, db) =
Pb (dx)g(db). Usually, the conditional probabilities Pb1 and Pb2 are called the quenched laws, while
the total probability P is called the annealed law. We further define two laws Pbi,Yi , i = 1, 2, which
denote the conditional probabilities of P given (bi, Yi) where Yi = (Yi,0, Yi,1, ...), i = 1, 2. Additionally,
we denote Pb1,b2 may be considered to be the conditional probability when the environment (b1, b2)T

is given, and g is the joint law of the environment (b1, b2)T . Then,

P(dx1, dx2, dy1, dy2) = Pb1,b2 (dx1, dx2)g(dy1, dy2)

is the joint law of the two branching processes in random environment. In the sequel, the expectation
with respect to Pb1,b2 (resp. Pbi,Yi ,Pb ,P) will be denoted by Eb1,b2 (resp. Ebi,Yi ,Eb ,E).

We define, for any n ≥ 0 and a ≥ 0,

m(p)
1,n (a) =

∞∑
k=0

kp pk (b1,n), m(p)
2,n (a) =

∞∑
k=0

kp pk (b2,n),

Π1,n =

n−1∏
i=0

m1,i, Π2,n =

n−1∏
i=0

m2,i,

with the convention that Π1,0 = Π2,0 = 1. Moreover
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m̂(p)
1,n (a) =

∞∑
k=0

kap̂k (b1,n), m̂(p)
2,n (a) =

∞∑
k=0

kap̂k (b2,n).

Clearly, (m(p)
1,n )n≥0 and (m(p)

2,n )n≥0 are two sequences of i.i.d. random variables and we denote

X1,n = log m1,n, X2,n = log m2,n, `1 = E log m1,0, `2 = E log m2,0,

f2
1 = Var(log m1,0), f2

2 = Var(log m2,0), d =
Cov(X1,n, X2,n)

f1f2
,

where µ1 and µ2 are known as the criticality parameters for BPIREs {Z1,n, n ≥ 0} and {Z2,n, n ≥ 0},
respectively. In particular, if b1 and b2 are independent, we have d = 0. To avoid the environments b1
and b2 are degenerate, we assume that 0 < f1,f2 < ∞. For l = 1, 2, to establish some limit theorems on
Zl,n and the fundamental submartingale, we shall use the decomposition of Zl,n, similar to the approach
used in [26].

For simplicity, we will primarily concentrate on the case of Z1,n. To include the immigrants in
the family tree, we introduce one particle at each time n which we call eternal particle, denoted by
00, 01, 02, · · · with 0n := 0n−10 (the juxtaposition of 00 with n times 0), and we consider that the Y1,n
immigrants are direct children of 0n. To form a tree, we also consider that each 0n+1 is a direct child of
0n. Let E = {0k : k > 0} represent the set of all virtual particles introduced and assume that the Y1,n
particles moved into the n+ 1 generation are the descendants of the virtual particle 0n introduced in the
n-th generation. To construct a complete family tree, we assume that the virtual particle 0n+1 introduced
in the n+ 1 generation is also the offspring of the virtual particle 0n introduced in the n-th generation.

To enhance accessibility, we use “∼” to represent the pedigree with the initial particle q with-
out the immigrating particle, and “∧” to represent the pedigree with the initial particle 00 including
the immigrated particle. Therefore, the Z̃1,n represents the branching process in the random environ-
ment excluding the immigrating particles, the other Ẑ1,n represents the branching process including the
immigrating particles in the random environment, then

Z1,n = Z̃ (q)
1,n + Ẑ (00 )

1,n − 1, n ≥ 0.

Set

W1,n =
Z1,n

Π1,n
, W̃ (q)

1,n =
Z̃1,n

Π1,n
and Ŵ (00 )

1,n =
Ẑ1,n

Π1,n
,

it is obvious that

W1,n = W̃ (q)
1,n + Ŵ (00 )

1,n − Π−1
1,n . (1.1)

The sequence W̃ (q)
1,n is the well-known martingale associated with the branching process Z̃1,n (without

immigration) in a random environment, and its asymptotic properties have been extensively studied.
We will break down the branching processes with immigration, which begin with an eternal particle
0n ∈ E, in terms of branching processes (without immigration) in random environment, we have

Ŵ (00 )
1,n =

1
m1,0

Ŵ (01 )
1,n−1 +

1
m1,0

Y1,0∑
i=1

Ŵ (00i)
1,n−1.

For the case of a single supercritical BPIRE, denoted by {Z1,n, n ≥ 0}, the normal approximation
has been extensively studied. Given the additional conditions E

(
Z1,0
m1,0

)p
< ∞ and E

(
Y1,0
m1,0

)p
< ∞ for
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a constant p > 1, and EX2+X
1,0 < ∞ for a constant X ∈ (0, 1]. Wang et al. have derived the following

Berry–Esseen bound for log Z1,n in their work [27]:

sup
x∈R

���P( log Z1,n − n`1

f
√

n
≤ x

)
−Φ(x)

��� ≤ C
nX/2 , (1.2)

where Φ(x) is the standard normal distribution function.

Assume Cramér’s condition Ee_0X1,0 < ∞ for a constant _0 > 0, and E
(

Zp
1,0

m1,0

)
< ∞,E

(
Yp

1,0
m1,0

)
< ∞

for a constant p > 1, Wang et al. [29] also have established the following Cramér’s large deviation
expansion: for 0 ≤ x = o (n) , n → ∞,

��� log
P
( log Z1,n−n`1

f
√

n ≤ x
)

1 −Φ(x)

��� ≤ C
1 + x3
√

n
(1.3)

where C is positive constant. For instance, when the parameter f1 is known, they can be applied to
construct confidence intervals for estimating the criticality parameter µ1. This estimation is formulated
by considering both the observation Z1,n and the generation n, providing a more precise understanding
of the process.

Although the limit theorems for a single supercritical BPIRE have been extensively studied, there cur-
rently exists no comparative result concerning the criticality parameters for two supercritical BPIREs.
The objective of the paper is to fill this gap. We begin by considering the following common hypothesis
testing:

H0 : `1 − `2 = 0 or H1 : `1 − `2 ≠ 0.

When µ1 and µ2 represent the means of two independent populations, this form of hypothesis testing
has been considered by Chang et al. [3]. Within their work, they have established Cramér type moderate
deviations. In this paper, we are interested in the case where µ1 and µ2 are two criticality parameters of
BPIREs. By the law of large numbers, 1

n log Z1,n → `1 and 1
m log Z2,m → `2 converge in probability as

m, n → ∞, respectively. Therefore, to test the hypothesis, it is essential to estimate the asymptotic dis-
tribution of the random variable 1

n log Z1,n − 1
m log Z2,m, this estimation is central to the main purpose of

this paper. Observe that the expression 1
n log Z1,n − 1

m log Z2,m has an asymptotic distribution equivalent
to 1

n
∑n

k=1 X1,k − 1
m

∑m
k=1 X2,k . When b1 and b2 are independent, both

∑n
k=1 X1,k and

∑m
k=1 X2,k are sums

of i.i.d. random variables.
In this paper, we always assume l = 1, 2,

E log+
Yl,0

ml,0
< ∞ and E(log ml,0) > 0 (1.4)

which means that the process is supercritical. We assume that the following conditions hold:

E

[
Z1,1

m1,0
log+ Z1,1 +

Z2,1

m2,0
log+ Z2,1

]
< ∞, (1.5)

write log+ x = max{log x, 0}. From Grama et al. [7], it can be inferred that under the conditions (1.4)
and (1.5), Wn converges almost surely to a non-negative random variable W . Additionally, we assume
the following condition:
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p0(b1,0) = p0(b2,0) = 0, a.s. (1.6)

which ensures that the random walk has positive increments and states that each individual has at least
one offspring. Assumptions (1.5) and (1.6) imply that the processes (Z1,n, n ≥ 0) and (Z2,m, m ≥ 0) are
both supercritical and satisfy `1, `2 > 0 and Z1,n → ∞, Z2,m → ∞.

Define

Rm,n :=
1
n log Z1,n − `1 − 1

m log Z2,m + `2

Vm,n,d
,

Vm,n,d =

√
1
n
f2

1 + 1
m
f2

2 − 2df1f2
m ∧ n
m n

, n, m ∈ N.

Throughout the paper, we assume either

d ∈ [−1, 1) or d = 1 but f1 ≠ f2.

The final condition guarantees that

1
n
f2

1 + 1
m
f2

2 − 2df1f2
m ∧ n
m n

is in order of 1
m∧n as m, n → ∞. Clearly, it is easy to see that if m ≤ n,

1
n
f2

1 + 1
m
f2

2 − 2df1f2
m ∧ n
m n

= ( 1
m

− 1
n
)f2

2 +
f2

1 − 2df1f2 + f2
2

n
� 1

m
.

