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Abstract

We derive the exact asymptotics of P{supt∈A X(t) > u} as u → ∞, for a centered
Gaussian field X(t), t ∈A⊂Rn, n > 1 with continuous sample paths almost surely, for
which arg maxt∈A Var(X(t)) is a Jordan set with a finite and positive Lebesgue measure
of dimension k ≤ n and its dependence structure is not necessarily locally stationary.
Our findings are applied to derive the asymptotics of tail probabilities related to perfor-
mance tables and chi processes, particularly when the covariance structure is not locally
stationary.
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1. Introduction

Let X(t), t ∈Rn, n > 1 be a centered Gaussian field with continuous sample paths. Due
to its significance in the extreme value theory of stochastic processes, statistics, and applied
probability, the distributional properties of

supt∈A X(t), (1.1)

with a bounded set A⊂Rn, were extensively investigated. While the exact distribution of (1.1)
is known only for certain specific processes, the asymptotics of

P
{
supt∈A X(t) > u

}
(1.2)

as u → ∞ was intensively analyzed; see, e.g., monographs by Adler & Taylor [2],
Azaïs & Wschebor [3], Berman [7], Ledoux [21], Lifshits [24], Piterbarg [31], Talagrand
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[34], and references therein. As advocated therein, the set of points that maximize the
variance M� := arg maxt∈A Var(X(t)) plays a crucial role in determining the exact asymp-
totics of (1.2). The best-understood cases involve situations where (i) vn(M�) ∈ (0, ∞), with
vn representing the Lebesgue measure on Rn, and the field X(t) is homogeneous on M�, or (ii)
the set M� consists of distinct points. In case (i), one can argue that

P
{
supt∈A X(t) > u

}∼ P {supt∈M� X(t) > u
}

as u → ∞.

For an intuitive description of case (ii), suppose that M� = {t�} and Var(X(t�)) = 1. Then, the
interplay between the local behavior of the standard deviation and the correlation function in
the vicinity of M� affects the asymptotics, which takes the form

P
{
supt∈A X(t) > u

}∼ f (u)P
{
X(t�) > u

}
as u → ∞, (1.3)

where f (u) is some power function. An applicable assumption for obtaining the exact asymp-
totics as described in (1.3) is that, in the neighborhood of t�, both the standard deviation and
the correlation function of X(t) factorize according to the additive form

1 − σ (t) ∼
3∑

j=1

gj(t̄
�
j − t̄j), 1 − corr(s, t) ∼

3∑
j=1

hj(sj − t̄j) (1.4)

as s, t → t�, where the coordinates ofRn are split into disjoint sets �1, �2, �3 with �1 ∪ �2 ∪
�3 = {1, . . . , n}, t̄j = (ti)i∈�j, j = 1, 2, 3 for t ∈Rn and gj, hj are some homogeneous functions
(see (2.7)) such that

lim
t̄1→01

g1(t̄1)

h1(t̄1)
= 0, lim

t̄2→02

g2(t̄2)

h2(t̄2)
∈ (0, ∞), lim

t̄3→03

g3(t̄3)

h3(t̄3)
= ∞. (1.5)

Under conditions (1.4)–(1.5), the function f introduced in (1.3) can be factorized as

f (u) = f1(u)f2(u)f3(u),

where fi corresponds to �i and we have the following.

• In the direction of the coordinates �1, the standard deviation function is relatively flat
compared with the correlation function. Then, for the coordinates �1, a substantial
neighborhood of M∗ contributes to the asymptotics, and f1(u) → ∞ as u → ∞.

• In the direction of the coordinates �2, the standard deviation function is comparable
to the correlation function. Then, with respect of the coordinates �2, some relatively
small neighborhood of M∗ is important for the asymptotics, and f2(u) →P ∈ (1, ∞) as
u → ∞.

• In the direction of the coordinates �3, the standard deviation function decreases rela-
tively fast compared with the correlation function. Then, for the coordinates �3, only
the sole optimizer t� is responsible for the asymptotics, and f3(u) → 1 as u → ∞. We
refer the reader to Piterbarg [31, Chapter 8] for more details.

