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Abstract

We derive the exact asymptotics of P{sup,c 4 X(¢) > u} as u— oo, for a centered
Gaussian field X(¢), t € A C R", n > 1 with continuous sample paths almost surely, for
which arg maxsc 4 Var(X(¢)) is a Jordan set with a finite and positive Lebesgue measure
of dimension k <n and its dependence structure is not necessarily locally stationary.
Our findings are applied to derive the asymptotics of tail probabilities related to perfor-
mance tables and chi processes, particularly when the covariance structure is not locally
stationary.
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1. Introduction

Let X(#), teR", n>1 be a centered Gaussian field with continuous sample paths. Due
to its significance in the extreme value theory of stochastic processes, statistics, and applied
probability, the distributional properties of

sup;c 4 X(@), (L.1)

with a bounded set A C R", were extensively investigated. While the exact distribution of (1.1)
is known only for certain specific processes, the asymptotics of

P {sup;e 4 X(®) > u} (1.2)

as u— oo was intensively analyzed; see, e.g., monographs by Adler & Taylor [2],
Azais & Wschebor [3], Berman [7], Ledoux [21], Lifshits [24], Piterbarg [31], Talagrand
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2 L. BAI ET AL.

[34], and references therein. As advocated therein, the set of points that maximize the
variance M™* := arg max,c 4 Var(X(#)) plays a crucial role in determining the exact asymp-
totics of (1.2). The best-understood cases involve situations where (i) v,,(M*) € (0, 00), with
vy, representing the Lebesgue measure on R”, and the field X(¢) is homogeneous on M*, or (ii)
the set M* consists of distinct points. In case (i), one can argue that

P {supea X(®) > u} ~P {supje pp« X > u}  asu— oo.

For an intuitive description of case (ii), suppose that M* = {#*} and Var(X(#*)) = 1. Then, the
interplay between the local behavior of the standard deviation and the correlation function in
the vicinity of M™* affects the asymptotics, which takes the form

P {supse 4 X@®) > u} ~f()P {X(#*) > u} asu— oo, (1.3)

where f(u) is some power function. An applicable assumption for obtaining the exact asymp-
totics as described in (1.3) is that, in the neighborhood of #*, both the standard deviation and
the correlation function of X(¢) factorize according to the additive form

3 3
L—o@®)~) g 1), 1 — corr(s. )~ Y _ hi(s; — ) (1.4)
j=1 j=1
as s, t — t*, where the coordinates of R" are split into disjoint sets A1, Ay, Az with Aj U Ay U

A3={1,...,n}, ij = (t,-)ieAj,j =1,2, 3 fort € R" and g, h; are some homogeneous functions
(see (2.7)) such that

t t
g1(t) _0 lim 8202

t
im — =0, — € (0, ), lim 83(t3) =0
7,0, M) -0, Ma(t2)

— = 1.5
305 13(t3) (1)

Under conditions (1.4)—(1.5), the function f introduced in (1.3) can be factorized as

J@) = fiwfr()f3w),
where f; corresponds to A; and we have the following.

e In the direction of the coordinates A1, the standard deviation function is relatively flat
compared with the correlation function. Then, for the coordinates A, a substantial
neighborhood of M™* contributes to the asymptotics, and fi (1) — oo as u — o0.

e In the direction of the coordinates A», the standard deviation function is comparable
to the correlation function. Then, with respect of the coordinates A, some relatively
small neighborhood of M* is important for the asymptotics, and f>(u) — P € (1, 00) as
u— 0.

e In the direction of the coordinates A3, the standard deviation function decreases rela-
tively fast compared with the correlation function. Then, for the coordinates A3, only
the sole optimizer ¢* is responsible for the asymptotics, and f3(u) — 1 as u — co. We
refer the reader to Piterbarg [31, Chapter 8] for more details.

Much less is known about the mixed cases when the set M* is a more general subset
of A and/or when the local dependence structure of the analyzed process does not factorize
according to the additive structure as in (1.4)—(1.5).
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Gaussian random fields with nonadditive dependence structure 3

The exemptions available in the literature have been analyzed separately and address
specific cases; see, e.g., [1, 9—-11, 26, 33]. We would like to highlight a significant recent con-
tribution by Piterbarg [32], which focuses on the analysis of high excursion probabilities for
centered Gaussian fields defined on a finite-dimensional manifold, where M* is a smooth sub-
manifold. In this intuitively presented work, under the assumption that the correlation function
of X is locally homogeneous, three scenarios for M* & A are examined: (i) the stationary-like
case, (i) the transition case, and (iii) the Talagrand case. Under the notation in (1.4)—(1.5),
these scenarios correspond to Ay = A3 =& for (i), A; = A3 = for (i), and A=A, =9
for (iii).

The primary finding of this contribution, presented in Theorem 2.1, gives a unified result that
provides the exact asymptotic behavior of (1.2) for a certain class of centered Gaussian fields
for which M* is a kg < n dimensional bounded Jordan set and the dependence structure of the
entire field in the vicinity of M* does not necessarily follow the decompositions outlined in
(1.4)—(1.5). In contrast to [32], we allow mixed scenarios where all sets A, Ay, and A3 can be
nonempty simultaneously. Furthermore, we examine more general local structures of the cor-
relation function than those presented in (1.4). More specifically, we relax the assumption that
the correlation function is locally stationary for coordinates in A, A3 by replacing ;(s; — t;)
with izj(Ej, £)) in (1.4). As the main technical challenge of this contribution, this generalization
is particularly important for the examples discussed in Sections 3.1 and 3.2.

In Section 3 we present two examples that demonstrate the applicability of Theorem 2.1.
Specifically, in Section 3.1 we derive the exact asymptotics of

P{D% >u} asu— oo, (1.6)
where
Dy =sup.s, Z4(t),  t=(1,....t)), S={teR":0<n<---<t,<1},

and

n+1

Z%@0)=">_ ai(B}(t) — B{ (ti-1)),

i=1

with 7o =0, #,41 = 1, constants a; € (0, 1] and B;-", i=1,...,n+ 1 being mutually indepen-

dent fractional Brownian motions with Hurst index «//2 € (0, 1). This random variable plays
an important role in many areas of probability theory, and its analysis motivates the devel-
opment of the theory presented in this paper. Due to its relation with some notions based on
the performance table (see Section 3.1), the random variable D,11 emerges as a limit in several
important quantities considered in the modeling of queues in series, totally asymmetric exclu-
sion processes, or oriented percolation [6, 16, 29]. If a; = 1 then D,ll has the same distribution
as the largest eigenvalue of an n -dimensional Gaussian unitary ensemble (GUE) matrix [18].
If o = 1 but the values of a; are not all the same, then the size of M* depends on the number
of coordinates for which a; = 1 (recall that we assume that a; < 1). In this case, the correlation
structure of the entire field is not locally homogeneous. Utilizing Theorem 2.1 allows us to
derive the exact asymptotics of (1.6) as u — oo for « € (0, 2); see Proposition 3.1.

Another application of Theorem 2.1 addresses the extremes of the class of chi processes
x (1), t >0, defined as

x:= | Y X}, =0,
i=1

https://doi.org/10.1017/apr.2025.10031 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2025.10031

4 L. BAI ET AL.

where X;(f), i=1, ..., n are mutually independent Gaussian processes. Due to their impor-
tance in statistics, asymptotic properties of high excursions of chi processes have attracted
substantial interest. We refer to the classical work by Lindgren [25] and more recent contribu-
tions [5, 19, 27, 28, 30, 32], which address nonstationary or noncentered cases. Importantly,
SUPseo,1] X () can be rewritten as a supremum of some Gaussian field

SUPrefo, 17 X (1) = SUPco,1), 31 v2=1 Xi(DVi-

However, the common assumption on the models analyzed so far is that X;(¢) are locally sta-
tionary, as in (1.4). In Section 3.2 we use Theorem 2.1 to examine the asymptotics of the
probability for high exceedances of x(f) in a model where the covariance structure of X; is not
locally stationary; see Proposition 3.2 for more details.

The structure of the remainder of this paper is organized as follows. The concept and main
steps of the proof of Theorem 2.1 are presented in Section 4. Detailed proofs of Theorem 2.1,
Propositions 3.1, 3.2, and several auxiliary results can be found in the appendices.

2. Main Result

Let X(¢), t € A be an n-dimensional centered Gaussian field with continuous trajectories,
variance function o2(¢), and correlation function r(s, £), where A is a bounded set in R”.
Suppose that the maximum of the variance function o%(f) over A is attained on a Jordan subset
of A. Without loss of generality, let us assume that max,c 4 0 2(f) = 1. We denote by M* the
set{te A: o2(t)=1}.

Throughout this paper, all the operations on vectors are meant componentwise. For instance,

for any givenx = (x1, ..., x;) € R?andy = (y1, ..., yu) € R", we write xy = (x1y1, . - . , XuVn),
1/x=1/x1,...,1/xy) for x; >0, i=1,...,n, and xyz(xyll,...,x%") for x;,y; >0, i=
1, ..., n. Moreover, we say thatx >y if x; > y;, i=1,...,n.

Suppose that the coordinates of R" are split into four disjoint sets A;, i=0, 1, 2, 3 with
ki=+# U}:o Aj, i=0,1,2,3 (implying that 1 <k < ky <k, < k3 with k3 =n) and

£:= (ticng 4 := (t)ien,,» Jj=1,2,3,

in such a way that M* ={re A: ;=0,i€J;_; 55 Aj} Let

M:={f:te A;=0ie | ] A}CRP
j=1,2,3

denote the projection of M™* onto a kg-dimensional space. Note that M* = A if | J ic123 A=
. Sets A1, Az, Az play roles similar to those described in the introduction (see (A2) below),
while Ay is related to M* via M.