We now introduce our main results. First, Theorem 2.1 presents the CLT for Rm,n : for all x ∈ R, it holds

lim
m∧n→∞

P
(
Rm,n ≤ x

)
= Φ(x). (1.7)

Second, under some moment conditions, Theorem 2.2 gives a non-uniform Berry–Esseen bound for
Rm,n: for any X′ ∈ (0, X) and all x ∈ R,����P(Rm,n ≤ x

)
−Φ(x)

���� ≤ C
(m ∧ n) X/2

1
1 + |x |1+X′

. (1.8)

According to Lemma 4.3 and (3.16) in the paper, under the given conditions, we conclude that Rm,n only
has a finite moment of order 1 + X′. This explains why the non-uniform Berry–Esseen bound exhibits
an order of |x |−1−X′ as x → ∞, instead of an order of |x |−2−X . In particular, we have 1

m log Z2,m → `2

in probability when m → ∞, which leads to Rm,n → log Z1,n−n`1
f1

√
n in probability. Thus, inequality (1.8)

implies that

sup
x∈R

����P( log Z1,n − n`1

f1
√

n
≤ x

)
−Φ(x)

���� ≤ C
(m ∧ n) X/2

1
1 + |x |1+X′

,

which improves the Berry–Esseen bound (1.2) by adding a factor 1
1+|x |1+X′ .
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Third, we establish Cramér’s moderate deviations. Assuming conditions A3, A4, and A5 are satisfied,
Theorem 2.3 demonstrates that for all 0 ≤ x ≤ c−1√m ∧ n,����� log

P
(
Rm,n ≥ x

)
1 −Φ(x)

����� ≤ C
1 + x3
√

m ∧ n
. (1.9)

When m → ∞, it is easy to see that (1.9) holds with Rm,n replaced by log Z1,n−n`1
f1

√
n . Therefore, our results

reconfirm the Cramér’s moderate deviations (1.3) as initially established by Wang et al. To conclude,
we explore the creation of confidence intervals for `1 − `2 as an application of our finding.

We now explain briefly the organization of this paper. In Section 2, we present our main results.
Some applications are demonstrated in Section 3. The proofs of some results in Section 2 are given
in Section 3.2.

Additionally, the symbols c and C are used to represent a small positive constant and a large positive
constant, respectively. Their values may vary from line to line. For two sequences of positive numbers
(an)n≥1 and (bn)n≥1, we write an � bn if there exists a positive constant C such that for all n, it holds
C−1bn ≤ an ≤ Cbn.

2. Main results

To better study the properties, we make the following conditions:

A1. There exists a constant X ∈ (0, 1] such that

E[X2+X
1,0 + X2+X

2,0 ] < ∞.

A2. There exists a constant p> 1 such that

E

[ Zp
1,1

mp
1,0

+
Zp

2,1

mp
2,0

]
< ∞.

A3. There exists a constant p> 1 such that

E

(
Yp

1,0

mp
1,0

+
Yp

2,0

mp
2,0

)
< ∞.

Theorem 2.1 For all x ∈ R, we have

lim
m∧n→∞

P
(
Rm,n ≤ x

)
= Φ(x). (2.1)

The following theorem gives a non-uniform Berry–Esseen bound for Rm,n.

Theorem 2.2 Assume that conditions A1, A2, and A3 hold. Let X′ be a constant such that X′ ∈ (0, X).
Then for all x ∈ R, ���P(Rm,n ≤ x

)
−Φ(x)

��� ≤ C
(m ∧ n) X/2

1
1 + |x |1+X′

. (2.2)

Under the conditions A1, A2, and A3, and during the proof of the theorem, it can be shown that
Rm,n has a finite moment of order 1 + X′. This explains why the non-uniform Berry–Esseen bound (2.2)
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decays at the rate |x |−1−X′ rather than |x |−2−X as x → ∞. According to Theorem 2.2, we can establish
the following Berry–Esseen bounds for Rm,n.

Corollary 2.3. Assume that conditionsA1, A2, and A3 hold. Then

sup
x∈R

���P(Rm,n ≤ x
)
−Φ(x)

��� ≤ C
(m ∧ n) X/2

. (2.3)

Note that 1
m log Z2,m converges in probability to µ2, thus,

R∞,n := lim
m→∞

Rm,n =
log Z1,n − n`1

f1
√

n

in probability. Therefore, when m → ∞, Corollary 2.3 yields the Berry–Esseen bound established by
Huang and Liu [27], that is,

sup
x∈R

����P( log Z1,n − n`1

f1
√

n
≤ x

)
−Φ(x)

���� ≤ C
nX/2 .

It known that the convergence rate of the last Berry–Esseen bound aligns with the best achievable rate
for i.i.d. random variables with finite moments of order 2 + X.

Next, we will establish Cramér’s moderate deviations for Rm,n. To achieve this, we require the
following conditions.
A4. The random variables X1,0 and X2,0 have exponential moments, i.e. there exists a constant _0 > 0

such that

E
[
e_0X1,0 + e_0X2,0

]
< ∞.

A5. There exists a constant p> 1 such that

E

[ Zp
1,1

m1,0
+

Zp
2,1

m2,0

]
< ∞.

We have the following Cramér’s moderate deviations for Rm,n.

Theorem 2.3 Assume that conditions A3, A4, and A5 hold. Then for all 0 ≤ x ≤ c
√

m ∧ n,����� log
P
(
Rm,n ≥ x

)
1 −Φ(x)

����� ≤ C
1 + x3
√

m ∧ n
. (2.4)

By the symmetry between m and n, Theorems 2.1–2.3 hold true when Rm,n is replaced by −Rm,n.
Consequently, we have −Rm,n = Rn,m.

By a similar argument to the proof of theorem 7.3 in [26], it becomes evident that Theorem 2.3
implies the subsequent moderate deviation principle (Markov decision process) result for Rm,n.
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Corollary 2.4. Assume that conditions A3, A4, and A5 hold. Let an be a sequence of positive numbers
satisfying

an

m ∧ n
→ 0 and

an√
m ∧ n

→ ∞, as m ∧ n → ∞.

Then, for any measurable subset B of R,

− inf
x∈Bo

x2

2
≤ lim inf

n→∞
1
a2

n
P

(
Rm,n

an
∈ B

)
≤ lim sup

n→∞

1
a2

n
logP

(
Rm,n

an
∈ B

)
≤ − inf

x∈B

x2

2
, (2.5)

where Bo and B denote the interior and the closure of B, respectively.

3. Applications and simulations

3.1. Applications to construction of confidence intervals

In this section, we focus on the construction of confidence intervals for `1 − `2. When we have known
of the parameters f1,f2, and d, we can use Theorems 2.2 and 2.3 to establish confidence intervals for
`1 − `2.

Proposition 3.1. Let ^m,n ∈ (0, 1), Consider the following two groups of conditions:
H1. The conditions of Theorem 2.2 hold and��log ^m,n

�� = o
(
log(m ∧ n)

)
, as m ∧ n → ∞. (3.6)

H2. The conditions of Theorem 2.3 hold and��log ^m,n
�� = o

(
(m ∧ n)1/3) , as m ∧ n → ∞. (3.7)

Assume H1 or H2 holds, Then
[
Am,n, Bm,n

]
, with

Am,n =
1
n

log Z1,n −
1
m

log Z2,m − Vm,n,dΦ
−1

(
1 − ^m,n

2

)
,

Bm,n =
1
n

log Z1,n −
1
m

log Z2,m + Vm,n,dΦ
−1

(
1 − ^m,n

2

)
,

is a 1 − ^m,n confidence interval for `1 − `2, when m ∧ n is sufficiently large.

Proof. Assume H1 holds. Theorem 2.2 implies that, as m ∧ n → ∞,

P
(
Rm,n > x

)
1 −Φ(x) = 1 + o(1) and

P
(
Rm,n < −x

)
Φ(−x) = 1 + o(1) (3.8)

uniformly for 0 ≤ x = o
(√

log(m ∧ n)
)
. For p ↘ 0, the quantile function of the standard normal

distribution has the following asymptotic expansion

Φ−1(p) = −

√
log

1
p2 − log log

1
p2 − log(2c) + o(1).
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Specifically, when ^m,n satisfies (3.6), the upper
(
1 − ^m,n

2
)
-th quantile of standard normal distribution

satisfies

Φ(Φ−1(1 − ^m,n

2
)) = 1 − ^m,n

2
= 1 −Φ(Φ−1( ^m,n

2
)) = Φ(−Φ−1( ^m,n

2
)),

hence

Φ−1
(
1 − ^m,n

2

)
= −Φ−1

( ^m,n

2

)
= O

(√��log ^m,n
�� ) ,

which, by (3.6), is of order o
(√

log(m ∧ n)
)
. Then applying the last equality to (3.8), we obtain the

result

P
(
Rm,n > Φ−1

(
1 − ^m,n

2

))
∼ ^m,n

2
(3.9)

and

P
(
Rm,n < −Φ−1

(
1 − ^m,n

2

))
∼ ^m,n

2
, (3.10)

as m∧n → ∞. Note that, Rm,n ≤ Φ−1(1− (^m,n/2)) means ` ≥ Am,n, while Rm,n ≥ −Φ−1(1− (^m,n/2))
means ` ≤ Bm,n. Thus, as m ∧ n → ∞,

P

(
−Φ−1

(
1 − ^m,n

2

)
≤ Rm,n ≤ Φ−1

(
1 − ^m,n

2

) )
∼ 1 − ^m,n. (3.11)

Next, assume H2 holds. By Theorem 2.3, as m ∧ n → ∞, we have

P
(
Rm,n > x

)
1 −Φ(x) = 1 + o(1) and

P
(
Rm,n < −x

)
Φ(−x) = 1 + o(1) (3.12)

uniformly for 0 ≤ x = o((m∧n)1/6).When ^m,n satisfies (3.7), by the definition of the upper
(
1 − ^m,n

2
)
-th

quantile of standard normal distribution satisfies

Φ−1
(
1 − ^m,n

2

)
= −Φ−1

( ^m,n

2

)
= O

(√��log ^m,n
��) ,

which is of order o
(
(m ∧ n)1/6) . By (3.12), we have

P

(
−Φ−1

(
1 − ^m,n

2

)
≤ Rm,n ≤ Φ−1

(
1 − ^m,n

2

) )
∼ 1 − ^m,n,

as m ∧ n → ∞. This completes the proof of Proposition 3.1. �

When {Z2,n, n ≥ 0} is an independent copy of {Z1,n, n ≥ 0}, we can apply Theorems 2.2 and 2.3 to
construct confidence intervals for f1.
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Proposition 3.2. Assume H1 or H2 holds, let ^n,n ∈ (0, 1). Then [An, Bn], with

An =
(log Z1,n − log Z2,n)2

2nj2
1− 1

2 ^n,n
(1)

and Bn =
(log Z1,n − log Z2,n)2

2nj2
1
2 ^n,n

(1)

is a 1 − ^n,n confidence interval for f1
2 for sufficiently large n, where j2

q (1) the q-quantiles for chi-
squared distribution with one degree of freedom.