Much less is known about the mixed cases when the set M� is a more general subset
of A and/or when the local dependence structure of the analyzed process does not factorize
according to the additive structure as in (1.4)–(1.5).
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Gaussian random fields with nonadditive dependence structure 3

The exemptions available in the literature have been analyzed separately and address
specific cases; see, e.g., [1, 9–11, 26, 33]. We would like to highlight a significant recent con-
tribution by Piterbarg [32], which focuses on the analysis of high excursion probabilities for
centered Gaussian fields defined on a finite-dimensional manifold, where M� is a smooth sub-
manifold. In this intuitively presented work, under the assumption that the correlation function
of X is locally homogeneous, three scenarios for M� �A are examined: (i) the stationary-like
case, (ii) the transition case, and (iii) the Talagrand case. Under the notation in (1.4)–(1.5),
these scenarios correspond to �2 = �3 =∅ for (i), �1 = �3 =∅ for (ii), and �1 = �2 =∅
for (iii).

The primary finding of this contribution, presented in Theorem 2.1, gives a unified result that
provides the exact asymptotic behavior of (1.2) for a certain class of centered Gaussian fields
for which M� is a k0 ≤ n dimensional bounded Jordan set and the dependence structure of the
entire field in the vicinity of M� does not necessarily follow the decompositions outlined in
(1.4)–(1.5). In contrast to [32], we allow mixed scenarios where all sets �1, �2, and �3 can be
nonempty simultaneously. Furthermore, we examine more general local structures of the cor-
relation function than those presented in (1.4). More specifically, we relax the assumption that
the correlation function is locally stationary for coordinates in �2, �3 by replacing hj(sj − t̄j)
with h̃j(sj, t̄j) in (1.4). As the main technical challenge of this contribution, this generalization
is particularly important for the examples discussed in Sections 3.1 and 3.2.

In Section 3 we present two examples that demonstrate the applicability of Theorem 2.1.
Specifically, in Section 3.1 we derive the exact asymptotics of

P
{
Dα

n > u
}

as u → ∞, (1.6)

where

Dα
n = supt∈Sn

Zα(t), t = (t1, . . . , tn), Sn = {t ∈Rn : 0 ≤ t1 ≤ · · · ≤ tn ≤ 1},
and

Zα(t) =
n+1∑
i=1

ai(B
α
i (ti) − Bα

i (ti−1)),

with t0 = 0, tn+1 = 1, constants ai ∈ (0, 1] and Bα
i , i = 1, . . . , n + 1 being mutually indepen-

dent fractional Brownian motions with Hurst index α/2 ∈ (0, 1). This random variable plays
an important role in many areas of probability theory, and its analysis motivates the devel-
opment of the theory presented in this paper. Due to its relation with some notions based on
the performance table (see Section 3.1), the random variable D1

n emerges as a limit in several
important quantities considered in the modeling of queues in series, totally asymmetric exclu-
sion processes, or oriented percolation [6, 16, 29]. If ai ≡ 1 then D1

n has the same distribution
as the largest eigenvalue of an n -dimensional Gaussian unitary ensemble (GUE) matrix [18].
If α = 1 but the values of ai are not all the same, then the size of M� depends on the number
of coordinates for which ai = 1 (recall that we assume that ai ≤ 1). In this case, the correlation
structure of the entire field is not locally homogeneous. Utilizing Theorem 2.1 allows us to
derive the exact asymptotics of (1.6) as u → ∞ for α ∈ (0, 2); see Proposition 3.1.

Another application of Theorem 2.1 addresses the extremes of the class of chi processes
χ (t), t ≥ 0, defined as

χ (t) :=
√√√√ n∑

i=1

X2
i (t), t ≥ 0,
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where Xi(t), i = 1, . . . , n are mutually independent Gaussian processes. Due to their impor-
tance in statistics, asymptotic properties of high excursions of chi processes have attracted
substantial interest. We refer to the classical work by Lindgren [25] and more recent contribu-
tions [5, 19, 27, 28, 30, 32], which address nonstationary or noncentered cases. Importantly,
supt∈[0,1] χ (t) can be rewritten as a supremum of some Gaussian field

supt∈[0,1] χ (t) = supt∈[0,1],
∑n

i=1 v2
i =1 Xi(t)vi.

However, the common assumption on the models analyzed so far is that Xi(t) are locally sta-
tionary, as in (1.4). In Section 3.2 we use Theorem 2.1 to examine the asymptotics of the
probability for high exceedances of χ (t) in a model where the covariance structure of Xi is not
locally stationary; see Proposition 3.2 for more details.