Suppose that M is Jordan measurable with v, (M) e (0, c0), where vy, denotes
the Lebesgue measure on Rk and {(t1,...,t): teM, t;e[0,¢), ic U/:1,2,3 Aj} C
ACt,....t)): teM, t;€]0,00), i€ iz12.3 Aj} for some ¢ € (0, 1) small enough.
Furthermore, we impose the following assumptions on the standard deviation and the
correlation functions of X.

(A1) There exists a centered Gaussian random field W(f), ¢ € [0, co)" with continuous
sample paths and a positive continuous vector-valued function a(z) = (a1(2), - . ., a,(2)), z=
(Zien, € M satisfying

inf inf 4;(2)>0 2.1

i=1,...,nze
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such that

1—- t
hm L SUPzcptr SUPs e A s ) - 1{=0, (2.2)

ls—2l, -2l < E[(W(a(z)s) W(a(Z)t))2]

where the increments of W are homogeneous if we fix both £, and #3, and there exists a vector

o=(ay,...,a,) witha; €(0, 2], 1 <i <n such that, for any u > 0,
E{(W(u?/%s) — W(u™>*0)*} = u *E{(W(s) — W()*}. (2.3)
Moreover, there existd > 0, Q; > 0,i =1, 2 such that, forany s, # € A and |s — t| < d,
n
QY st 1=, )< QY Isi—ul*. 2.4)
ieUjzo.1 A i=1

Furthermore, suppose that, for s, f € A and s #¢,
r(s,t) < 1. (2.5)
(A2) Assume that
1—0o(@®
Yo pigiE)
where pj(i), te[0, 000, j=1,2,3, are positive continuous functions and gj(ij), ij €
RK—ki-1,j=1,2,3, are continuous functions satisfying gi(#) >0, l; # ﬁj,j =1,2,3.

Moreover, we assume the following homogeneity property on the g;: there exist some
Bj=(Bien;»j=1,2,3 with B >0, k€ Uj=]’2’3 A;, such that, for any u > 0,

hm 1 SUD e A+ SUPre A —-1/=0, (2.6)

lz—t]<é

ugi@) =gy, j=1,2,3. 2.7)
Moreover, with &j = (@i)iea;,j =1, 2, 3,

a;<p;, ar=pf,, and o3> f;. (2.8)

Assumption (A1), which includes (2.1)—(2.5), addresses the local dependence structure of
the analyzed Gaussian field in a neighborhood of the set M™* of points that maximize the vari-
ance of X. The function a( - ) can be modified based on the location where the correlation is
being tested. Property (2.3) refers to the self-similarity of W( - ) with respect to each coordinate.
In comparison to models previously discussed in the literature, the major novelty of (Al) lies
in the fact that we do not assume homogeneity of the increments of W( - ) with respect to the
coordinates in Ay U A3. It enables us to examine the dependence structures of X( - ) that extend
beyond local stationarity. Assumption (A2), which includes (2.6)—(2.8), addresses the behav-
ior of the variance function of X(-) in the vicinity of M*. Property (2.8) straightforwardly
corresponds to the three scenarios described in (1.5) in the introduction.

We next display the main result of this paper. To the end of this paper, W( - ) denotes the tail
distribution of the standard normal random variable.

Theorem 2.1. Suppose that X(t), t € A is an n-dimensional centered Gaussian random field
satisfying (Al) and (A2). Then, as u — 00,

P {supyeq X(O) > u} ~ Culierom e 2ien, 2y ),
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where

Dea(a; G 5 G = ) e
C= /M ,Hz;(z)gz(az (2)t2) 1_[ |ai(z)| [ e p1(2)g1(ty) dt] dZG (0, OO),

ieAgUA, f1€[0,00)"17%0
with a2(2) = (ai(2))ica, and

. e 1
,Hl’z(z)gz(az (z)tz): im —F

V2W @O -0k (O)—p2(Dg2(a; D)
w oo Ak {Suptie[o,x], iUl Aj: ti=0.ieAs © v ? :

Remark 1. The result in Theorem 2.1 is also valid if some A;, i=0, 1, 2, 3 are empty sets.

Next, let us consider a special case of Theorem 2.1 that focuses on the locally station-
ary structure of the correlation function of X( - ) in the neighborhood of M*, which partially
generalizes Theorems 7.1 and 8.1 of [31]. Suppose that

ai(2) = aj, ZeEM, i=1,...,n, pi@=1, zeM, j=1,2,3, (2.9)

]E[(W(s)—W(t))z}=Z|si—ti|°‘i and g@) =Y bil', j=1,23. (210
i=1 ieA;

These conditions, along with assumptions (A1) and (A2), lead to a natural set of models that
satisfy an additive structure as in (1.4) and (1.5) and were considered by Piterbarg [31]. We
note that in [31] the special cases of purely homogeneous fields, characterized by a constant
variance function where A; = Ay = A3 = &, and fields that have a unique maximizer of the
variance function (Ao = @), are analyzed separately. In the proposition below, we allow mixed
scenarios where all sets Ag, A1, A2, Az # .

Let '(x) = fooo s le=5 ds for x> 0. For & € (0, 2], A >0 and b > 0, we define Pickands
and Piterbarg constants as

o H o 0, A
0. 1= [supycio /O ) . A= tim TEDA
’ A—>00 A
PL.0, A] =E {sup,e[o N eﬁg””*“*b)f“}, Pb, = lim PL[0, A], .11
’ L—00

where B* is a standard fractional Brownian motion with zero mean and covariance

7% + [s| — |r —s]*
5 )

For properties of Pickands and Piterbarg constants, we refer the reader to [31] and the

references listed therein.
The following proposition straightforwardly follows from Theorem 2.1.

Proposition 2.1. Under the assumptions of Theorem 2.1, if (2.9)—(2.10) hold, then

cov(B%(s), B*(1)) = s,t>0.

P {supy 4 X(O) > ) ~ Cuieroon 2/ 2ien g,

where

C=vi,M) | [] aHpe Hbl_—1/ﬂir<%+l) I gf;ﬁ,-b,-_

ieAgUA €A i€y
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3. Applications

In this section we illustrate our main results by applying Theorem 2.1 to two classes of
Gaussian fields with nonstandard structures of their correlation function.

3.1. The performance table and the largest eigenvalue of the GUE matrix
Let
n+1

2=y ai (B () —BY(ti) . t=(t1.....tn), 3.1)

i=1

where fo =0, t,41 =1and B, i=1, ..., n+ 1 are mutually independent fractional Brownian
motions with Hurst index «/2 € (0, 1) and @; >0, i=1,...,n+ 1. We are interested in the
asymptotics of

P {Dfl‘ > u} =P {SuPteS,, 74 > u} (3.2)

for large u, where S;, ={t e R": 0 <t <-..<t, < 1}. Without loss of generality, we assume
that max;—,  n4+1a;=1.

The random variable DY arises in many problems that are important in both theoretical and
applied probability. Specifically, it is closely related to the notion of the performance table.
More precisely, following [6], let w = (wj;), 7, j > 1 be a family of independent random values
indexed by the integer points of the first quarter of the plane. A monotonous path 7 from
(i) to (7", ), i<ij=<jsi,j. 1) € Nisasequence (i, j) = (io, jo), (i1, j1) - - -, . j) =", J)
of length k =i' +j — i —j+ 1, such that all lattice steps (ix, jx) = (ix+1, jk+1) are of size one
and (consequently) go to the north or the east. The weight w(rr) of such a path is the sum of
all entries of the array w along the path. We define the performance table I(i, j), i, j € N as the
array of largest path weights from (1, 1) to (i, j), that is,

G, )= w(7r).

max
m from (1,1) to (i,j)
If Var(w;)=v > 0and E {wl]} = ¢ for all i, j, then

In+1,k)—ke
Dyji= ———"rn——

Vv

converges in law as k — oo to D,ll with a; = 1; see [6]. Notably, D,ll has a queueing interpreta-
tion, e.g. in the analysis of departure times from queues in series [16] and plays an important
role in the analysis of noncolliding Brownian motions [17]. Moreover, as observed in [6], if
a; =1 then D,lz has the same law as the largest eigenvalue of an n-dimensional GUE random

matrix; see [29].
Let

N=litai=1,i=1,....,n+1}, N°={irai<1, i=1,....,n+1}, m=#N, 3.3)

where #A/ denotes the cardinal number of N. For k* =max{i e N} and x=(x1, ..., Xg*—1,
Xkt 1, - - - » Xnt1), We define
V2 ~ V2
W)= — Z (Bi(si(x)) — Bi(si-1(x))) + — Z a; (Bi(si(x)) — Bi(si—1(x))), (3.4)
2 ieN 2 ieN¢
1 1
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where B;, Ei are independent standard Brownian motions and
X; ifie N andi < k*,
i
Yy ifieNCandi<k,
§i(x) = { j=max{keN k<i}
n+1

>y if i > k*,

J=i+1

with the convention that max @ = 1.
For m given in (3.3), let

Hy:= lim 3.5)

A— 00

1 VW@ )
— IE{ SUP,e[0,2]" € i#k }

It appears that, for « = 1 and m < n + 1, the field Z! satisfies (A1) with W as given in (3.4).
Notably, it has stationary increments with respect to the coordinates A/ while the increments of
W are not stationary with respect to the coordinates N¢; see (B.11) in the proof of the following
proposition. Moreover, we have Ag =N, A1 =3, A =N¢, A3 =02.