Proof. Assume H1 holds. By Theorem 2.2, as n → ∞, we have

P
(
(log Z1,n−log Z2,n )2

2nf2
1

> x
)

P(j2(1) ≥ x)
= 1 + o(1) (3.13)

uniformly for 0 ≤ x = o(
√

log n). Then, applying the last equality to (3.13), we have, as n → ∞,

P

(
j2

1
2 ^n,n

(1) ≤ (log Z1,n − log Z2,n)2

2nf2
1

≤ j2
1− 1

2 ^n,n
(1)

)
∼ 1 − ^n,n, (3.14)

which implies f2
1 ∈ [An, Bn] with probability 1 − ^n,n for n large enough.

If H2 holds, analogous arguments apply. This completes the proof of Proposition 3.2. �

3.2. Numerical simulation

We now present numerical simulations validating Theorems 2.1–2.3. Let (X1,n,i)n≥0,i≥1 and
(X2,n,i)n≥0,i≥1 follow the distributions:

Pb (X1,n,i = k) =
b1,n < text >< /text > k = 1,

1 − b1,n < text >< /text > k = 2,

Pb (X2,n,i = k) =
b2,n < text >< /text > k = 1,

1 − b2,n < text >< /text > k = 2.

Similarly, (Y1,n)n≥0 and (Y2,n)n≥0 follow Poisson distributions:

Pb (Y1,n = k) = _k (b1,n)e−_( b1,n )

k!
,

Pb (Y2,n = k) = _k (b2,n)e−_( b2,n )

k!

where _(b1,n) = 2b1,n + 1 and _(b2,n) = 3b2,n + 0.5. b1,nand b2,n follow uniform distributions
U (0, 1) and U (0, 0.5), respectively. The computed parameters are `1 = 0.3863,f2

1 = 0.0391, and
`2 = 0.2781,f2

2 = 0.081. In the theoretical proofs, we assume initial population sizes Z1,0 = Z2,0 = 1.
for simplicity. However, any finite values of Z1,0, Z2,0 would not affect the theoretical conclusions. To
obtain better simulation performance, we set Z1,0 = Z2,0 = 5 and conducted numerical experiments with
environmental correlation coefficients d = 0, 0.5, and −0.5. For the numerical verification of Theorems
2.2 and 2.3, we performed 3000 simulation trials with m∧n = 50 generations of offspring reproduction.
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Figure 1. Central limit theorem.

Figure 2. Non-uniform Berry–Esseen bounds.

Figure 3. Cramér’s moderate deviations.

Figure 1 demonstrates the convergence of the empirical distribution of Rm,n to the standard normal
distribution. As m ∧ n → ∞, the empirical cumulative distribution function approaches the theoretical
normal curve across all tested d values, validating the CLT (Theorem 2.1).

Figure 2 illustrates the non-uniform Berry–Esseen bound (Theorem 2.2). The upper and lower
bounds are demarcated by dashed lines. Specifically, the two dotted lines above and below correspond
to Φ(x) − C

(m∧n) X/2
1

1+|x |1+X′ and Φ(x) + C
(m∧n) X/2

1
1+|x |1+X′ , respectively. The central solid curve represents

the standard normal distribution function, while the discrete points within the solid region denote the
simulation results.

Figure 3 verifies Cramér’s moderate deviations (Theorem 2.3). The upper and lower dashed lines
represent the boundaries C 1+x3

√
m∧n and −C 1+x3

√
m∧n , the middle blue solid line is the simulation result, and

the red dashed line serves as the theoretical baseline.
Figures 1–3 confirm the validity of Theorems 2.1–2.3, as the simulations align closely with

theoretical predictions.
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3.2. Proof of Theorem 2.1

The following random walk related to the branching process will be used in our research. For l = 1, 2,

Sl,0 = 0, Sl,n =

n∑
i=1

log ml,i−1, n ≥ 1,

the random variables {log ml,i−1}i≥1 are independent and identically distributed, depending only on the
environment b. Clearly

log Zl,n = Sl,n + log Wl,n, (3.15)

where (Wl,n)n≥0 is non-negative submartingale under the annealed law P, with respect to the natural
filtration

F0 = f{b1, b2}, Fn = f{b1, b2, Y1,k , X1,k,i, Y2,k , X2,k,i, 0 ≤ k ≤ n − 1, i ≥ 1}, n ≥ 1.

Without loss of generality, we assume that m ≤ n. For the sake of simplicity in notation, in the sequel,
denote

[m,n,i =
X1,i−1 − `1

n Vm,n,d
, i = 1, · · · , n, and [m,n,n+j = −

X2,j−1 − `2

m Vm,n,d
, j = 1, · · · , m.

We can write Rm,n the following form:

Rm,n =

n+m∑
i=1

[m,n,i +
log W1,n

n Vm,n,d
− log W2,m

m Vm,n,d
. (3.16)

Let

Ni = [m,n,i + [m,n,n+i, i = 1, · · · , m, and Ni = [m,n,i, i = m + 1, · · · , n.

Then (Ni)1≤i≤n is a finite sequence of centered and independent random variables and satisfies

n∑
i=1

Ni =

n+m∑
i=1

[m,n,i and
n∑

i=1
EN2

i = 1. (3.17)

Furthermore, it is easy to see

Var(Ni) �
1
m

, i = 1, . . . , m, and Var(Ni) �
m
n2 , i = m + 1, . . . , n,

as m → ∞.

Below we will use the relationship between Wl,n and W̃l,n. The following lemma plays a crucial role,
as it demonstrates that Wl,n almost surely converges.
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Lemma 3.3. (cf. [26, Theorem 3.2 and Lemma 4.1]) Assume the condition (1.4) is satisfied, l = 1, 2.
By the martingale convergence theorem, since the submartingale Wl,n is L1 bounded under Pb ,Y , then

Wl,∞ = lim
n→∞

Wl,n P − a.s. (3.18)

and it takes a value of [0,∞) and satisfies the following decomposition formula:

Wl,∞ = W̃ (q)
l,∞ +

n∑
k=1

Π−1
k

Yk−1∑
i=1

Ŵ (0k−1i)
l,∞ a.s.. (3.19)

Proof of Theorem 2.1 Without loss of generality, we assume that m ≤ n. Recall that 0 < f1,f2 < ∞,
and equation (3.17). It is worth noting that

Vm,n,d � 1
√

m
and max

1≤i≤n
Var(Ni) → 0, m → ∞.

We begin with the decomposition formula (3.16). On the one hand, by the CLT for independent
random variables, we have

∑n+m
i=1 [m,n,i converges in distribution to the standard normal distribution as

m → ∞. On the other hand, recall that (3.18), we have Wl,n converges to Wl,∞ as n → ∞, and it is
known that EWl,n < ∞, almost surely. Moreover, since p0 = 0, almost surely, the condition (1.5) and
the decomposition formula (3.19), we can obtain Wl,n ≥ W̃l,n > 0, a.s. Therefore, we obtain in that

log W1,n

n Vm,n,d
→ 0 and

log W2,m

m Vm,n,d
→ 0

as m → ∞.
Combining the above results, we see that Rm,n converges in distribution to the normal distribution.

This completes the proof of Theorem 2.1. �

4. Proof of Theorem 2.2

In the proof of Theorem 2.2, we require the following non-uniform Berry–Esseen bound derived by
Bikelis [2]. For more general results, see Chen and Shao [4].

Lemma 4.1. Let (Xi)1≤i≤n be independent random variables satisfying EXi = 0 and E |Xi |2+X < ∞ for
some positive constant X ∈ (0, 1] and all 1 ≤ i ≤ n. Assume that

∑n
i=1 EX2

i = 1. Then, for all x ∈ R,�����P( n∑
i=1

Xi ≤ x
)
−Φ(x)

����� ≤ C
1 + |x |2+X

n∑
i=1
E |Xi |2+X .

Next we will explore the (conditional) Laplace transforms of W1,∞ and W2,∞, for all t ≥ 0,

qi,b (t) = Eb e−tWi,∞ , qi (t) = Eqi,b (t) = Ee−tWi,∞ ,

q̃i,b (t) = Eb e−tW̃ (∅)
i,∞ and q̃i (t) = Eq̃i,b (t) = Ee−tW̃ (∅)

i,∞ , i = 1, 2.

Since Wi,∞ > W̃i,∞ > 0, it follows that qi (t) ≤ q̃i (t). We have the following bounds for q̃i (t), i = 1, 2,
as t → ∞.
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Lemma 4.2. Assume that conditions A1 and A2 are satisfied. Then for i = 1, 2, it holds

q̃i (t) ≤
C

1 + (log+ t)1+X , t → ∞.