The structure of the remainder of this paper is organized as follows. The concept and main
steps of the proof of Theorem 2.1 are presented in Section 4. Detailed proofs of Theorem 2.1,
Propositions 3.1, 3.2, and several auxiliary results can be found in the appendices.

2. Main Result

Let X(t), t ∈A be an n-dimensional centered Gaussian field with continuous trajectories,
variance function σ 2(t), and correlation function r(s, t), where A is a bounded set in Rn.
Suppose that the maximum of the variance function σ 2(t) over A is attained on a Jordan subset
of A. Without loss of generality, let us assume that maxt∈A σ 2(t) = 1. We denote by M∗ the
set {t ∈A : σ 2(t) = 1}.

Throughout this paper, all the operations on vectors are meant componentwise. For instance,
for any given x = (x1, . . . , xn) ∈Rn and y = (y1, . . . , yn) ∈Rn, we write xy = (x1y1, . . . , xnyn),
1/x = (1/x1, . . . , 1/xn) for xi > 0, i = 1, . . . , n, and xy = (xy1

1 , . . . , xyn
n ) for xi, yi ≥ 0, i =

1, . . . , n. Moreover, we say that x ≥ y if xi ≥ yi, i = 1, . . . , n.
Suppose that the coordinates of Rn are split into four disjoint sets �i, i = 0, 1, 2, 3 with

ki = #
⋃i

j=0 �j, i = 0, 1, 2, 3 (implying that 1 ≤ k0 ≤ k1 ≤ k2 ≤ k3 with k3 = n) and

t̃ := (ti)i∈�0 , t̄j := (ti)i∈�j, j = 1, 2, 3,

in such a way that M∗ = {t ∈A : ti = 0, i ∈⋃j=1,2,3 �j}. Let

M := {t̃ : t ∈A, ti = 0, i ∈
⋃

j=1,2,3

�j} ⊂Rk0

denote the projection of M∗ onto a k0-dimensional space. Note that M∗ =A if
⋃

j=1,2,3 �j =
∅. Sets �1, �2, �3 play roles similar to those described in the introduction (see (A2) below),
while �0 is related to M∗ via M.

Suppose that M is Jordan measurable with vk0 (M) ∈ (0, ∞), where vk0 denotes
the Lebesgue measure on Rk0 , and {(t1, . . . , tn) : t̃ ∈M, ti ∈ [0, ε), i ∈⋃j=1,2,3 �j} ⊆
A⊆ {(t1, . . . , tn) : t̃ ∈M, ti ∈ [0, ∞), i ∈⋃j=1,2,3 �j} for some ε ∈ (0, 1) small enough.
Furthermore, we impose the following assumptions on the standard deviation and the
correlation functions of X.

(A1) There exists a centered Gaussian random field W(t), t ∈ [0, ∞)n with continuous
sample paths and a positive continuous vector-valued function a(z̃) = (a1(z̃), . . . , an(z̃)), z̃ =
(zi)i∈�0 ∈M satisfying

inf
i=1,...,n

inf
z̃∈M

ai(z̃) > 0 (2.1)
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such that

lim
δ→0

supz∈M∗ sups,t∈A
|s−z|,|t−z|≤δ

∣∣∣∣∣∣ 1 − r(s, t)

E
{
(W(a(z̃)s) − W(a(z̃)t))2

} − 1

∣∣∣∣∣∣= 0, (2.2)

where the increments of W are homogeneous if we fix both t̄2 and t̄3, and there exists a vector
α = (α1, . . . , αn) with αi ∈ (0, 2], 1 ≤ i ≤ n such that, for any u > 0,

E{(W(u−2/αs) − W(u−2/αt))2} = u−2E{(W(s) − W(t))2}. (2.3)

Moreover, there exist d > 0, Qi > 0, i = 1, 2 such that, for any s, t ∈A and |s − t| < d,

Q1

∑
i∈⋃j=0,1 �j

|si − ti|αi ≤ 1 − r(s, t) ≤Q2

n∑
i=1

|si − ti|αi . (2.4)

Furthermore, suppose that, for s, t ∈A and s 
= t,

r(s, t) < 1. (2.5)

(A2) Assume that

lim
δ→0

supz∈M∗ supt∈A|z−t|≤δ

∣∣∣∣∣ 1 − σ (t)∑3
j=1 pj(z̃)gj(t̄j)