Proposition 3.1. For Z% defined in (3.1), we have, as u — oo,

Cu(@/e)=Dinyy (l) a<c(0,1),

Ox

P {suptesn Z%() > u} ~ 1
m— 1)
m\l-’(u), o€ (15 2)7

Hw? ™ Dww),a=1,

where o, = (Y a2/ 1=0/2 gng

_ n - 2 2 Y\ Sa=1/an T "
€= p) (l_[(ai+a,-+1) 2 ol —a)

i=1
-1/2

) n+1
> 6*—(0—2) n/(1—a)a Z Ha?/(a—l)
J=1i#j
Remark 3.1.

() Ifl<m<n, then 1 <Hw <n™ ! [[;cpe (1 +2n/(1 —a})).
(i) f m=n+1, then Hy = 1.

To prove Proposition 3.1, we distinguish three scenarios based on the value of «: @ € (0, 1),
a=1,and a € (1, 2). The cases of & € (0, 1) and & € (1, 2) can be derived from [31, Theorem
8.2], where the maximum variance function of Z' is attained at a finite number of points.
The case where o = 1 fundamentally differs from the abovementioned cases. This is because,
depending on the values of a;, the maximum of the variance function of Z! is attained at a set
Ao that has a positive Lebesgue measure of dimension m — 1, with m defined in (3.3), and
the corresponding correlation function is not locally stationary in the vicinity of Ag. We apply
Theorem 2.1 in this case. The detailed proofs of Proposition 3.1 and Remark 3.1 are postponed
to Appendix B and Appendix C, respectively.
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3.2. Chi processes
Consider a chi process

n
x@W:= | Y XX, telo,1], (3.6)
i=1
where X;(¢), i=1, ..., n, are independent and identically distributed (i.i.d.) copies of {X(?),
t €0, 1]}, a centered Gaussian process with almost surely (a.s.) continuous trajectories.
Suppose that
ox(t) = o tel0,1]forb>0 3.7
and
1 corr(X(s), X(1)) ~aVar(Y(t) — Y(s)), s,t— Ofora=>0, 3.8)

where {Y(¢), t > 0} is a centered Gaussian process with a.s. continuous trajectories satisfying:
B1) {Y(@®),t=>0} is self-similar with index «/2€(0,1) (i.e. for all r>0,

{Y(rt), t =0} < {(r*2Y (1), t = 0}, where £ means the equality of finite dimensional
distributions) and oy (1) = 1;
(B2) there exist cy > 0 and y € [«, 2] such that

Var(Y(1) — Y(t)) ~ cy|1 — 1], 14 1.

The class of processes that satisfy conditions (B1) and (B2) includes fractional Brownian
motions, bifractional Brownian motions (see, e.g., [20, 22]), subfractional Brownian motions
(see, e.g., [8, 14]), dual-fractional Brownian motions (see, e.g., [23]) and the time average of
fractional Brownian motions (see, e.g., [13, 23]).

For a Gaussian process Y satisfying (B1) and (B2) and b > 0, we introduce a generalized
Piterbarg constant

P} = lim E {sup,efo.5 /O~ } € (0, o). (3.9)

We refer the reader to [13] for the properties of this constant.
The literature on the asymptotics of

P {sup,e[o’l] x () > u} (3.10)

as u — oo, focuses on the scenario where Y in (3.8) is a fractional Brownian motion. Then, 1 —
r(s, t) ~alt —s|* as s, t — 0 for some o € (0, 2], which implies that the correlation function
of X is locally homogeneous at 0; see e.g. [19, 28, 30, 32]. In the following proposition, Y
represents a general self-similar Gaussian process that satisfies conditions (B1) and (B2). This
framework allows for locally nonhomogeneous structures of the correlation function of X,
which have not been previously explored in the literature.

The idea of deriving the asymptotics of (3.10) is based on transforming it into the supremum
of a Gaussian random field over a sphere; see [15, 30, 32]. More specifically, we use the fact
that

n
Supte[O,l] X(t) = SUPZG[OJ],Z;}:I Vi2:1 Z X,-(t)v,-.

i=1
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Next, we transform the Euclidean coordinates into spherical coordinates,

n—1

v1(0) =cos(01), va(0)=sin(0)cos(6), ..., v,(0)= 1_[ sin(6;),
i=1

where @ = (0, ...,6,_1)and 0 € [0, 7172 % [0, 27). For

Z@, 1= ZX,(I)V,-(@), 0 [0, 7]""2 x [0, 27), t€ [0, 1], (3.11)

i=1
we have
Sup;o.17 X (1) = SUp(g pep 20, 1) with E=[0, 7]""% x [0, 27) x [0, 1].
Consequently,

P (sup;cio.1) X (1) > u) =P (sup yer Z(0, 1) > u). (3.12)

Then, it appears that the Gaussian field Z satisfies the assumptions of Theorem 2.1 with W in
(2.2) and (2.3) given by

n—1
W.0=> Bi )+ ar(@®)., 0eR"™'xR*,

i=1

where Bi2 are independent fractional Brownian motions with index 2 and Y is a self-similar
Gaussian process as described in (3.8) that is independent of Blz. Importantly, if Y is not a
fractional Brownian motion then W, as defined above, does not have stationary increments
with respect to the coordinate . Moreover, Ao ={1,...,n— 1}, A1 =2, Ao ={n}, A3=0.
An application of Theorem 2.1 leads to the following result.

Proposition 3.2. For x defined in (3.6) with X satisfying (3.7) and (3.8), we have

2(3771)/2\/; 1
Z__ NTpa b

Tn/2) v u”71W(u), u— 00,

P {Supte[(),l] x> u}~

where P‘)‘,_lb is defined in (3.9).
The proof of Proposition 3.2 is postponed to Appendix D.

4. Proof of Theorem 2.1

The idea of the proof of Theorem 2.1 is based on Piterbarg’s methodology [31] combined
with some refinements developed in [12]. The proof is divided into three steps. In the first step,
we demonstrate that the supremum of X () over A is primarily achieved on a specific subset. In
the second step, we divide this subset into smaller hyperrectangles with sizes adjusted accord-
ing to u. Then, we uniformly derive the tail probability asymptotics on each hyperrectangle.
This part of the proof utilizes an adapted version of Theorem 2.1 from [12] (see Lemma 4.1 in
Section 4.1). We first scale the parameter set appropriately to ensure that the rescaled hyper-
rectangles are independent of u. As a result, the scaled processes, denoted by X, ;( - ), depend
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on both u and the position of the hyperrectangle / (see (4.5) in conjunction with (4.6)). Then
we apply Lemma 4.1 for X, ;(-). The upper bound for the analyzed asymptotic probability
is the summation of the asymptotics over the corresponding hyperrectangles. For the lower
bound, we apply the Bonferroni inequality, where the additional summation of the double high
exceedance probabilities of X over all pairs of the hyperrectangles is tightly bounded. Finally,
the third step focuses on summing the asymptotics from the second step to obtain the overall
asymptotics.

We denote by Q and Q;, fori=1,2, 3, ..., positive constants that may vary from line to
line.

4.1. An adapted version of Theorem 2.1 in [12]

In this subsection we present a modified version of Theorem 2.1 from [12], which is crucial
for proving Theorem 2.1. Let X, ;(¢), te ECR", l € K, CR"™, m> 1 be a family of Gaussian
random fields with variance 1, where £ C R” is a compact set containing 0 and K, # @.
Moreover, assume that g, ;, I € K, is a series of functions over E and uy, I € K, are positive
functions of u satisfying lim,_, o infjeg, u; = 00. To obtain the uniform asymptotics of

P {sup —X”’l(t) > Uy
tek 1+ gu,l(t) !

with respect to I € K,,, we impose the following assumptions.
(C1) There exists a function g such that

ugngo SUPjek,, SUPteE ‘ulzgu,l(t) - g(t)‘ =0.
(C2) There exists a centered Gaussian random field V(¢), t € E with V(0) = 0 such that
lim_supye, SUpg e ui Var(X,, 1(£) — X,.1()) — 2Var(V(#) — V(5))| =0.

(C3) There exist y € (0, 2] and C > 0 such that, for sufficiently large u,

5 Var(Xy, 1(8) — X,,1(s))
SUPjek, SUPsst,s,teE Wi Zn 5. — 4|7 <C.
i=1 15i — ki

At the beginning of Section 4, we noted that in the proof of Theorem 2.1 we would deter-
mine the precise asymptotics of the suprema for a collection of appropriately scaled Gaussian
fields X, ;. The set of assumptions (C1)—(C3) is accommodated to these scaled processes.
In Section 4.2 we demonstrate that (A1) for X guarantees that (C2) and (C3) are uniformly
satisfied for all X, ;. In addition, (A2) ensures that (C1) holds.

Lemma 4.1. Let X, ;(t), t € ECR",l € K, be a family of Gaussian random fields with vari-
ance 1, g, 1, 1 € K,, be functions defined on E and uy, I € K, be positive constants. If (C1)—(C3)
are satisfied then

P {sup,ep (X 1)/ (1 + gu 1)) > w1}
W (uy)

— Py (E)| =0,

lim su
U— 00 pleK“

where

PS (E)=FE {Supte . e«/iva)—a&(n—g(t)} _
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4.2. Proof of Theorem 2.1

To simplify notation, we assume, without loss of generality, that Ao = {1, ..., ko} and A; =
{ki_1+1,...,k}fori=1,2,3. Thus, we have M*={te A: ,=0, i=ko+1,...,n}and
M=t teA t;=0, i=ko+1,...,n}. Inthe following, we present the proof of Theorem
2.1, postponing some tedious calculations to Appendix A.