Here, we use results from Fan et al. [6]. In the earlier work of Grama et al. in [7](see theorem 3.1),
they established an upper bound for q̃(t), which states that q̃(t) ≤ CtU for t > 0, where U is a positive
constant. This upper bound is superior to the one referenced in our Lemma 4.2. However, theorem 3.1 in
Grama’s work requires condition A3, whereas our condition A1 is weaker. Therefore, we cannot directly
apply the conclusions from Grama et al.’s work.

Next, we obtain the following results regarding the Lp moments of log Wi,n and log Wi,∞. Wang et al.
[27, Lemma 3.2] have previously demonstrated this for the case of q ∈ (1, 1 + X/2). Our results extend
their findings to the range q ∈ (1, 1 + X).

Lemma 4.3. Assume conditions A1and A2 are satisfied, and there is a constant n > 0 such that
E

(
Yi,0
mi,0

) n
< ∞, i = 1, 2. Then, for i = 1, 2 and q ∈ (1, 1 + X), the following two inequalities hold

E| log Wi,∞ |q < ∞, sup
n∈N
E| log Wi,n |q < ∞. (4.20)

Proof. Set i = 1, 2. We decompose E| log Wi,∞ |q as follows

E| log Wi,∞ |q = E| log Wi,∞ |q1{Wi,∞>1} + E| log Wi,∞ |q1{Wi,∞≤1} . (4.21)

For the first term in (4.21), it is crucial to note that there exists a constant C > 0 such that
|log x |q 1{x>1} ≤ Cxn holds for any x > 0. Therefore, we have

E| log Wi,∞ |q1{Wi,∞>1} ≤ C EW n
i,∞. (4.22)

Observe that p0 = 0, a.s. and f > 0 imply m0 > 1, thus Em−n
0 < 1. From the Fatou’s lemma and the

work of Wang and Liu [27], we can deduce that under the conditions of Lemma 4.3, we haveEW n
i,∞ < ∞.

Thus,

E| log Wi,∞ |q1{Wi,∞>1} ≤ C EW n
i,∞ < ∞. (4.23)

For the second term, by Markov’s inequality and qi (t) ≤ q̃i (t), we have

E| log Wi,∞ |q1{Wi,∞≤1} = q
∫
Ω

∫ ∞

1

1
t
(log t)q−1 1{

Wi,∞≤t−1
}dtdP

= q
∫ ∞

1

1
t
(log t)q−1P(Wi,∞ ≤ t−1) dt

≤ q e
∫ ∞

1

q̃i (t)
t

(log t)q−1 dt

= q e
(∫ e

1

q̃i (t)
t

(log t)q−1 dt +
∫ ∞

e

q̃i (t)
t

(log t)q−1 dt
)
. (4.24)

Clearly, ∫ e

1

q̃i (t)
t

(log t)q−1 dt < ∞. (4.25)
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Based on Lemma 4.2 and q < 1 + X, we can derive the following:∫ ∞

e

q̃i (t)
t

(log t)q−1 dt ≤ C
∫ ∞

e

1
t(log t)2+X−q dt < ∞. (4.26)

Substituting (4.25) and (4.26) into (4.24), we obtain

E| log Wi,∞ |q1{Wi,∞≤1} < ∞. (4.27)

Therefore, by (4.21), (4.23), and (4.27), we obtain the first conclusion in (4.20).
Applying a similar truncation as E

��log Wi,∞
��q, we give a proof for the second conclusion in (4.20).

Using the result in [26], we obtain

sup
n∈N
E

��log Wi,n
��q 1{Wi,n≥1} ≤ C sup

n∈N
EW n

i,n < ∞.

Since x ↦→
��logq (x)1{x≤1}

�� , q > 1, is a decreasing function, and we have Wi,n ≥ W̃i,n, so

sup
n∈N
E

��log Wi,n
��q 1{Wi,n≤1} < sup

n∈N
E

��logW̃i,n
��q 1{

W̃i,n≤1
} < ∞.

For the last inequality, see [6]. Combining the above results, we see that supn∈N E
��log Wi,n

��q < ∞. This
completes the proof of Lemma 4.3. �

Lemma 4.4. Assume that conditions A1, A2, and A3 are satisfied, then there exists a constant W ∈
(0, 1), such that

E| log W1,n − log W1,∞ | + E| log W2,m − log W2,∞ | ≤ C Wm∧n.

Proof. Let’s first prove the case when i= 1. Since < log> < /log>W1,n+1− < log> < /log>W1,n =

log
(
1 + [1,n

)
, where

[1,n =
1

Z1,n

Z1,n∑
i=1

(
X1,n,i

m1,n
− 1

)
+ Y1,n

Z1,nm1,n
.

Under Pb , the sequence
{

X1,n,i
m1,n

− 1
}

i≥1
consists of i.i.d. random variables with zero mean, independent

from {Z1,n}, and the sequence
{

Y1,n
m1,n

}
is also independent from {Z1,n}. Choose p ∈ (1, 2) such that A2

and A3 hold. Using the convexity inequality |x + y|p ≤ 2p−1 ( |x |p + |y|p) and Zygmund inequality, we
get

E
��[1,n

��p ≤ 2p−1E
©­«
����� 1
Z1,n

Z1,n∑
i=1

(
X1,n,i

m1,n
− 1

)�����
pª®¬ + 2p−1E

(
Z−p

1,n

���� Y1,n

m1,n

����p)
≤ 22p−1E

[
Eb

(
Z1−p

1,n

)
Eb

(����X1,n,1

m1,n
− 1

����p)] + 2p−1E

[
Eb

(
Z−p

1,n

)
Eb

(���� Y1,n

m1,n

����p)]
≤ 22p−1E

(
Z1−p

1,n

)
E

(����X1,0,1

m1,0
− 1

����p) + 2p−1E
(
Z−p

1,n

)
E

(���� Y1,0

m1,0

����p) . (4.28)
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By Grama et al. [7], for p> 1, we have EZ̃1−p
1,n ≤

(
EZ̃1−p

1,1

)n
because of Z1,n ≥ Z̃1,n and p> 1, we can

obtain

EZ1−p
1,n ≤ EZ̃1−p

1,n ≤
(
EZ̃1−p

1,1

)n
=

(
E

[
m1,0 (1 − p)

] )n
. (4.29)

Bring (4.29) into (4.28), we can obtain(
E

��[1,n
��p) 1

p ≤ C1X
n
1, (4.30)

where X1 = (E [m0 (1 − p)])1/p ∈ (0, 1) ,

C1 = 2 max

{(
E

����X1,0,1

m1,0

����p)1/p
,
(
E

���� Y1,0

m1,0

����p)1/p}
< ∞.

Fix M ∈ (0, 1). By decomposition and standard truncation, we have

E
��< log> < /log>W1,n+1− < log> < /log>W1,n

�� = E ��< log> < /log> (1 + [1,n)
�� 1(

[1,n≥−M
)

+ E
��< log> < /log> (1 + [1,n)

�� 1(
[1,n<−M

)
=: In + Jn

It is obvious that there exists a constant C > 0 such that for all x > −M, |log(1 + x) | ≤ C |x |. By (4.30),
we get

In ≤ CE
��[1,n

�� ≤ C
(
E

��[1,n
��p) 1

p ≤ C1X
n
1. (4.31)

By Lemma 4.3, for any r ∈ (0, p) and under the conditions of Lemma 4.4, we have

sup
n∈N
E

��< log> < /log>
(
1 + [1,n

) ��r < ∞.

Let r, s > 1 satisfy 1
r + 1

s = 1. By Hölder’s inequality and Markov’s inequality, we have

Jn ≤
(
E

��< log> < /log> (1 + [1,n)
��r)1/r

(P
(
[1,n < −M

)
)1/s

≤ C
(
E

��[1,n
��p)1/s

≤ C1X
n
1. (4.32)

Combining with (4.31) and (4.32), we obtain

E
��log W1,n+1 − log W1,n

�� ≤ C1X
n
1.

By the triangle inequality, for all k ∈ N, we have

E
��log W1,n+k − log W1,n

�� ≤ C1

(
Xn

1 + · · · + Xn+k−1
1

)
≤ C1

1 − X1
Xn

1.

Letting k → ∞ and applying Fatou’s lemma, we obtain E| log W1,∞ − log W1,n | < C1X
n
1. Similar to the

proof above, we can obtain

E| log W2,∞ − log W2,m | ≤ C2X
m
2 .
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Then, we can obtain

E| log W1,∞ − log W1,n | + E| log W2,∞ − log W2,m | ≤ CWm∧n.

The following lemma plays a crucial role in the proof of Theorem 2.2. �

Lemma 4.5. Assume that conditions A1, A2, and A3 are satisfied. Let X′ be a constant such that X′ ∈
(0, X). Then for all x ∈ R,

P

(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i ≥ x
)
≤ C

(m ∧ n) X/2
1

1 + |x |1+X′
(4.33)

and

P

(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i ≤ x
)
≤ C

(m ∧ n) X/2
1

1 + |x |1+X′
. (4.34)

Proof. We prove only (4.33), the same method applies to (4.34). Without loss of generality, assume that
m ≤ n. For all x ∈ R, the following inequality holds,

P

(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i ≥ x
)

≤ P
(
Rm,n ≤ x

)
≤ P1 + P2, (4.35)

where

P1 = P

(
log Z1,n − n`1

nVm,n,d
≤ x

2

)
and P2 = P

(
− log Z2,m − m`2

mVm,n,d
≤ x

2

)
.