− 1

∣∣∣∣∣= 0, (2.6)

where pj(t̃), t̃ ∈ [0, ∞)k0, j = 1, 2, 3, are positive continuous functions and gj(t̄j), t̄j ∈
Rkj−kj−1, j = 1, 2, 3, are continuous functions satisfying gi(t̄i) > 0, t̄j 
= 0j, j = 1, 2, 3.
Moreover, we assume the following homogeneity property on the gj: there exist some
β j = (βi)i∈�j , j = 1, 2, 3 with βk > 0, k ∈⋃j=1,2,3 �j, such that, for any u > 0,

ugj(t̄j) = gj(u
1/β j t̄j), j = 1, 2, 3. (2.7)

Moreover, with αj = (αi)i∈�j, j = 1, 2, 3,

α1 < β1, α2 = β2, and α3 > β3. (2.8)

Assumption (A1), which includes (2.1)–(2.5), addresses the local dependence structure of
the analyzed Gaussian field in a neighborhood of the set M∗ of points that maximize the vari-
ance of X. The function a( · ) can be modified based on the location where the correlation is
being tested. Property (2.3) refers to the self-similarity of W( · ) with respect to each coordinate.
In comparison to models previously discussed in the literature, the major novelty of (A1) lies
in the fact that we do not assume homogeneity of the increments of W( · ) with respect to the
coordinates in �2 ∪ �3. It enables us to examine the dependence structures of X( · ) that extend
beyond local stationarity. Assumption (A2), which includes (2.6)–(2.8), addresses the behav-
ior of the variance function of X( · ) in the vicinity of M∗. Property (2.8) straightforwardly
corresponds to the three scenarios described in (1.5) in the introduction.

We next display the main result of this paper. To the end of this paper, �( · ) denotes the tail
distribution of the standard normal random variable.

Theorem 2.1. Suppose that X(t), t ∈A is an n-dimensional centered Gaussian random field
satisfying (A1) and (A2). Then, as u → ∞,

P
{
supt∈A X(t) > u

}∼ Cu
∑

i∈�0∪�1
2/αi−∑i∈�1

2/βi�(u),
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where

C =
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ ∏
i∈�0∪�1

|ai(z̃)|
⎞⎠∫

t̄1∈[0,∞)k1−k0
e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃ ∈ (0, ∞),

with a2(z̃) = (ai(z̃))i∈�2 and

Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W = lim
λ→∞

1

λk1
E
{

supti∈[0,λ], i∈⋃2
j=0 �j; ti=0,i∈�3

e
√

2W(t)−σ 2
W (t)−p2(z̃)g2(a−1

2 (z̃)t̄2)
}

.

Remark 1. The result in Theorem 2.1 is also valid if some �i, i = 0, 1, 2, 3 are empty sets.

Next, let us consider a special case of Theorem 2.1 that focuses on the locally station-
ary structure of the correlation function of X( · ) in the neighborhood of M∗, which partially
generalizes Theorems 7.1 and 8.1 of [31]. Suppose that

ai(z̃) ≡ ai, z̃ ∈M, i = 1, . . . , n, pj(z̃) ≡ 1, z̃ ∈M, j = 1, 2, 3, (2.9)

E
{
(W(s) − W(t))2

}
=

n∑
i=1

|si − ti|αi and gj(t̄j) =
∑
i∈�j

bit
βi
i , j = 1, 2, 3. (2.10)

These conditions, along with assumptions (A1) and (A2), lead to a natural set of models that
satisfy an additive structure as in (1.4) and (1.5) and were considered by Piterbarg [31]. We
note that in [31] the special cases of purely homogeneous fields, characterized by a constant
variance function where �1 = �2 = �3 =∅, and fields that have a unique maximizer of the
variance function (�0 =∅), are analyzed separately. In the proposition below, we allow mixed
scenarios where all sets �0, �1, �2, �3 
=∅.

Let 
(x) = ∫∞
0 sx−1e−s ds for x > 0. For α ∈ (0, 2], λ > 0 and b > 0, we define Pickands

and Piterbarg constants as

HBα [0, λ] =E
{

supt∈[0,λ] e
√

2Bα(t)−tα
}

, HBα = lim
λ→∞

HBα [0, λ]

λ
,

Pb
Bα [0, λ] =E

{
supt∈[0,λ] e

√
2Bα(t)−(1+b)tα

}
, Pb

Bα = lim
λ→∞ Pb

Bα [0, λ], (2.11)

where Bα is a standard fractional Brownian motion with zero mean and covariance

cov(Bα(s), Bα(t)) = |t|α + |s|α − |t − s|α
2

, s, t ≥ 0.