4.2.1. Step 1. We divide A into two sets, i.e.

Inu\ %P
Exw)={te A: t;€[0, §;(w)], ko+ 1 <i<n}, 8i(u) = (-) , ko+1<i<n,
u

aneighborhood of M*, which maximizes the variance of X(#) (with high probability the supre-
mum is realized in E>(u)) and the set A\ E»(u), over which the probability associated with
supremum is asymptotically negligible. For the lower bound, we only consider the process
over

Ei(u)y={te A: t; € [0, 8;(w)], ko + 1 <i<kpst; € [0, u 2], ky + 1 <i < k;
ti=0,kh+1<i<ks}, A>0,

a neighborhood of M*.
To simplify notation, for A1, Ay CR”, let

P, (A1) := P{supcp, X®) > u}, P, (A1, Ay) := P{sup,cp, X(®) > u, sup,cp, X(©) > u}.
For any u > 0, we have
Py (E1(w) <Py (A) <Py (E2(w)) + Py (A\ Ex(w)). (4.1)

Note that, in light of [31, Theorem 8.1], by (2.4) in assumption (A1) and (2.7) in assumption
(A2), for sufficiently large u,

P, (A\ Ex(u) < Yy (%) 42
u (AN E2(w) < Quy(Au = O (nu/u)? (4.2)
4.2.2. Step 2. We divide M into small hypercubes such that
U MrcMmc [ M.,
rev- rev+

where
ko
Me=[Tlrv, i+ 0w, r=(r1,... ), ri€Z, 1<i<ko, v>0,
i=1

and
Vti= {r: M,N M # o}, Vo= {r: M, c M}.
For fixed r, we analyze the supremum of X over a set related to M,.. For this, let
Eipu)=ft: T My36€[0, 8], ko+ 1 <i<kist€[0,u™>“A), ki +1<i<ks;

ti=0,ky+1<i<ks},
Eyp(u)={t: 1€ M, ;1; €0, §;(w)], ko + 1 <i<n}.
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Moreover, define an auxiliary set
Es (u)={E t1,62): L€ My, 1; €10, 8;(w)], ko + 1 <i<k}.

We next focus on P, (E7 (1)) and P, (E> r(u)). The idea of the proof of this step is first to split
E1 ;(u) and E» »(u) into tiny hyperrectangles and uniformly derive the tail probability asymp-
totics on each hyperrectangle. Then, we apply the Bonferroni inequality to demonstrate that
the asymptotics over E; »(u) for i = 1, 2 are the sum of the asymptotics over the corresponding
hyperrectangles, respectively.

To this end, we introduce the following notation. For some A > 0, let

) )
Iu,,-(1)=[luz/ai,(z“)umi], IeN,

I=(oeo ), L= e ), j=1,2,

ko n
Du)= | [[Luitt) | x ] 10, eu?1,
i=1 i=ky+1
k1 ko
Cuh= [T ruiCt | x [ 10,2074 x 05,
i=1 i=k;+1

with 03 = (0, ..., 0) e R"*2 and

2/a;

vu Si(u)uz/""'

A

Mi(”):\‘ J 1 <i<ko, Mi(u)={ J ko+1<i<k.
In order to derive an upper bound for P,(E> (1)) and a lower bound for P,(E; (1)), we
introduce the following notation for some € € (0, 1):

ko
Loy =1 []hill) CEs ), i=0,ki+1<i<nt,
i=1
ka
Lowy={1: | []hitl) | NEsrw # @, li=0,ki+1<i<nt,
i=1
ko ko
Lywy={L: | [[Luit) | NEspy#£ 2. Y F>0.1i=0.ky+1<i<ng,
i=1 i=ky+1

Ki@) ={.n: 1.j € Liw), Cu() N Cu() # 2},
Ko@) ={.j): 1.j € L1(w), Cu®) NCu() =2},

u;f=u<1+(1—e)_ inf p;,gl(u‘z/"”kil)),
! telly L +11 7

u;f =u (1 +(1+¢€) sup;le[ll’llﬂ]pfrgl(ufz/“‘kfl)> ,

+ ~ — . ~ .
pj,r = SupZEMr pj(Z)7 pj,r = Eell}\grpj(z)a .] = 11 27 3
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The Bonferroni inequality gives, for sufficiently large u,

u(ELrw) = > P, (Cy (l))—ZF(u)
leﬁl(u)

P, (E2,w) < Y PuDuD)+ Y Py (D),
leLo(u) leL3(u)
where

Niw= Y P,CD,Cl), i=12.
)eKi(u)

L. BAI ET AL.

(4.3)

4.4)

We first derive the upper bound of P, (Eg,,(u)) as u — oo. To this end, we need to find the

upper bounds of ) ;. L) P, (D,(1)),j=2, 3, separately.

Upper bound for Zle L) P, (D,(1)). By (2.6) in assumption (A2), we have, for sufficiently

large u,

X@® e
2. = 2 P{Sup’ep"(’) T+ U=y, 0@ }

leLo(u) 1eLo(u)
1@®)
= P { sup, Ed. ” —€ ’
leﬁzz(w { CELO T = opy gau e ay G w) T

where

X=X (u—2/“1 WA+ @G )" 1), . . u U + (a, G, u))_ltn)), (4.5)

with
W u)= 20y, uT )
and

ko

EQu=|[]10 aG@ uprl | x [] [0, &G upel.

i=1 i=ko+1

Note that by (2.7) in assumption (A2),

U285 (6) < g™ (@Gl W) ') = u ga((aaEd, w) ') <uT S (B),

where

8, ®)=_inf (@@ '), g5,E0) =sup;cp, g2((ax@)”

Moreover,

E. CE(l, u)CE/,
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where
ko n ko n
Ef = [T]10.af 21| x J] 10.afel. B = []]10.a,21] x [] 10.q;,el
i=1 i=ky+1 i=1 i=ky+1
with
afrzsupzeMr ai(z), al.frzzeinf ai(2).
Hence,
Xu,1(®) _
PR ACKOERY P{SupteE+ : syt 46
r _ 2= 5 1
leLo(u) leLy(u) 1+ (1 —€u Pz,rgz,r(tz)
Applying Lemma 4.1, we obtain
282,82 +
' (I [;:Z, [0, ¢, A])
> P D) = I;{’l‘l RO (), u— oo. (4.7)

leLr(u)

We refer to Appendix A.1 for the detailed calculations proving (4.7).

Upper bound for ) ;- 2wy Pu (Du(D). We find a tight asymptotic upper bound for the second
term displayed on the right-hand side of (4.4) using an approach similar to that used in deriving
(4.7). For L > 1, we get

3 P (D) = Q3xhe @ 00 (w), 1 oo, 48)
16,63(14)

where B* =minf.‘ik1 +1 (Bi). The detailed derivation of inequality (4.8) can be found in
Appendix A.2.

Upper bound for P,(E> (u)). The combination of (4.7) and (4.8) yields, for A > 1 and
u—> 00,

P28 8)  _k
o1, 0, )

o +Qaak ke | o). (4.9)

P, (E2r(’/l)) =

Next, we find a lower bound for P, (E1 ,(«)) as u — oo. To do this, we need to derive a lower
bound for Zleﬁl(Lz) P, (C,(0)) and upper bounds for I';(u), where i = 1, 2.
Lower bound for } 3 » ) Pu (Cu(D). Analogously to (4.7), we derive, as u — 00, € — 0,
3,81, E) _
Hy (112, 10, a,01)
Ak

> P Cul) = Ot (u). (4.10)
lE[,l(u)
Upper bound for I';(), i=1, 2. Applying an approach analogous to that of the proof of

Theorem 8.2 in [31], we have, for A > 1, as u — o0,

Ti(u) < Qaa~ 222k e @), (4.11)
() < QsaZkehe=Q6™ Jhog—(y), (4.12)
where o =max («q, ..., ar, ) and Q;, i=4, 5, 6 are some positive constants.
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Lower bound for P,(E7 »(u)). Inserting (4.10), (4.11), and (4.12) into (4.3), we obtain, for
A>1,asu— o0,
Pu(E1 ()

t
( pz,gz,-(Z)(l—[ [0 a
>
= Iz

— Qa2 — QsaZahig=Qe” )v"°®+(u). (4.13)
4.2.3. Step 3. In this step of the proof, we sum up the asymptotics derived in step 2. Set

0,(u) = qu-ll 2/061'—25-1”1 2//?31'\1,(”)'

Letting A — oo in (4.9) and (4.13), it follows that

t + 7 =
(amm>H%&”qT e Pt iy /001 ),
71€[0,00)k1 7

P, (E2,(w) <M, 2””2’('2)]_[ / e P181D df k0@ (). (4.14)

f1€[0,00)F17*

We sum P, (E ,(u)) (and P, (E> (1)) with respect to r to obtain a lower bound for P, (E1(«))
(and an upper bound for P, (E>(u))). Observe that

P, (E1w) > Y Py (Er,@)— Y Py (Errw), Erw), (4.15)
reV- r,r'eV=r#r

P, (Ex(w) < Y Py (Ezr(w)).
rev+t

By applying (4.14) and demonstrating that the double-sum term in (4.15) is asymptotically
negligible, we obtain

k1 B
lim infm > / Hm@gz(“z '@h) l—[ aiG) / e 1 @0 g7, | gz
U—00 @1(”) M i=1 EIG[0,00)kl -k
(4.16)
and
P, (E>(w)) 0 [ ;
lim sup Tu B2) S/ sz(z)gz(az (@h) Hai(z) / efpl(z)gl(tl)dil d&z,
U—>00 O1(u) M =1 71 €[0,00)k1—k
“4.17)

as v — 0. The detailed derivation of (4.16) and (4.17) is delegated to Appendix A.3.
The proof is completed by combining (4.16) and (4.17) with (4.1) and (4.2).
Appendix A. Complementary derivations for the proof of Theorem 2.1
In this section we provide detailed derivations of (4.7), (4.8), (4.16), and (4.17), and we

o 0B
prove the positivity of Hj; .
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A.1. Proof of (4.7)

We begin with aligning the notation used in Lemma 4.1 with that used in Theorem 2.1. Let
X, be as in (4.5), and let

w=u  ga®==1-eu"’py e, @), Ku=Low).