We have known that Z1,n ≥ 1 P- almost surely and Vm,n,d � m−1/2 as m → ∞, for some positive
constant C such that

log Z1,n − n`1

nVm,n,d
> − `1

Vm,n,d
> −1

2
Cm1/2 P-a.s..

First, we prove (4.33) when x ≤ −Cm1/2. From the inequality above, we deduce

log Z1,n − n`1

nVm,n,d
>

x
2

,

hence P1 = 0. For P2, note that

log Z2,m =

m∑
j=1

X2,j−1 + log W2,m,

thus, by Lemma 4.1, Markov’s inequality, and EW2,m < ∞, we can obtain that for all x ≤ −Cm1/2,
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P2 = P

( m∑
j=1

[m,n,n+j −
log W2,m

m Vm,n,d
≤ − |x |

2

)
≤ P

( m∑
j=1

[m,n,n+j ≤ − |x |
4

)
+ P

(
log W2,m

m Vm,n,d
≥ |x |

4

)
≤ P

( m∑
j=1

[m,n,n+j ≤ − |x |
4

)
+ exp

{
− |x |

4
m Vm,n,d

}
EW2,m

=: I1 + I2. (4.36)

For I1, since Vm,n,d � m−1/2 as m → ∞, by the inequality

1
√

2c(1 + x)
e−x2/2 ≤ 1 −Φ (x) ≤ 1

√
c(1 + x)

e−x2/2, x ≥ 0, (4.37)

where

(1 + |x |) e
x2
2 ≥ Cm

X
2

(
1 + |x |2+X

)
.

Applying Lemma 4.1 , we can obtain

I1 = 1 − P
(
−

m∑
j=1

[m,n,n+j

f2
≤ |x |

4f2

)
≤ 1 −Φ

(
|x |

4f2

)
+ C1

1 + |x |2+X

(4f2 )2+X

m∑
j=1
E

(
X2,j−1 − `2

mVm,n,d

)2+X

≤ C3

mX/2
1

1 + |x |2+X
+ C4

1 + |x |2+X

(
m

m2+Xm−1−X/2

)
≤ C5

mX/2
1

1 + |x |2+X
. (4.38)

For I1, we can easily obtain exp
{
− 1

4m
}

mX/2 (
1 + Cm2+X ) = o (1) as m → ∞. Thus,

I2 ≤ C6

mX/2
1

1 + |x |2+X
.

For the above reasons, we show that

P2 ≤ I1 + I2 ≤ C
mX/2

1
1 + |x |2+X

. (4.39)

Hence, inequality (4.33) holds for all x ≤ −Cm1/2.
Next, we show that inequality (4.33) holds for all x ≥ Cm1/2. By Lemma 4.1 and the inequality

(a + b)2+X ≤ 21+X ( |a|2+X + |b|2+X), a, b ∈ R,

we establish that for all x ≥ 0,
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P

(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i ≥ x
)

≤ 1 −Φ(x)

+ C1

1 + |x |2+X

(
m∑

i=1
E|[m,n,i + [m,n,n+i |2+X +

n∑
i=m+1

E|[m,n,i |2+X
)

≤ 1 −Φ(x) + C1

1 + |x |2+X

(
n∑

i=1
E|[m,n,i |2+X +

m∑
i=1
E|[m,n,n+i |2+X

)
≤ C2

mX/2
1

1 + |x |2+X
+ C3

1 + |x |2+X

(
n

n2+Xm−1−X/2 + m
m2+Xm−1−X/2

)
≤ C4

mX/2
1

1 + |x |2+X
.

�

To complete the proof, we now show that (4.33) holds for |x | < Cm1/2. Consider the following
notations, for all 0 ≤ k ≤ m − 1,

Tm,n,k =

n∑
i=k+1

[m,n,i +
m∑

j=k+1
[m,n,n+j, T̃m,n,k = Tm,n,0 − Tm,n,k ,

Hm,n,k =
log W1,k

n Vm,n,d
− log W2,k

m Vm,n,d
and Dm,n,k =

log W1,n

n Vm,n,d
− log W2,m

m Vm,n,d
− Hm,n,k .

Let Um = m−X/2 and k = [m1−X/2 ], where [t] denotes the largest integer less than t. From equation
(3.16), we deduce that for all x ∈ R,

P

(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i ≥ x
)
≤ P

(
Tm,n,0 + Hm,n,k ≤ x + Um, Tm,n,0 ≥ x

)
+ P

(
|Dm,n,k | ≥ Um

)
. (4.40)

We first provide an estimation for the first term on the RHS of (4.40). Let

Gm,n,k (x) = P
(
Tm,n,k ≤ x

)
and vk (ds, dt) = P

(
T̃m,n,k ∈ ds, Hm,n,k ∈ dt

)
.

Due to the independence between Tm,n,k and (T̃m,n,k , Hm,n,k), we have

P
(
Tm,n,0 + Hm,n,k ≤ x + Um, Tm,n,0 ≥ x

)
=

∫ ∫
1{t≤Um }

(
Gm,n,k (x − s − t + Um) − Gm,n,k (x − s)

)
vk (ds, dt)

=

∫ ∫
1{t≤Um }

(
Gm,n,k (x − s − t + Um) −Φ (x − s − t + Um)

)
vk (ds, dt)

−
∫ ∫

1{t≤Um }
(
Gm,n,k (x − s) −Φ (x − s)

)
vk (ds, dt)

+
∫ ∫

1{t≤Um }
(
Φ (x − s − t + Um) −Φ (x − s) vk (ds, dt)

)
. (4.41)
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Denote C2
m,n,k = Var(Tm,n,k), then it holds Cm,n,k = 1 + O(k/n) ↗ 1 as m → ∞. By Lemma 4.1, for all

x ∈ R, we have ����P (
Tm,n,k

Cm,n,k
≤ x

Cm,n,k

)
−Φ

(
x

Cm,n,k

)����
≤ C2

1 + |x |2+X
©­«

n∑
i=k+1
E

����X1,i−1 − `1

nVm,n,d

����2+X + m∑
j=k+1
E

����X2,j−1 − `2

mVm,n,d

����2+Xª®¬
≤ C4

mX/2
1

1 + |x |2+X
. (4.42)

By the mean value theorem, for all x ∈ R,����Φ (
x

Cm,n,k

)
−Φ (x)

���� ≤ x exp
{
−x2

2

} ���� 1
Cm,n,k

− 1
���� ≤ C

mX/2
1

1 + |x |2+X
. (4.43)

Combining (4.42) and (4.43), we deduce that for all x ∈ R,��Gm,n,k (x) −Φ(x)
�� ≤ C

mX/2
1

1 + |x |2+X
. (4.44)

Therefore, we have for all x ∈ R,

P
(
Tm,n,0 + Hm,n,k 6 x + Um, Tm,n,0 > x

)
≤ J1 + J2 + J3, (4.45)

where

J1 =

∫ ∫
1{t6Um } |Φ (x − s − t + Um) −Φ(x − s) | vk (ds, dt),

J2 =
C

mX/2

∫ ∫
1{t6Um }

1
1 + |x − s|2+X

vk (ds, dt)

and

J3 =
C

mX/2

∫ ∫
1{t6Um }

1
1 + |x − s − t |2+X

vk (ds, dt).

For J1, we have for all x ∈ R,

Φ(b)′1{ |s |<1+ 1
4 |x | }

1{ |t | ≤1+ 1
4 |x | }

≤ Φ(b)′1{ |s |<1+ 1
4 |x | }

≤ C exp
{
−x2

8

}
.

Then by the mean value theorem, we have for all x ∈ R,

1{t6Um } |Φ (x − s − t + Um) −Φ(x − s) | ≤ |Um − t |Φ′ (b)
≤ |Um − t | [1{ |s | ≥1+ 1

4 |x | }
+Φ′ (b)1{ |t | ≥1+ 1

4 |x | }
+Φ′ (b)1{ |s |<1+ 1

4 |x |, |t | ≤1+ 1
4 |x | }

]

≤ |Um − t | [C exp
{
−x2

8

}
+ 1{ |s | ≥1+ 1

4 |x | }
+ 1{ |t | ≥1+ 1

4 |x | }
],

thus

J1 6 J11 + J12 + J13, (4.46)
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where

J11 = C
∫ ∫

|Um − t | exp
{
−x2

8

}
vk (ds, dt), J12 =

∫ ∫
|Um − t |1{ |s | ≥1+ 1

4 |x | }
vk (ds, dt)

and

J13 =

∫ ∫
|Um − t |1{ |t | ≥1+ 1

4 |x | }
vk (ds, dt).

Based on Lemma 4.3, it is evident that for all x ∈ R,

J11 ≤ C exp
{
−x2

8

} (
Um + E|Hm,n,k |

)
≤ C2

mX/2
1

1 + |x |2+X
. (4.47)

For J12, we can make the following estimation, for all x ∈ R,

J12 ≤ UmP

(
|T̃m,n,k | ≥ 1 + 1

4
|x |

)
+ E|Hm,n,k |1{ |T̃m,n,k | ≥1+ 1

4 |x | }
.