For properties of Pickands and Piterbarg constants, we refer the reader to [31] and the
references listed therein.

The following proposition straightforwardly follows from Theorem 2.1.

Proposition 2.1. Under the assumptions of Theorem 2.1, if (2.9)–(2.10) hold, then

P
{
supt∈A X(t) > u

}∼ Cu
∑

i∈�0∪�1
2/αi−∑i∈�1

2/βi�(u),

where

C = vk0 (M)

⎛⎝ ∏
i∈�0∪�1

aiHBαi

⎞⎠⎛⎝∏
i∈�1

b−1/βi
i 


(
1

βi
+ 1

)⎞⎠ ∏
i∈�2

Pa
−βi
i bi

Bαi .
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3. Applications

In this section we illustrate our main results by applying Theorem 2.1 to two classes of
Gaussian fields with nonstandard structures of their correlation function.

3.1. The performance table and the largest eigenvalue of the GUE matrix

Let

Zα(t) :=
n+1∑
i=1

ai
(
Bα

i (ti) − Bα
i (ti−1)

)
, t = (t1, . . . , tn), (3.1)

where t0 = 0, tn+1 = 1 and Bα
i , i = 1, . . . , n + 1 are mutually independent fractional Brownian

motions with Hurst index α/2 ∈ (0, 1) and ai > 0, i = 1, . . . , n + 1. We are interested in the
asymptotics of

P
{
Dα

n > u
}= P {supt∈Sn

Zα(t) > u
}

(3.2)

for large u, where Sn = {t ∈Rn : 0 ≤ t1 ≤ · · · ≤ tn ≤ 1}. Without loss of generality, we assume
that maxi=1,...,n+1 ai = 1.

The random variable Dα
n arises in many problems that are important in both theoretical and

applied probability. Specifically, it is closely related to the notion of the performance table.
More precisely, following [6], let w = (wij), i, j ≥ 1 be a family of independent random values
indexed by the integer points of the first quarter of the plane. A monotonous path π from
(i,j) to (i′, j′), i ≤ i′;j ≤ j′;i, j, i′, j′ ∈N is a sequence (i, j) = (i0, j0), (i1, j1), . . . , (il, jl) = (i′, j′)
of length k = i′ + j′ − i − j + 1, such that all lattice steps (ik, jk) → (ik+1, jk+1) are of size one
and (consequently) go to the north or the east. The weight w(π ) of such a path is the sum of
all entries of the array w along the path. We define the performance table l(i, j), i, j ∈N as the
array of largest path weights from (1, 1) to (i, j), that is,

l(i, j) = max
π from (1,1) to (i,j)

w(π ).

If Var(wij) ≡ v > 0 and E
{
wij
}≡ e for all i, j, then

Dn,k := l(n + 1, k) − ke√
kv

converges in law as k → ∞ to D1
n with ai ≡ 1; see [6]. Notably, D1

n has a queueing interpreta-
tion, e.g. in the analysis of departure times from queues in series [16] and plays an important
role in the analysis of noncolliding Brownian motions [17]. Moreover, as observed in [6], if
ai ≡ 1 then D1

n has the same law as the largest eigenvalue of an n-dimensional GUE random
matrix; see [29].

Let

N = {i : ai = 1, i = 1, . . . , n + 1}, N c = {i : ai < 1, i = 1, . . . , n + 1}, m= #N, (3.3)

where #N denotes the cardinal number of N . For k∗ = max{i ∈N } and x = (x1, . . . , xk∗−1,

xk∗+1, . . . , xn+1), we define

W(x) =
√

2

2

∑
i∈N

(Bi(si(x)) − B̃i(si−1(x))) +
√

2

2

∑
i∈N c

ai (Bi(si(x)) − Bi(si−1(x))), (3.4)

https://doi.org/10.1017/apr.2025.10031 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10031


8 L. BAI ET AL.

where Bi, B̃i are independent standard Brownian motions and

si(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi if i ∈N and i < k∗,
i∑

j=max{k∈N :k<i}
xj if i ∈N c and i < k∗,

n+1∑
j=i+1

xj if i ≥ k∗,

with the convention that max∅= 1.
For m given in (3.3), let

HW := lim
λ→∞

1

λm−1
E

{
supx∈[0,λ]n e

√
2W(x)−(

∑n+1
i=1

i 
=k∗
xi)}

. (3.5)

It appears that, for α = 1 and m< n + 1, the field Z1 satisfies (A1) with W as given in (3.4).
Notably, it has stationary increments with respect to the coordinates N while the increments of
W are not stationary with respect to the coordinates N c; see (B.11) in the proof of the following
proposition. Moreover, we have �0 =N , �1 =∅, �2 =N c, �3 =∅.