We note that lim,,; o infye £, () ufle = 00, which combined with continuity of g, implies that

. 2 - =
lim_supyeg, supegs 178010 — (1 = p3,85,E2)| = 0.

Therefore, (C1) holds with g(f) = (1 — e)pz_rg;r(iz). By (2.2) and (2.3) in assumption (Al),
using the homogeneity of the increments of W for fixed #, and £3, we have

ugngo SUPjek, SUP; re u,zVar(Xu,l(t) — Xu.1(5)) — 2Var(W(t) — W(s))‘ =0.

Hence, (C2) is satisfied with the limiting stochastic process W defined in (A1). Assumption
(C3) follows directly from (2.4) in assumption (A1). Therefore, we conclude that

P{sup,cgr Xt/ + (1 — up3,83,E)) > ;)
W)

lim su
U— 00 plGK"

_ Hi/:/_e)pirgir(EZ) (E+)

r

=0, (A.1)

where

=y g7 (F , o
Hi}v P2.182,4 2)(Ef) -E { SUPye e«/Ew(t)faw(t)f(lfe)pz,,gz,,(tz)} _

Therefore, we have, as u — oo,

Z P {supser Xu1(®) > u; €}
leLy(u)
(1-e)p; .8, &) _
< > Hy T ED W
leLr(u)

ko vu/%
EHY@ (]

i=1

< Hi}‘l;e)p{,g;,(iz)

ki MiQu) ) B e as
X Z Z e_(l_é)lnf316[11~’1+1]1’|,r31(” IB1=2e050)
i=ko+1 [;=0

(1-€)p3,.8, . (E2)
o2, E+ kq Rl .
~ HW )\kl ( r )Vko \Ij(u)uzi=| 2/ai Zi=k0+| 2/Bi

o / e (=awi,a@) g7 (A.2)
71 €[0,00)k17%0
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Note that

o epy,e, @)
éh_% Hy (E)=E SUPG 4y i)el 12, 10.a,01 ©

i,

VAW 32,63)U&y(i,il,iz,ﬁﬁPz_,glr(iz)}

- k>
82,@)
= Hy 2 TT 10, 6 4]
i=1

and by the dominated convergence theorem, it follows that

lim e -r,81® g7, / e P ® g7,

€—=0 Ji,€[0,00)k17%0 71 €[0,00)k1 %0

Hence, letting € — 0 in (A.2), we have

P;rg;r(EZ) kz +
Hy " (12, 10, g A D)
Y P (D) = — Ejf MO W), u—>o0, (A3
1Ly (u)
where
kq ky + B
@i(u) — \p(u)uz,-:l 2/0i =321 2/Bi / e P81 df;.
7, €[0,00)%1 %

A.2. Proof of (4.8)

For sufficiently large u,

Y @< Y P{sup,epu(,))?(t)>u,—lflz}= 3 P{sup,eE)?u,,(t)>u,—lflz},
leL3(u) leL3(u) leL3(u)

where

Xt =X/ (ia+11), .., u” Mo Ua + 1)), E=[0, A1 x [0, ],

U :u(l+(l—e) inf g MM+ (1—€) inf gz(u2/°‘2,\iz)>.
1,72 el i +1] thelly,l+1]

Let Z,(t) be a homogeneous Gaussian random field with variance 1 and the correlation function
satisfying

ru(s, £y = 292 Xl lsi—al*, (A.4)

According to (2.4), under assumption (A1) and applying Slepian’s inequality (see [2, Theorem
2.2.1]), we find that, for sufficiently large u,

P {supteE )N(u,l(t) > “l:Elg} <P {supteE Z, () > uaflz} , le L.
Similarly as in the proof of (A.1), we have

P{supyeg Zu(®) > u; 4}
W, 7,)

- J(E)| =0, (A.S5)

ulggo SUPfe L4 ()
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where

ko

JE) = 1_[ Hpi[0, (2Q2)"/%i4] 1_[ Hpei [0, €(202)'/%n]

i=1 i=ky+1

Hence, using the above asymptotics and (2.7) in assumption (A2),

> Py (D)

leL3(u)
< Y JEYWS)
leL3(u)
<TEW@wW) Y o~ (1= infy ey gy 4y w21 @R —(1=€) infyeqy 1y 1y 0 g2/ *2A)
1eL3(u)
ko 2/a; ky  Mi(uw)
vu/ i (l—e)infs 2/B1-2/a1 37
<7EYw |]] 3 (1 iy 1P
i=1 i=ko+1 ;=0
« Z e~ (=0 inf ey 1y 1) 82(142//3272/““32).

l,%l+1+~~+l£2zl,l,-zo,lirlgiskz

Moreover, the direct calculation shows that

ki Mi(w ' s e
Z Z e~ (=0 infy gy 1y 41y 1 2/P172/0150))
i=ko+1 ;=0
K -
oy izhg 1 (2/‘11'—2//31'))\‘/(0—](1/ e =08 @ g7, 4y 0.
f1€[0,00)k17%0

Given the assumption (2.7) and the fact that > = 8,5, we find that, for A > 1,
Z e_(l_e)infize[lz.lzﬂ] g2 (u?/B2=2/22)7,)
lﬁl+1+---+l§221,l,-20,k1+1§i5kz
- )3 (=0 T2y (i)
Byt 21120,k ik

o
< Qe

where g* = minf‘zk1 +1 (B)- In addition,

ko
lim J(E) = [ | Hpei [0, (2Q2)"/*2]
e—0 i1
and, for A > 1,
ko
[T 10, 220) 431 < @32k,
i=1
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Thus, for A > 1,

3 P (D) < Qi@ e @), u—s oo, (A6)
leL3(u)

A.3. Proof of (4.16) and (4.17)

Note that g;r(iz) €G, reVtand pg(Z)gg(az_l(Z)iz) € G, 7€ M with fixed ¢ and $,. Thus,
(A.11) implies that, for any € > 0, there exists Ao > 0 such that, forany A > Ao > O andr € v+t
andz e M,

P82, ,(tz)

0

pz r82, r( )

— Hy ([0, A]F2)2~h

‘sz(z)gz(az @) ,sz(z)gz(az (Z)tZ)([O, )\]kZ))\—kl —e (A7)

Hence, it follows that, as u — oo and A > A,

2rev- Pu (E1rw)

O1(w)
Z 172 1&3,(E) l_l[ai_r/ e—pt,gl(?) di; ko
V- i1 Jhe0o0fik
ki )
/ 3 ((H””g“( 20, 10k — o [ ary / e P ® dil)HM,(Z) &,
reV- im1  Jhel0,00f17k

Note that, for any fixed Z € M?, where M? C M is the interior of M,
. Pz r82, r(tZ) k k _[;+ g1 (i) = ~
lim Hyw 0, AI'DHA™ 1 —e) | | a;, e Flr dty | I, (2
lim 3 | ( ) H 2 S M,@)

ki
— (HPZ(Z)gz(az (Z)tZ)([O, )\]kl ))\*kl —€) Hal(z) / e*Pl(Z)gl(tl) dil

e f1€[0,00)f17F

_ k1
- —1,~ - -
> (Hﬁi(z)gz(uz @n) 2€) l—[ ai?) / e P1Dg1@) df

i1 f1€[0,00)k1F

_ ki
Hea(ay ' ) . ~-P1@gi1) g7
> Hf};(z)gz(az @)t2) 1—[ a,-(z) / Pl(Z)gl(tl) dt] , e — 0.

i1 71 €[0,00¥1 &

Moreover, it is clear that there exists Q < oo such that, for any A > 1 and v > 0,

(sz +& ,(tz)([o ]kl )A_k' ) H‘lz r/ *Ptrgl(i) df; HMr < Qs.

7 €[0,00)k1 7k
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Consequently, the dominated convergence theorem gives

Zre V- P, (El r(u))

lim inf
u—>00 O1(u)
Gy @i [ 12 e
Zf Hﬁ;zgz 2 @Wh Hai(z) / e P1@s1) g7, | dz. (A.8)
M i1 #1€[0,00)F17F

Next, we focus on the double-sum term in (4.15). Forre V=, r € V=, M, " M,» = &, we have

P, (E1 (). By p(u) <P (supse b yaer,, X5+ X(@0) > 2u) .

By (2.5) in assumption (A1), there exists 0 <& < 1 such that, for all re V=, e V=, M, N
My =2,

SupSGEl,r,tGELr/ Var(X(s) +X(t)) <4 —4.