Denote C̃2
m,n,k = Var(T̃m,n,k), then we can establish that C̃2

m,n,k � 1
mX/2 . Now, let X′ ∈ (0, X). Applying

Lemma 4.1, we can conclude that for all x ∈ R,

P

(
|T̃m,n,k | ≥ 1 + 1

4
|x |

)
≤ 1 − 2Φ

(
1 + |x |/4

C̃m,n,k

)
+ C��� 1+|x |/4

C̃m,n,k

���2+X
k∑

i=1
E
���[m,n,i + [m,n,n+i

C̃m,n,k

���2+X
≤ C2

1 + |x |2+X
1

mX
. (4.48)

Let g = 1 + X+X′
2+2X−X′ . We have the following relationship:

E
��Hm,n,k

��g = E

���� log W1,k

nVm,n,d
− log W2,k

mVm,n,d

����g ≤ 2g

(
E

���� log W1,k

nVm,n,d

����g + E ���� log W2,k

nVm,n,d

����g) .
Applying Lemma 4.3,we have

2gE

���� log W1,k

nVm,n,d

����g ≤ C1

m1/2 .

Thus (
E

��Hm,n,k
��g )1/g

≤
(

C3

m1/2

)1/g
≤ C

m1/2 .

Using Hölder’s inequality and making ] satisfying 1
g
+ 1

]
= 1, we have

E|Hm,n,k |1{ |T̃m,n,k | ≥1+ 1
4 |x | }

≤
(
E|Hm,n,k |g

)1/g (
P
(
|T̃m,n,k | ≥ 1 + 1

4
|x |

) )1/ ]

≤ C
mX/2

1
1 + |x |1+X′

. (4.49)
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Combining inequalities (4.48) and (4.49), we have for all |x | ≤ Cm1/2,

J12 ≤ C3

mX/2
1

1 + |x |1+X′
. (4.50)

For J13, we have for all x ∈ R,

J13 ≤ UmP

(
|Hm,n,k | ≥ 1 + 1

4
|x |

)
+ E|Hm,n,k |1{ |Hm,n,k | ≥1+ 1

4 |x | }
.

Let p′ = 1 + X/2, by Markov’s inequality and Lemma 4.3, for all |x | ≤ Cm1/2, we have

P

(
|Hm,n,k | ≥ 1 + 1

4
|x |

)
≤ 4p′

1 + |x |p′ E|Hm,n,k |p
′

≤ C
1 + |x |p′

1
mp′/2 ≤ C

1 + |x |2+X
, (4.51)

and, similarly to (4.51) with p′′ = 1
2 (X + X′),

E|Hm,n,k |1{ |Hm,n,k | ≥1+ 1
4 |x | }

≤ C4

mX/2
1

1 + |x |1+X′
.

Hence, we have for all |x | ≤ Cm1/2,

J13 ≤ C
mX/2

1
1 + |x |1+X′

. (4.52)

Substituting (4.47), (4.50), and (4.52) into (4.46), for all |x | ≤ Cm1/2, we conclude

J1 ≤ C
mX/2

1
1 + |x |1+X′

. (4.53)

Next, we consider J2. By an argument similar to the proof of (4.48), we can conclude that for all |x | ≤
Cm1/2,

J2 ≤ C1

mX/2

(∫
|s |<1+|x |/2

1
1 + |x − s|2+X

vk (ds) +
∫
|s | ≥1+|x |/2

1
1 + |x − s|2+X

vk (ds)
)

≤ C3

mX/2

[
1

1 + |x/2|2+X
+ P

(��� T̃m,n,k

C̃m,n,k

��� > 1 + |x |/2
C̃m,n,k

)]
≤ C4

mX/2
1

1 + |x |2+X
. (4.54)
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For J3, using arguments similar to those in (4.48) and (4.51), we obtain for all |x | ≤ Cm1/2,

J3 ≤ C1

mX/2

(∫ ∫
|s+t |62+|x |/2

1
1 + |x/2|2+X

vk (ds, dt)

+
∫ ∫

|s |>1+|x |/4
vk (ds, dt) +

∫ ∫
|t |>1+|x |/4

vk (ds, dt)
)

≤ C2

mX/2

[
1

1 + |x/2|2+X
+ P

(��� T̃m,n,k

C̃m,n,k

��� > 1 + |x |/4
C̃m,n,k

)
+ P

(
|Hm,n,k | > 1 + |x |

4

)]
≤ C3

mX/2
1

1 + |x |2+X
. (4.55)

Substituting (4.53)–(4.55) into (4.45), for all |x | ≤ Cm1/2, we have

P
(
Tm,n,0 + Hm,n,k ≤ x + Um, Tm,n,0 ≥ x

)
≤ C

mX/2
1

1 + |x |1+X′
. (4.56)

We now bound the tail probability P
(
|Dm,n,k | ≥ Um

)
. By Markov’s inequality and Lemma 4.4, there

exists a constant W ∈ (0, 1) such that for all −m < x < m,

P
(��Dm,n,k

�� > Um
)
≤
E

��Dm,n,k
��

Um

≤ mX/2

Vm,n,d

(
E

���� log W1,n

n
− log W1,∞

n

���� + E ���� log W2,m

m
− log W2,∞

m

����
+ E

���� log W1,k

n
− log W1,∞

n

���� + E ���� log W2,k

m
− log W2,∞

m

���� )
≤ C1 m(1+X )/2

(
1
n
Wn + 1

m
Wn + 1

n
Wk + 1

m
Wk

)
≤ C2 mX−1/2

(
Wn + Wk

)
≤ C

mX/2
1

1 + |x |2+X
. (4.57)

The last inequality follows because mX−1 (
1 + m2+X ) Wm = o (1) , m → ∞. Combining (4.40), (4.56)

and (4.57), we conclude that (4.33) for all |x | ≤ Cm1/2. This completes the proof of Lemma 4.5. �

Proof of Theorem 2.2 Notice that

P
(
Rm,n ≤ x

)
= P

( n+m∑
i=1

[m,n,i ≤ x
)
− P

(
Rm,n > x,

n+m∑
i=1

[m,n,i ≤ x
)

+ P
(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i > x
)
. (4.58)
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By Lemma 4.1 and the fact that Vm,n,d �
√

m−1 + n−1, we can establish the following result for all x ∈ R,�����P( n+m∑
i=1

[m,n,i ≤ x
)
−Φ(x)

����� ≤ C1

1 + |x |2+X

(
n∑

i=1
E|[m,n,i |2+X +

m∑
j=1
E|[m,n,n+j |2+X

)
≤ C2

1 + |x |2+X

(
n

n2+X ( 1
n + 1

m ) (2+X )/2
+ m

m2+X ( 1
n + 1

m ) (2+X )/2

)
≤ C

(m ∧ n) X/2
1

1 + |x |2+X
. (4.59)

Combining (4.59) with Lemma 4.5 and substituting into (4.58), for all x ∈ R, we obtain���P (
Rm,n ≤ x

)
−Φ(x)

��� ≤ |P
( n+m∑

i=1
[m,n,i ≤ x

)
−Φ(x) | + P

(
Rm,n > x,

n+m∑
i=1

[m,n,i ≤ x
)

+ P
(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i > x
)

≤ C
(m ∧ n) X/2

1
1 + |x |1+X′

. (4.60)

This completes the proof of Theorem 2.2. �

5. Proof of Theorem 2.3

To prove Theorem 2.3, we first establish the existence of a positive-order U > 0 harmonic moment
concerning the BPIRE for both W1,n and W2,m. Additionally, we will make use of the lemma in [6].

Lemma 5.1. Assume A3, A4, and A5 hold. There exists a constant a0 > 0 such that for all U ∈ (0, a0),
the following inequalities hold

EW−U
1,∞ + EW−U

2,∞ < ∞ (5.61)

and

sup
n∈N

(
EW−U

1,n + EW−U
2,n

)
< ∞. (5.62)

Proof. Let i = 1, 2. By the fact that

W−U
i,∞ =

1
Γ (U)

∫ ∞

0
e−tWi,∞ tU−1dt,

we obtain

EW−U
i,∞ =

1
Γ (U)

∫ ∞

0
qi (t)tU−1dt

=
1

Γ (U)

(∫ 1

0
qi (t)tU−1dt +

∫ ∞

1
qi (t)tU−1dt

)
, (5.63)

where Γ is the gamma function.

https://doi.org/10.1017/S0269964825100107 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100107


Probability in the Engineering and Informational Sciences 25

Since 0 ≤ qi (t) ≤ 1for t ≥ 0, the first term in (5.63) satisfies for any U > 0,∫ 1

0
qi (t)tU−1dt ≤

∫ 1

0
tU−1dt < ∞. (5.64)

For the second term in (5.63), by (4.56) in [6] and lemma 4.1 in [20], if 0 < U < a0 we have∫ ∞

1
qi (t)tU−1dt ≤

∫ ∞

1
q̃i (t)tU−1dt

≤ C
∫ ∞

1
tU−a0−1dt < ∞. (5.65)

Combining (5.63), (5.64), and (5.65), we conclude that (5.61) holds.
Now, we prove inequality (5.62). Note that the function x ↦→ x−U (U > 0, x > 0) is non-negative

convex. Then by lemma 2.1 in [9], we have

sup
n∈N
EW−U

i,n = EW−U
i,∞ < ∞.