Proposition 3.1. For Zα defined in (3.1), we have, as u → ∞,

P
{
supt∈Sn

Zα(t) > u
}∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cu((2/α)−1)n�

(
u

σ∗

)
, α ∈ (0, 1),

1

(m− 1)!HWu2(m−1)�(u),α = 1,

m�(u), α ∈ (1, 2),

where σ∗ = (
∑n+1

i=1 a2/(1−α)
i )(1−α)/2 and

C = (HBα )n

(
n∏

i=1

(
a2

i + a2
i+1

)1/α
)

2(1−1/α)n
(

π

α(1 − α)

)n/2

× σ
−(α−2)2n/(1−α)α∗

⎛⎝n+1∑
j=1

∏
i 
=j

a2/(α−1)
i

⎞⎠−1/2

.

Remark 3.1.

(i) If 1 ≤m≤ n, then 1 ≤HW ≤ nm−1 ∏
i∈N c (1 + 2n/(1 − a2

i )).

(ii) If m= n + 1, then HW = 1.

To prove Proposition 3.1, we distinguish three scenarios based on the value of α: α ∈ (0, 1),
α = 1, and α ∈ (1, 2). The cases of α ∈ (0, 1) and α ∈ (1, 2) can be derived from [31, Theorem
8.2], where the maximum variance function of Z1 is attained at a finite number of points.
The case where α = 1 fundamentally differs from the abovementioned cases. This is because,
depending on the values of ai, the maximum of the variance function of Z1 is attained at a set
�0 that has a positive Lebesgue measure of dimension m− 1, with m defined in (3.3), and
the corresponding correlation function is not locally stationary in the vicinity of �0. We apply
Theorem 2.1 in this case. The detailed proofs of Proposition 3.1 and Remark 3.1 are postponed
to Appendix B and Appendix C, respectively.
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3.2. Chi processes

Consider a chi process

χ (t) :=
√√√√ n∑

i=1

X2
i (t), t ∈ [0, 1], (3.6)

where Xi(t), i = 1, . . . , n, are independent and identically distributed (i.i.d.) copies of {X(t),
t ∈ [0, 1]}, a centered Gaussian process with almost surely (a.s.) continuous trajectories.
Suppose that

σX(t) = 1

1 + btα
, t ∈ [0, 1] for b > 0 (3.7)

and

1 corr(X(s), X(t)) ∼ aVar(Y(t) − Y(s)), s, t → 0 for a > 0, (3.8)

where {Y(t), t ≥ 0} is a centered Gaussian process with a.s. continuous trajectories satisfying:
(B1) {Y(t), t ≥ 0} is self-similar with index α/2 ∈ (0, 1) (i.e. for all r > 0,

{Y(rt), t ≥ 0} d= {rα/2Y(t), t ≥ 0}, where
d= means the equality of finite dimensional

distributions) and σY (1) = 1;
(B2) there exist cY > 0 and γ ∈ [α, 2] such that

Var(Y(1) − Y(t)) ∼ cY |1 − t|γ , t ↑ 1.

The class of processes that satisfy conditions (B1) and (B2) includes fractional Brownian
motions, bifractional Brownian motions (see, e.g., [20, 22]), subfractional Brownian motions
(see, e.g., [8, 14]), dual-fractional Brownian motions (see, e.g., [23]) and the time average of
fractional Brownian motions (see, e.g., [13, 23]).