According to the Borell-TIS inequality (see, for example, [2, Theorem 2.1.1]), for u > a, we
have

P (SUPycr,  vet, , X(6) +X(@) > 2u) < ™H0m0/26-D),
where a = E(supsc 4 4c 4 X(5) + X(#))/2 = E( sup,c 4 X(#)). Consequently,

S Py (Ersw), Eyp ) < Qe t 024D — (@), u—> oo
ror'eV- MM, =2
Forr,r e V=, r#v, M, "M, # &,
P, (El,r(u)» El,r’(”)) =P, (El,r(“)) +Py (El,r’) -P, (El,r(u)» El,r’(”)) .
In light of (A.7) and (A.8), we have

> P, (E1rw), E1p(0) = 0(©1(w),  u—>00,v—0.
rr'eV- r#r \MNM, #3

Therefore, we have

> Py (Errw), Erpw) =0(©1w), u—> o0, v—0,

r,r'eV= r#r
implying that
P, (E1(u) Gaaay' @i [ 1 Da1@
lim inf =~ 2/ HI"; 2)g2(a, (t2 ]_[ai(Z) / e~ P1Dg1®) dr, | az.
u—00 ® 1 (I/l) M i=1 il e[()’oo)kl -k
Similarly, we can obtain, as v — 0,
P, (Ex(w) Oty @) [ 1 e
hm Sup M— S/ HI;; 2)82(a, ()2 Hdl(z) / e—Pl(Z)gl(tl) djl dz
U—00 O1(u) M i1 # €[0,00)"17%
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A.4. Existence of %%(tz)

We follow a similar idea as that used in the proof of Lemmas 7.1 and 8.3 in [31]. Thus, we
present only the main steps of the argument. We assume that

a(z)=1, pi@=1, j=1,2,3, zeM,.
Dividing (4.9) and (4.13) by VK@~ (1) and letting u — oo, we derive that
7_[82@2)([0 )\,]kz) ng(tz)([o )\]kz)
limsup—k_ iminf —%—~—""" © ~ 0o
A—00 AR A—o00 ki

The positivity of the above limit follows from the same arguments as in [31]. Therefore,
_ g2(2) ky

&) . . HW ([Oa )"] )

Hy — = A151;0 By TE— € (0, 00). (A9)

Moreover, using (4.9) and (4.13), we have, for A > 1,

g2(8)
—HE

&) k * *
‘M < Q2 aMehiem Qo g plchiem @A) (a 1)

Ak

Let G:= {g2:2> is continuous, ug>(f) = g2(u'/B21), u > 0, infz{czk i<t g2(t) > c > 0},
i=ky+1 V0T

where ¢ and 8, are fixed. For any g> € G, (4.7) and (4.8)—(4.13) are still valid. Hence, (A.10)
also holds. This implies that, for any A > 1,

ng(EZ) 0, A ko _ o %
WP | m )(J[q D0 2@ < @i 12 4 22ehie0i” | plamhi gm0

(A.11)

Appendix B. Proof of Proposition 3.1

For Z%(t) introduced in (3.1), we write 022 for the variance of Z% and rz for its correla-
tion function. Moreover, let 0, = max,es, 0z(f) and recall that S, ={0=# <1 <-.- <1, <
t,+1 = 1}. The expansions of oz and rz are displayed in the following lemma, which is crucial
for the proof of Proposition 3.1. We skip its proof as it only needs some standard but tedious
calculations.

Lemma B.1. (i) For a € (0, 1), the standard deviation oz attains its maximum on S,, at only

one point 70 = (21, . . . , ) €Sy Withzt_zji La ]2/(1 ot)/zn+1 2/(1 a)’ i=1,....n andits
maximum value is oy = ( Z"'H 2/a O‘))(1 /2 Moreover,
1 —oz(t)/o
Jim sup,e w2/ H 2D ; —11=0
V- zo\<8 (a(l —a)( i, )4 Y ((ti — zi) — (tic1 — zi-1))
(B.1)

withzg:= 0, zy+1:= 1, and

. 1 - rZ(Sa t)

lim sups; ¢ se s —1{=0. (B.2)

»S 2 n 2 2 . .
50 s (/20 (X0 (af + a7, y) Isi— 1:]9)
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(i) For « =1 and m defined in (3.3), if m=n+1, oz(t) =1, t€S,, and if m <n+ 1,
function o7 attains its maximum equalto 1 on S, at M ={te€ S,: Zje Al —ti-1] =1} and
satisfies

: 1 —oz(0)
alg% SUP,c Af SUPgesS, —1/=0. (B.3)

—zi<s 1 (1/2) Zje_/\/’c a1 - ajz)|tj —tj1]

In addition, for 1 <m <n+ 1, we have

, I —rz(s, 1) |
1m Sups;ét,s,tesn 1 . e
=0 s | (1/2) Y @ min [ty — sic1 |+ 1t — sil [t — tima| + |si — si—1])
zeM
(B.4)

(iii) For a € (1, 2), function.az attains it maximum on S, at m points ), je N ={i: a; =
1, i=1,...,n+1}, where 22 =(0,...,0,1, 1, ..., 1) (the first 1 stands at the jth coordi-
nate) if je N and j < n+ 1, and At — ,...,0) if n+ 1 e N. We further have o, = 1 and,

ast— 7V,
. 1 —oz(®)
Sh_%SUPteSn 72 — " a1 =0. (B.)S)
[t—z0| <8 ( / )(05|t] — i1 — | — Zl§i5n+l,i;ﬁj a; [t — ti11%)

Case 1: o € (0, 1). From Lemma B.1(i), it follows that o7 on S, attains its maximum o at
the unique point zo = (z1, . . . , 2,) With

i 2/(1—a)

Zi= Z;:l aj i=1 n

= s g =
Zi] a;

Moreover, from (B.1) we have, fort € S,,,

t
1 — oz(t)

Ox

_all =) @)

4
n
2/(a— 2/(a— 2 /(e—
X (al/(a 1)(11 - Z1)2 + anﬁ? D(fn - Zn)2 + Z a; /=) (ti —z)) — (ti—1 — Zil))2>

i=2

as |t — zo| — 0 and from (B.2), for ¢, s € S,

1 S
1 —rz(s,8)~ 202 (Z (a;i +aiy ) Isi — til”

i=1

as |s — zo| , |t — zo] = 0. Furthermore, we have

E{@ @ - 2202} <4 )l —sil”. (B.6)

i=1
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Therefore, by [31, Theorem 8.2] we obtain, as u — 0o,
n aZ +a_2 1/a u 2/a—Dn u
P{su Z%() > u} ~ (Hpe )" i il - / e 7O qew( L),
{supres, Z*() > u} ~ ( B)H( 702 - n -
where

a1 — a)( S g1y
4

y ( 2/(a— 1)x%+ i{‘r((lx 1) 2+Z =Dy, 1)) xeR"

Jx)=

A direct calculation demonstrates that

" dr \"? i "ZH [/
—f(x) — —n/(l—a o—
/Ile dx_(oz(l—a)) T ai

J=1 i

—12

This completes the proof of this case.

Case 2: o = 1. First, we consider the case m < n + 1. Let k* = max{i € '} and denote
No={ieN, i<k"}, o =lie N i<k}

To facilitate our analysis, we make the transformation

xi=t;, i€Np, xi=ti—ti_1, ieN°,
which implies that x = (xq, ..., Xgr—1, Xk 41, - - - » Xpt1) € [0, 11" and
X; if i e Np,
=6 = 11— if i = k¥, (B.7)

ijmax{ke/\/" k<iy¥i if1€NG,

with the convention that max & = 0. Define Y(x) = Z(¢#(x)) and S, = {x: t(x) € S,;}, with £(x)
given in (B.7). By Lemma B.1(ii) it follows that oy(x), the standard deviation of Y(x), attains
its maximum equal to 1 at

xeS,: x;=0, ifie N}.

Moreover, let X = (x;);ienj» X = (x;)iepre and denote, for any & € (0, 1/(n + 1)?),

g:(ﬁ):{xegn:Ofxi_( leGNC}

12’

={xelo0, 1™ xi <xj, ifi,jeNpandi<j},
M(8)={xe[8,l sl Xj—x; >34, 1fl]€N0&ndt<]}CM
S(8) = {x e 8¥(8): Te M(8)}.
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We note that
P [Sque§n Y(x) > u} >P {Squeg,l(a) Y(x) > u} , (B.8)
and
P lsupxegn Y(x) > u] <P {supxegn\grm) Y(x) > u} +P [supxeg;f(a)\gn(a) Y(x) > u}
+P {sup, 5, Y@ > (B.9)

By applying Theorem 2.1, we derive the asymptotics of P{sup, g s Y(x) > u} as u — oo.
Subsequently, we demonstrate that the other two terms in (B.9) are asymptotically negligible.
We begin with finding the asymptotics of P{sup, 8.5 Y(x) > u}. First, observe

~ o~ J e are
Sn(é):{XXEM(S), OSX[Sm,lfleN },

which is a set satisfying the assumption in Theorem 2.1. Moreover, it follows from (B.3) that

0. (B.10)

Jim sup,. 3, 5

I —oy(x) 1
(1/2) Yjenre (1 = a)x;

Taking =% and #, =X in Theorem 2. 1, (B.10) implies that (A2) holds with g»(x)=
% Diene (1= aiz)x,- and po(X) =1 for X € §;(8). We note that A} = A3z = & in this case.