This completes the proof of Lemma 5.1. �

Lemma 5.2. Assume A3, A4, and A5 hold. Then for all |x | ≤
√

log(m ∧ n),

P

(
Rm,n ≤ x,

n+m∑
i=1

[m,n,i ≥ x
)
≤ C

1 + x2
√

m ∧ n
exp

{
− 1

2
x2

}
(5.66)

and

P

(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i ≤ x
)
≤ C

1 + x2
√

m ∧ n
exp

{
− 1

2
x2

}
. (5.67)

Proof. Since A4 and A5 imply A1 and A2, inequalities (5.66) and (5.67) follow directly from Lemma
4.5 for |x | ≤ 1. Therefore, we need to establish the inequalities 1 ≤ |x | ≤

√
log(m ∧ n). Additionally,

we shall only present a proof for (5.66) with 1 ≤ |x | ≤
√

log(m ∧ n), as the proof for (5.67) follows a
similar approach. �

Without loss of generality, we assume that m ≤ n. For |x | ≤ m1/6, using Cramér’s moderate
deviations for independent random variables, we derive����P (

Tm,n,k

Cm,n,k
≤ x

Cm,n,k

)
−Φ

(
x

Cm,n,k

)����
≤

����− (
1 −Φ

(
x

Cm,n,k

)) (
exp

{
−C

1 + x3
√

m

}
− 1

)����
≤

C
(
1 + x2 − x

)
√
cm

exp
{
−x2

2

}
≤ C1

1 + |x |2
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.68)
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For |x | > m1/6, by Bernstein’s inequality for independent random variables,����P (
Tm,n,k

Cm,n,k
≤ x

Cm,n,k

)
−Φ

(
x

Cm,n,k

)���� ≤ P (
Tm,n,k

Cm,n,k
>

x
Cm,n,k

)
+ 1 −Φ

(
x

Cm,n,k

)
≤ C2

1 + |x |2
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.69)

Combing (5.68) and (5.69), we obtain����P (
Tm,n,k

Cm,n,k
≤ x

Cm,n,k

)
−Φ

(
x

Cm,n,k

)���� ≤ C
1 + |x |2
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }.

From the last inequality, for all x ∈ R, we deduce��Gm,n,k (x) −Φ(x)
�� ≤ ����P (

Tm,n,k

Cm,n,k
≤ x

Cm,n,k

)
−Φ

(
x

Cm,n,k

)���� + ����Φ (
x

Cm,n,k

)
−Φ (x)

����
≤ C1

1 + x2
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) } + exp

{
− x2

2C2
m,n,k

} ���� x
Cm,n,d

− x
����

≤ C3
1 + x2
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }.

Therefore, we have for all x ∈ R,

P
(
Tm,n,0 + Hm,n,k 6 x + Um, Ym,n,0 > x

)
≤ J1 + J2 + J3, (5.70)

where

J1 =

∫ ∫
1{t6Um }

���Φ (x − s − t + Um) −Φ(x − s)
���vk (ds, dt),

J2 = C
∫ ∫

1{t6Um }
1 + |x − s|2

√
m

exp
{
− (x − s)2

2
(
1 + C√

m |x − s|
) }vk (ds, dt)

and

J3 = C
∫ ∫

1{t6Um }
1 + |x − s − t |2

√
m

exp
{
− (x − s − t)2

2
(
1 + C√

m |x − s − t |
) }vk (ds, dt).

Denote C̃2
m,n,k = Var(Ỹm,n,k), then it holds C̃2

m,n,k = O(1/
√

m) as m → ∞. By the mean value theorem,
the upper bound of J1 satisfies for 1 ≤ |x | ≤

√
log m,

1{t6Um } |Φ (x − s − t + Um) −Φ(x − s) | ≤ |Um − t |Φ(b)′

≤ |Um − t |
{
1{ |s | ≥ 2 |x |C̃m,n,k } +Φ(b)′

[
1{ |t | ≥ C0 |x |C̃m,n,k } + 1{ |s |<1+ 1

4 |x | }
1{ |t | ≤ C0 |x |C̃m,n,k }

]}
≤ |Um − t |

1{ |s | ≥ 2 |x |C̃m,n,k } + 1{ |t | ≥ C0 |x |C̃m,n,k } + C exp
{
− x2

2
(
1 + C√

m |x |
) } .

https://doi.org/10.1017/S0269964825100107 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964825100107


Probability in the Engineering and Informational Sciences 27

Therefore

J1 6 J11 + J12 + J13, (5.71)

where

J11 = C
∫ ∫

|Um − t | exp
{
− x2

2
(
1 + C√

m |x |
) }vk (ds, dt),

J12 =

∫ ∫
|Um − t |1{ |s | ≥ 2 |x |C̃m,n,k }vk (ds, dt)

and

J13 =

∫ ∫
|Um − t |1{ |t | ≥ C0 |x |C̃m,n,k }vk (ds, dt).

By Lemma 4.3, we obtain

E
��Hm,n,k

�� ≤ E ���� log W1,k

nVm,n,d

���� + E ���� log W2,k

nVm,n,d

���� ≤ C
√

m
.

For all 1 ≤ |x | ≤
√

log m,

J11 ≤ C1

(
Um + E|Hm,n,k |

)
exp

{
− x2

2
(
1 + C√

m |x |
) }

≤ C2√
m

exp
{
− x2

2
(
1 + C√

m |x |
) }.

For J12, the following bound holds for 1 ≤ |x | ≤
√

log m,

J12 ≤ UmP

(
|T̃m,n,k | ≥ 2|x |C̃m,n,k

)
+ E|Hm,n,k |1{ |T̃m,n,k | ≥2 |x |C̃m,n,k } .

By Bernstein’s inequality, for all x ∈ R,

P

(
|T̃m,n,k | ≥ 2|x |C̃m,n,k

)
= P

(
T̃m,n,k

C̃m,n,k
≥ 2|x |

)
+ P

(
T̃m,n,k

C̃m,n,k
≤ −2|x |

)
≤ 2 exp

{
− (2x)2

2
(
1 + C√

m |x |
) }

and by Cauchy–Schwarz inequality,

E|Hm,n,k |1{ |T̃m,n,k | ≥2 |x |C̃m,n,k } ≤
(
E|Hm,n,k |2

)1/2
P

(
|T̃m,n,k | ≥ 2|x |C̃m,n,k

)1/2

≤ C
√

m

(
2 exp

{
− (2x)2

2
(
1 + C√

m |x |
) })1/2

≤ C1√
m

exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.72)
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Hence, for all 1 ≤ |x | ≤
√

ln m, we have

J12 ≤ C
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }.

For J13, the following inequality holds for 1 ≤ |x | ≤
√

log m,

J13 ≤ UmP

(
|Hm,n,k | ≥ C0 |x |C̃m,n,k

)
+ E

[
|Hm,n,k |1{ |Hm,n,k | ≥C0 |x |C̃m,n,k }

]
.

Note that Vm,n,d � 1√
m and C̃m,n,k � 1

m1/4 . It is evident that for all 1 ≤ |x | ≤
√

ln m,

P

(
|Hm,n,k | ≥ C0 |x |C̃m,n,k

)
≤ P

(��� log W1,k

n Vm,n,d

��� ≥ 1
2

C0 |x |C̃m,n,k

)
+ P

(��� log W2,k

m Vm,n,d

��� ≥ 1
2

C0 |x |C̃m,n,k

)
=: T1 + T2.

By Lemma 5.1 and Markov’s inequality, for 1 ≤ |x | ≤
√

log m,

T1 ≤ P
(
W1,k ≥ exp{1

2
C0 |x |n Vm,n,dC̃m,n,k}

)
+ P

(
W−1

1,k ≥ exp{1
2

C0 |x |n Vm,n,dC̃m,n,k}
)

≤ E[W1,k] exp
{
− 1

2
C0 |x |n Vm,n,dC̃m,n,k

}
+ E[W−U

1,k ] exp
{
− 1

2
UC0 |x |n Vm,n,dC̃m,n,k

}
≤ C exp

{
− 1

2
x2

}
,

for C0 sufficiently large.
Similarly, we have T2 ≤ C exp{− 1

2x2}. Thus, for 1 ≤ |x | ≤
√

log m,

P

(
|Hm,n,k | ≥ C0 |x |C̃m,n,k

)
≤ C exp

{
− 1

2
x2

}
.

By Lemma 5.1 and the inequality | log x |2 ≤ CU (x + x−U) for all U, x > 0, we observe that

E|Hm,n,k |2 ≤ C1

m

(
EW1,k + EW−U

1,k + EW2,k + EW−U
2,k

)
≤ C2

m
.
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By Markov’s inequality and Cauchy–Schwarz inequality, for all 1 ≤ |x | ≤
√

log m, we have

E
[
|Hm,n,k |1{ |Hm,n,k | ≥C0 |x |C̃m,n,k }

]
≤ exp

{
− 1

4
C0 |x |n Vm,n,dC̃m,n,k

}
E[W1/2

1,k |Hm,n,k |]

+ exp
{
− 1

4
C0 |x |m Vm,n,dC̃m,n,k

}
E[W1/2

2,k |Hm,n,k |]

+ exp
{
− 1

4
UC0 |x |n Vm,n,dC̃m,n,k

}
E[W−U/2

1,k |Hm,n,k |]

+ exp
{
− 1

4
UC0 |x |m Vm,n,dC̃m,n,k

}
E[W−U/2

2,k |Hm,n,k |]

≤ exp
{
− 1

4
C0 |x |n Vm,n,dC̃m,n,k

}
(EW1,k)1/2(E|Hm,n,k |2)1/2

+ exp
{
− 1

4
C0 |x |m Vm,n,dC̃m,n,k

}
(EW2,k)1/2(E|Hm,n,k |2)1/2

+ exp
{
− 1

4
UC0 |x |n Vm,n,dC̃m,n,k

}
(EW−U

1,k )1/2(E|Hm,n,k |2)1/2

+ exp
{
− 1

4
UC0 |x |m Vm,n,dC̃m,n,k

}
(EW−U

2,k )1/2(E|Hm,n,k |2)1/2

≤ C
√

m
exp

{
− 1

2
x2

}
, (5.73)

for C0 sufficiently large. Thus, we have for all 1 ≤ |x | ≤
√

log m,

J13 ≤ C
√

m
exp

{
− 1

2
x2

}
. (5.74)