We next check assumption (Al). To compute the correlation structure, we note that, for
X,y €Su(8) and |x — y| < 8/(n+ 1)?,if i € Ny then

i = il + i1 ) — it )] < —— 4 2 o2
. 0 — £ - _ o
Xi — i i—1(X i—1 (l’l—|—1)2 (l’l—|—1)2 nr1-2
and
lxi —xi—1| >4 iti—1eNMNy,
|1i(x) — i1 ()] = — s
X — Z xj 28—(n+1)2>5 ifi—1eN*,

j=max{keN : k<i—1}

while, if i = k* then we have

)
1) — tir 1 O] + 11 (3) — 11 ()] < m_’z—l)z <3

and, for k* — 1 € N,

n+1

né 1)

() — e @] = |1 = > xj— x| 21— (1= 8) — ——— > -,

. (n+1) 2

Jj=k*+1
and, for k* — 1 € N¢,
n+1 k*—1 ns P
() =t @] = 1= Y = > 5| Z1=(1=8) - oms > 2
j=k*+1 j=max{ke N : k<k*—1}
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Hence, for ry(x, y), the correlation function of Y(x), we derive from Lemma 2(ii) that, for
X,y €Sp(8) and |x —y| < 8/(n+ 1)%, as § — 0,

1 —ry(x,y)
=1—rz(tx), ty))
1 n+1
~5 Z ai min (/ti-1 () — ti-1 ()] + [60) — 6] 160) — iy O]+ [1:(0) — -1 ()
i=1
1
=52 (1) = i @]+ 160) = 51
ieN
1 ,
+ 3 Z a; min ([ti—1(y) — tic1 )] + 14;() — )|, [6:) — tici W]+ () — ti—1(0)])
ieN©
1
=5 2 (=il + 1) = i)
ieNy
1 1 n+1
+ 3 1) = e O + 5 ‘ > -
=k 1
1 .
+3 Z a; min ([t;-1(¥) = i1 )] + 16:() = 5], xi + i)
ieN§
1 n+1 n+1 n+1
+5 > aimin | Y -y +| D G-yl xi+yi] . (B.11)
i=k*+1 j=i j=i+1
By (B.7), we have, foranyi=1,...,n+1,
n+1
1) — i < D |xi — yil.
=1
ik
Then, for x, y € gn((S) and |x — y| < 8/(n + 1)*> with 8 > 0 sufficiently small,
1 n+1
3 D=yl 1=y y) QY lxi —yil,
ieNy i=1
ik

implying that (2.4) holds.
Recall that

2 ~ 2
W(x) = %_ Z (Bi(si(x)) — Bi(si—1(x))) + % Z a; (Bi(si(x)) — Bi(si-1(x))) , ~ (B.12)
ieN ieN©

where B;, B; are i.i.d. standard Brownian motions and
X; if i e Ny,

i
> x ifieNg,
si(x) = j=max{keN : k<i}

n+1

>y if i > k*.

j=i+1
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Direct calculation gives us that E{(W(x) — W())?} coincides with (B.11) for any x,y€
[0, oo)". This implies that (2.2) holds with W given in (B.12) and a(x) = 1 for x € M(§).
Using (B.11) and the fact that, forany i =1, . . ., n, s;(x) — s;(y) is the absolute value of the
combination of x; —y;, je{l,..., k*—1,k*+1,...,n+ 1}, we derive that, for a fixed x,
the increments of W(x) = W(X, x) are homogeneous with respect to X. In addition, it is easy to
check that (2.5) also holds. Hence, (A1) is satisfied.
Consequently, by Theorem 2.1, as u — 0o, we have

P {supxe S Y@ > u} ~ Vit (M) Hw ™D (), (B.13)

where

1 2081 2
Hw = lim )\m_—l]E[Sque[o,x]n VW@ =003 Tjenre (1 “j)xf]
—00
VIWE)— (1 )

. 1 ik
= lim 7B ] SUPwerop ©

We now proceed to the negligibility of the other two terms in (B.9). In light of the Borell-TIS
inequality, we have, as u — oo,

(1 — E(SUP, 3 \ gy Y0))?
P {Supxegn\gf(é) Y(x) > u} =exp ( 2(1 ‘i'\;nz(‘s) ) =o(V(u), (B.14)

where ¢ =1 —sup, _ S)\3 ) oy(x). By Slepian’s inequality and Theorem 2.1, we have
P {Sque§;;(5)\§n(8) Y(x) > u} <Vm_1 (/W \ /ﬁ(é)) ﬁwl W™Dy (y)
= o™ VW), u— o0, §—0. (B.15)

A combination of the fact that

1

Jim v (MA0) = vt (M) =

with (B.8), (B.9), and (B.13)—(B.15) leads to

Hwi ™ D), u— oo.

P {sup,cs, Z(t) > u} =P {supxegn Y(x) > ”} T

Case m=n+1: for some small £ € (0, 1), define E(e)={tcS,: t;i—ti_1>¢, i=
1,...,n+ 1}. Thus, we have

P {supscge) Z@®) > u} <P {sup,cs, Z(t) > u}
<P {supyes,\r(e) Z@) > u} + P {sup,cpe) Z(t) > u} . (B.16)

Let us first derive the asymptotics of Z over E(¢). For s, t € E(¢), by (B.4) we have

n
L=r(s,)~> Isi—tl,  lt—s|—0.
i=1

https://doi.org/10.1017/apr.2025.10031 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2025.10031

28 L. BAI ET AL.

Moreover, it follows straightforwardly that Var(Z(¢#)) = 1 for £ € E(¢) and corr(Z(¢), Z(s)) < 1
for any s #¢ and s, t € E(¢). Hence, by [31, Lemma 7.1] we have

P {Supyepe) Z(®) > u} ~ va(EE)UP" W (W) ~ v(S)u™ W (w), u— o0, & — 0. (B.17)
Moreover, by Slepian’s inequality and [31, Lemma 7.1], as u — oo, ¢ — 0,
P {suprcs,\pe) 20 > ) < va(Sy \ E()(2H 1 Qu)'u® W(w) = 0 (uz”\lf(u)). (B.18)

Inserting (B.17) and (B.18) into (B.16), we obtain
1
P {sup,cs, Z(t) > u} ~ —'uznlIJ(u), U — 0.
n!

The claim is established by Remark 3.1(ii).

Case 3: a € (1, 2). Fors, t €S, one can easily check that

E(Z¢t)Z2%(s)) Y a2 {(B (1) — B (ti-1)(B(s1) — B*(si—1))
rz(s, t) = = <

1
oz(t)oz(s) oz(®)oz(s)

if s#¢. In light of Lemma 2(iii), o7 attains its maximum at m distinct points 20, JEN.
Consequently, by [31, Corollary 8.2], we have

P {sup,cs, Z*() > u} ~ Z P {supten” Z%(t) > u}, u— 00,
jeN

where s ;= {t € S, |t — | < %}.
Define Ej(u) := {teIl5;: 1 — (In u/u)* < i—ti1<1}> Z. Observe that
P {supteEj(u) Z%(t) > u} <P {SuPten&_, Z%() > u}
<P [supteEj(u) Z%(t) > u} +P [suptena_j\Ej(u) Z%(t) > u]

We first find the exact asymptotics of P{sup,. Ej(u) Z%(t) > u} as u — oo. Clearly, for any u € R,

P {suprep) 20 > u} 2 P {2%(2) > u} = w(w).

Moreover, for s, t € S,, there exists a constant ¢ > 0 such that inf;cs, 07(f) > 1/+/2¢. Hence,
in light of (B.6) we have

n
L—rz(s.)<4c ) |ti—sil®. (B.19)
i=1

Let Uy(¢), t € R" be a centered homogeneous Gaussian field with continuous trajectories, unit
variance, and the correlation function ry, (s, £) satisfying

n
ru,(s,£)=1—exp <8c2 lt; — si|°‘> .

i=1
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Set Ej(u) =[O0, 81@:2/“]"_1 x [1 — gqu=2/% 11"+ for some constant ¢; € (0, 1). Then it fol-
lows that E;(u) C Ej(u) for sufficiently large u. By Slepian’s inequality and [31, Lemma 6.1],

P {supregy 240 > ul < P fsupye ) Ua0 > u} ~ (M0, 80 /2e11)" W) ~ wiw)

as u — 00, &1 — 0, where

lim Hpe[0, \] = lim E { sup eV2B"O—"1_ 1
r—0 r—0 te[0,A]

Consequently,
P {supteEj(u) 720 > u} ~ W), u— 0. (B.20)
Note that, fort € S,,,
n+1
Zaiz |t; — t,'_1|a < |tj —tji-1— 1.
i=1
i#f

Hence, by (B.5), for sufficiently large u,

(1 —e)a—1)
SUPrer1, )\ B 020 = SUPrem gy (1=~ |6 = -1 =1

2
<1- % <ln_u> , (B.21)

u

where ¢ € (0, 1) is a constant. In light of (B.19) and (B.21), by [31, Theorem 8.1] we have, for
sufficiently large u,

P {suptel'[,g,j\Ej(u) Za(t) > u}

< 2n/olej u — o (WU
= Qo Q—m—wm—wmmwm 0w, s
which combined with (B.20) leads to

P {suptenm Z%@) > u} ~P {supteEj(u) Z%() > u} ~W(u), u—> oo.

Consequently, with m = #\ given in (3.3), we obtain

P {sup,cs, Z*(@®) > u} ~ Z P {suptenaj Zo() > u} ~mWu), u— oo.
jeN

This completes the proof. U
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Appendix C. Proof of Remark 3.1

(i) For the 1 <m <n case, we first show that Hw > 1. Recall that No ={i e N, i < k*},
Ne={irai<1, i=1,...,n+ 1} and ¥ = (X))ien-
For x; =0, i € N°, by the definition of W in (3.4), we have

n+1

V2W - Y x ¥el0, ™! 4 > V2Bi(x) = Y xi.Xe[0, A1
i=1,ik* ieNy ieNy
Hence,
. 1 ) R o .
Hw z lim o B {Sup;e[o,x]m_l ey V2B~ ey x,} =[] .

ieNy

where Hp, is defined in (2.11). Note that Hp, = 1; see e.g. [31] (or [4]). Therefore, Hy > 1.
We next derive the upper bound of Hy for 1 < m=<n ‘We use the notation introduced in the
proof of Proposition 3.1(ii) (specifically, ¥ and S,(8)). For § € (0, 1/(n + 1)?), let

N 1)
A(8)= {)C. XGB(S)’OE'xiS m’

ifie N¢ } ,
where B(8) = [17," [2i8, (2i + 1)8]. Clearly, A(8) C S,(8). Moreover, by (B.11) it follows that,
for any € > 0, there exists § € (0, 1/(n + 1)2) such that, for any x, y € A(9),

n+1

L=y ) <+ Ixi—il.
—
ik

Let us introduce a centered homogeneous Gaussian field Us(x), x € [0, 00)" with continuous
trajectories, unit variance, and the correlation function

n+1

oy ) =exp (—E {Wa = Wao?) ). with Waw) = Vit e Y Bix),
i=1
ik

where B;, i=1,...,k*—1,k*4+1,n+1 are i.i.d. standard Brownian motions. By (B.10)
and Slepian’s inequality, we have, for 0 <€ < 1,

P SUPyeA(s) U4(x)2 >u¢>P {SqueA(a) Y(x) > u} .
L4 iene (1 —a7)/2 — )i
Analogously to (B.13), we have
P {sup,cas) Y > u} ~ vi—1 (B(S)) Hwu*™ VW (u)

and

Us(x) 2(m—1)
P ~ m-— 8 E)
{S“pxa*(“)1+zi€Nc<<1—a%)/<2+e)>xi>“} bt (PO w0
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where

V2O Y Biti) — (€)Y i Y e (1—ad) /(2=

1
T i1k LIk
Hwy = lim 7B 3 supeo i © ” 7

—a?)/(2—
=+ T #a | ] Py 77"
ieNy ieN¢

with Pgi for ¢ > 0 being defined in (2.11). Using the fact that Hp, =1 and, for ¢ > 0, 7’1‘9} =
14 1/c (see, e.g., [4]), we have

2
Hw, =0+ " ] (1+—( +E)(n2+€)>.
ieN¢ l—a

i
Hence,

Hiy <Hw, =+ om! T (14 EE2ED)
ieN¢ 1—a2

i

We establish the claim by letting ¢ — 0.
(i) fm=n+1, we have Ny ={l1, ..., n}and

1 ) (=S, )
Hw= lim —E {Supie[O AP eZ,gNO V2Bi(x;) Z,e/\/o xl} — l_[ Hp =1.
A—00 At ’ v
ieNy

This completes the proof. O

Appendix D. Proof of Proposition 3.2
Let us recall that by (3.12)

P (supte[m] x () > u) =P (SUP((),z)eE Z@0,1) > u)

with Z(0, 1) defined in (3.11).
Observe that, for 0 <e < /4,

P (SUP(o,z)eELe Z@, 1> u) <P (supg.sycr ZB, 1) > u)

3
=P (supger,, 20,0 > u), (D.1)
i=1

where

Elc=[e,m —e]" 2 x[0,2m —e) x [0, €],
Ere=1[0, 1" 2 x [0, 27) x [€, 1],
E3,e ZE/(El,e ) E2,e)-
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In the rest of the proof, we apply Theorem 2.1 to obtain the asymptotics over E .. Then, using
the Borell-TIS inequality and Slepian’s inequality respectively, we find tight upper bounds of
the exceedance probabilities over E;  and E3 .. Finally, we combine all the obtained results to
show the asymptotics over the whole set.

The asymptotics over Ej .. To this end, we analyze the variance and correlation of Z. By
(3.7), we have

62(0, 1=

, te]0,1]. D.2
Troe (€Ol (D-2)

Hence, 0z(#, 1) attains its maximum equal to 1 at [0, 71""% % [0, 2m) x {0} and

1—0z(0,1) _
bt*

{;iﬁ} SUPg (0,7 "2 x[0,27),0<1<8 1‘ =1

This implies that assumption (A2) is satisfied. For assumption (A1), by (3.8), we have

1 — corr(Z(8, 1), Z(0', 1))

~aVar(Y(t) — Y(£)) + % Z vi(8) — vi(0))*

i=1

, 2
0 — 0! 2 1 n—1 fi—1
~aVar(Y(t) — Y(¥)) + % +5 Z ]_[ sin(0) | (6 —6!)?
i=2 \j=1
as (0,1),(0,¢)ecEand |t—1]|, |0 —0'| — 0. Let
n—1
WO. 0= Bi0)+a¥(r). R xR*, (D.3)

i=1

where Bi2 are independent fractional Brownian motions with index 2 and Y is a self-similar
Gaussian process, as defined in (3.8), that is independent of Biz. Moreover, let a(@)=
@(@), - .. an-1(9)), ¢ €10, 71" 2 x [0, 27) with

1 | il ’
al((p):ﬁ and ai((p):ﬁl_[sm((p,'), i=2,...,n—1.
j=1

It follows that, for 0 < € < /4,

. 1 — corr(Z(0, 1), Z(0', 1))
%lﬁ)l Sup(ﬂE[G,T[—G]"’ZX[O,Zn) PR —1{=0.
(0,0),0',1)EE, [(0,0—(@,0)], 10" ,1")—(,0)| <5 | E {(W(a(fﬂ)O, 1 — Wa(p)d', 1)) }

By the fact that

n—1
Var(W(0, 1) — W', ) = aVar(Y(t) = Y ) + _ (6: — 6))°, (D.4)
i=1
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we know that W(@, 1) is homogeneous with respect to @ if ¢ is fixed. This implies that (2.2)
holds with W defined in (D.3).
Moreover, by self-similarity of ¥ and (D.4) we have
Var(W(u™'0, 2%t — Wu™'0", u=2%¢)) = u=>Var(W(0, 1) — W(0', 1)),

showing that (2.3) holds with o;=2,i=1,...,n— 1, and o, = . In addition, by (B1) and
(B2), there exists d > 0 such that, for |0, £) — (8', ¢')| < § with (8, 1), (0',¢) € E1 ,

n—1 n—1
Q Z 0; — 6> <1 — corr(Z(0, 1) < Q, <|t— 7%+ Z (6; — 91_/)2) .
i=1 i=1

Hence, (2.4) is confirmed. Moreover, (2.5) is clearly satisfied over Ej .. Therefore, (Al) is
verified for Z over E) .. Note that, for Z over E; ¢, we are in the case of Ag={1,...,n—1},
A1 =9, Ay ={n}, and A3z = of Theorem 2.1. Consequently, it follows from Theorem 2.1
that, as u — oo,

P (Sup((),t)eEl_E Z(a, t) > M)

~ MY f [T 1a®)] dourer0 > )
Ocle,m—€]"2x[0,27 —€] ie Ao
n—1

—Hi" / 27D T [sin @)~ dby . .. b~ W),
Ocle,m—€]"2x[0,2m —€] i=1

where W is given in (D.3).
Upper bound for the asymptotics over E; . By (D.2), there exists 0 < § < 1 such that

Sup(e,l)EEle Var(Z(09 t)) S 1 - 5
It follows from the Borell-TIS inequality that, as u — oo,
(u — E{supg yek, . 200, nh?
2(1 —9)

Upper bound for the asymptotics over E3 .. Direct calculation shows that

P(supp, ek, . Z(0, 1) > 1) < exp ( — ) =o(u" "W (u)).

n—1
1 — corr(Z(0, 1) <Q, <|t 11"+ 6i— 6’{)2)

i=1

holds for (0, t), (0', ) € E3 . Define Us(@, 1), (#,1) € R" to be a centered homogeneous
Gaussian field with continuous trajectories, unit variance, and the correlation function
rus(0, ¢, 0', ') satisfying

n—1
ruy0,1,0,1)=1—exp (—2(@2 <|t— 7Y+ Z 6; — 9{)2)> .

i=1
By Slepian’s inequality and Theorem 8.2 in [31], we have

U@, 1)
P (SUP(o,t)eE3,e 20, > u) =P (SUp(()’t)GE’e 1+ b ~

<QuuEs "' W), u— oo
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Noting that lim¢_ ¢ v,(E3,) =0, the combination of the above asymptotics and upper
bounds leads to

P (SUP(G,z)eE Z@0, 1> u)
n—1
~H / 2 =D T [sin @)1 d6y ... 61" " W),  u— oo.
0¢e[0,7]"2x[0,27) i=1

By the fact that

27/?

n—1
|'sin (@)]" "1 do; ... db_ = ———,
/oe[ [1 ’ " T T2

0,7]"2x[0,27) i1

and ’H%{,‘x = PZEY(HBz)”_l = Pl‘}_lbn_(”_l)/z, where we used the fact that Hg = 7 V2 we
have

2(3_n)/2ﬁ ’P‘f 1 b

PP (supp.yer Z(0, 1) > u) ~ ra) Y LN, u— oo
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