From (5.71), for all 1 ≤ |x | ≤
√

log m, we have

J1 ≤ C
√

m
exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.75)

For J2, we arrive at the result that holds for all 1 ≤ |x | ≤
√

ln m,

J2 ≤ C3√
m

©­«
∫
|s | ≤ |x |C̃m,n,k

(1 + x2) exp
{
− x2

2
(
1 + C4√

m |x |
) }vk (ds) +

∫
|s |> |x |C̃m,n,k

(1 + x2)vk (ds)ª®¬
6

C3√
m
(1 + x2)

exp
{
− x2

2
(
1 + C4√

m |x |
) } + P(��� T̃m,n,k

C̃m,n,k

��� > |x |
)

6
C
√

m
(1 + x2) exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.76)
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By a similar argument as in the previous cases, for J3, for all 1 ≤ |x | ≤
√

log m, we have

J3 ≤ C2√
m

©­«
∫ ∫

(1 + x2) exp
{
− x2

2
(
1 + C√

m |x |
) }vk (ds, dt) +

∫ ∫
|s |> |x |C̃m,n,k

vk (ds, dt)

+
∫ ∫

|t |>C0 |x |C̃m,n,k

vk (ds, dt)
)

≤ C2√
m

©­«(1 + x2) exp
{
− x2

2
(
1 + C√

m |x |
) } + P(��� T̃m,n,k

C̃m,n,k

��� > |x |
)
+ P

(
|Hm,n,k | > C0 |x |C̃m,n,k

)ª®¬
≤ C4√

m
(1 + x2) exp

{
− x2

2
(
1 + C√

m |x |
) }. (5.77)

Substituting (5.75)–(5.77) into (5.70), we get for all 1 ≤ |x | ≤
√

log m,

P
(
Tm,n,0 + Hm,n,k ≤ x + Um, Tm,n,0 ≥ x

)
≤ C1√

m
(1 + x2) exp

{
− x2

2
(
1 + C√

m |x |
) }

≤ C
√

m
(1 + x2) exp

{
− x2

2

}
. (5.78)

Following the method of (4.57), the second term on the RHS of (4.40) satisfies for 1 ≤ |x | ≤
√

log m,

P
(��Dm,n,k

�� > Um
)
≤ m

(
E

���� log W1,n

n
− log W1,∞

n

���� + E ���� log W2,n

m
− log W2,∞

m

����
+ E

���� log W1,k

n
− log W1,∞

n

���� + E ���� log W2,k

m
− log W2,∞

m

���� )
≤ C

x2
√

m
exp

{
− 1

2
x2

}
. (5.79)

Combining (4.40), (5.78) and (5.79), we conclude that (5.66) holds for 1 ≤ |x | ≤
√

log m. This
completes the proof of Lemma 5.2. �

Proof of Theorem 2.3 We present a proof of Theorem 2.3 for the case of P(Rm,n≥x)
1−Φ(x) , x ≥ 0. The case

P(−Rm,n≥x)
Φ(−x) can be dealt with similarly due to the symmetry between m and n. We prove Lemmas 5.3 and

5.4, then combine them to establish Theorem 2.3. To avoid trivial cases, we assume that m ∧ n ≥ 2.
The next following gives an upper bound for Theorem 2.3. �

Lemma 5.3. Assume A3, A4, and A5 hold. Then, for all 0 ≤ x ≤ c
√

m ∧ n, we have

log
P
(
Rm,n ≥ x

)
1 −Φ(x) ≤ C

1 + x3
√

m ∧ n
. (5.80)
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Proof. We will begin by examining the situation when 0 ≤ x ≤
√

log(m ∧ n). Notice that

P
(
Rm,n ≥ x

)
= P

(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i ≥ x
)
+ P

(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i < x
)

≤ P
( n+m∑

i=1
[m,n,i ≥ x

)
+ P

(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i < x
)
. (5.81)

For the first term of (5.81), we can apply Cramér’s moderate deviations for independent random
variables (refer to inequality (1) in [5]) to the last equality. We obtain for all 0 ≤ x ≤ c

√
m ∧ n,

P
( n+m∑

i=1
[m,n,i ≥ x

)
≤

(
1 −Φ(x)

) (
1 + C

1 + x3
√

m ∧ n

)
.

Applying Lemma 5.2 and inequality (4.37), we can obtain the following for the second term when
0 ≤ x ≤

√
log(m ∧ n)

P
(
Rm,n ≥ x,

n+m∑
i=1

[m,n,i < x
)
≤

(
1 −Φ(x)

) (
1 + C

1 + x3
√

m ∧ n

)
.

Since 1 + x ≤ ex, the above inequalities imply

P
(
Rm,n ≥ x

)
≤

(
1 −Φ(x)

) (
1 + C

1 + x3
√

m ∧ n

)
≤

(
1 −Φ(x)

)
exp

{
C

1 + x3
√

m ∧ n

}
.

Thus, we obtain (5.80) holds for all 0 ≤ x ≤
√

ln(m ∧ n). �

Next, we consider the case
√

log(m ∧ n) ≤ x ≤ c
√

m ∧ n. Clearly, it holds for all x ∈ R,

P

(
Rm,n ≥ x

)
≤ I1 + I2 + I3, (5.82)

where

I1 = P

(
n+m∑
i=1

[m,n,i ≥ x
(
1 −

( 1
n + 1

mU
)x

Vm,n,d

))
,

I2 = P

(
log W1,n

n Vm,n,d
≥ x2

n Vm,n,d

)
and I3 = P

(
− log W2,m

m Vm,n,d
≥ x2

mU Vm,n,d

)
where U given by Lemma 5.1.

Now, let us provide estimations for I1, I2, and I3. Condition A4 implies that
∑n+m

i=1 [m,n,i is a sum
of independent random variables with finite moment generating functions. Using Cramér’s moderate
deviations for independent random variables (cf. [5]), we can deduce the following for all 1 ≤ x ≤
c
√

m ∧ n,

I1 ≤
(
1 −Φ

(
x(1 −

( 1
n + 1

mU
)x

Vm,n,d
)
))

exp
{

C
√

m + n

(
x(1 −

( 1
n + 1

mU
)x

Vm,n,d
)
)3

}
≤

(
1 −Φ

(
x(1 −

( 1
n + 1

mU
)x

Vm,n,d
)
))

exp
{
C

x3
√

m ∧ n

}
.
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By inequality (4.37), for all x ≥ 1 and Yn ∈ (0, 1
2 ], we have

1 −Φ (x(1 − Yn))
1 −Φ (x) ≤ 1 +

1√
2c

e−x2 (1−Yn )2/2xYn

1√
2c (1+x)

e−x2/2

≤ exp
{
2Cx2Yn

}
. (5.83)

Since Vm,n,d � 1√
m , we have

( 1
n + 1

mU
)x

Vm,n,d
� Cxm− 1

2 .

It holds for all 1 ≤ x ≤ c
√

m ∧ n,

I1 ≤
(
1 −Φ(x)

)
exp

{
2Cx2Yn

}
exp

{
C

x3
√

m ∧ n

}
≤

(
1 −Φ(x)

)
exp

{
C1

x3
√

m ∧ n

}
. (5.84)

By Markov’s inequality and (3.18), it is easy to see that for all x ≥
√

log(m ∧ n),

I2 ≤ C exp
{
− x2} ≤ C

1
√

m ∧ n
exp

{
−1

2
x2

}
≤ C

1 + x
√

m ∧ n

(
1 −Φ(x)

)
(5.85)

and

I3 ≤ exp
{
− x2}EW−U

2,m ≤ C exp
{
− x2}

≤ C
1 + x

√
m ∧ n

(
1 −Φ(x)

)
. (5.86)

Combining (5.84)–(5.86), we obtain for all
√

log(m ∧ n) ≤ x ≤ c
√

m ∧ n,

P

(
Rm,n ≥ x

)
≤

(
1 −Φ(x)

)
exp

{
C3

x3
√

m ∧ n

}
,

which implies the desired inequality for all
√

log(m ∧ n) ≤ x ≤ c
√

m ∧ n. �
The following lemma establishes the lower bound in Theorem 2.3.

Lemma 5.4. Assume that conditions A3, A4, and A5 are satisfied. Then for all 0 ≤ x ≤ c
√

m ∧ n,

log
P
(
Rm,n ≥ x

)
1 −Φ(x) ≥ −C

1 + x3
√

m ∧ n
. (5.87)
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Proof. The lower bound can be established following a similar approach to the upper bound. For
example, to establish (5.87) for all

√
log(m ∧ n) ≤ x ≤ c

√
m ∧ n, we can observe that

P

(
Rm,n ≥ x

)
≥ I4 − I5 − I6,

where

I4 = P

(
n+m∑
i=1

[m,n,i ≥ x
(
1 +

( 1
nU + 1

m )x
Vm,n,d

))
,

I5 = P

(
− log W1,n

n Vm,n,d
≥ x2

nU Vm,n,d

)
and I6 = P

(
log W2,m

m Vm,n,d
≥ x2

m Vm,n,d

)
where U given by Lemma 5.1. The remainder of the proof parallels the argument in Lemma 5.3. �
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