For a Gaussian process Y satisfying (B1) and (B2) and b > 0, we introduce a generalized
Piterbarg constant

Pb
Y = lim

S→∞E
{

supt∈[0,S] e
√

2Y(t)−(1+b)tα
}

∈ (0, ∞). (3.9)

We refer the reader to [13] for the properties of this constant.
The literature on the asymptotics of

P
{
supt∈[0,1] χ (t) > u

}
(3.10)

as u → ∞, focuses on the scenario where Y in (3.8) is a fractional Brownian motion. Then, 1 −
r(s, t) ∼ a|t − s|α as s, t → 0 for some α ∈ (0, 2], which implies that the correlation function
of X is locally homogeneous at 0; see e.g. [19, 28, 30, 32]. In the following proposition, Y
represents a general self-similar Gaussian process that satisfies conditions (B1) and (B2). This
framework allows for locally nonhomogeneous structures of the correlation function of X,
which have not been previously explored in the literature.

The idea of deriving the asymptotics of (3.10) is based on transforming it into the supremum
of a Gaussian random field over a sphere; see [15, 30, 32]. More specifically, we use the fact
that

supt∈[0,1] χ (t) = supt∈[0,1],
∑n

i=1 v2
i =1

n∑
i=1

Xi(t)vi.
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Next, we transform the Euclidean coordinates into spherical coordinates,

v1(θ ) = cos(θ1), v2(θ) = sin(θ1) cos(θ2), . . . , vn(θ) =
n−1∏
i=1

sin(θi),

where θ = (θ1, . . . , θn−1) and θ ∈ [0, π ]n−2 × [0, 2π ). For

Z(θ , t) =
n∑

i=1

Xi(t)vi(θ ), θ ∈ [0, π ]n−2 × [0, 2π ), t ∈ [0, 1], (3.11)

we have

supt∈[0,1] χ (t) = sup(θ ,t)∈E Z(θ , t) with E = [0, π ]n−2 × [0, 2π ) × [0, 1].

Consequently,

P
(
supt∈[0,1] χ (t) > u

)= P (sup(θ ,t)∈E Z(θ , t) > u
)
. (3.12)

Then, it appears that the Gaussian field Z satisfies the assumptions of Theorem 2.1 with W in
(2.2) and (2.3) given by

W(θ, t) =
n−1∑
i=1

B2
i (θi) + √

aY(t), θ ∈Rn−1 ×R+,

where B2
i are independent fractional Brownian motions with index 2 and Y is a self-similar

Gaussian process as described in (3.8) that is independent of B2
i . Importantly, if Y is not a

fractional Brownian motion then W, as defined above, does not have stationary increments
with respect to the coordinate t. Moreover, �0 = {1, . . . , n − 1}, �1 =∅, �2 = {n}, �3 =∅.
An application of Theorem 2.1 leads to the following result.

Proposition 3.2. For χ defined in (3.6) with X satisfying (3.7) and (3.8), we have

P
{
supt∈[0,1] χ (t) > u

}∼ 2(3−n)/2√π


(n/2)
Pa−1b

Y un−1�(u), u → ∞,

where Pa−1b
Y is defined in (3.9).

The proof of Proposition 3.2 is postponed to Appendix D.

4. Proof of Theorem 2.1

The idea of the proof of Theorem 2.1 is based on Piterbarg’s methodology [31] combined
with some refinements developed in [12]. The proof is divided into three steps. In the first step,
we demonstrate that the supremum of X(t) over A is primarily achieved on a specific subset. In
the second step, we divide this subset into smaller hyperrectangles with sizes adjusted accord-
ing to u. Then, we uniformly derive the tail probability asymptotics on each hyperrectangle.
This part of the proof utilizes an adapted version of Theorem 2.1 from [12] (see Lemma 4.1 in
Section 4.1). We first scale the parameter set appropriately to ensure that the rescaled hyper-
rectangles are independent of u. As a result, the scaled processes, denoted by Xu,l( · ), depend
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on both u and the position of the hyperrectangle l (see (4.5) in conjunction with (4.6)). Then
we apply Lemma 4.1 for Xu,l( · ). The upper bound for the analyzed asymptotic probability
is the summation of the asymptotics over the corresponding hyperrectangles. For the lower
bound, we apply the Bonferroni inequality, where the additional summation of the double high
exceedance probabilities of X over all pairs of the hyperrectangles is tightly bounded. Finally,
the third step focuses on summing the asymptotics from the second step to obtain the overall
asymptotics.

We denote by Q and Qi, for i = 1, 2, 3, . . . , positive constants that may vary from line to
line.

4.1. An adapted version of Theorem 2.1 in [12]

In this subsection we present a modified version of Theorem 2.1 from [12], which is crucial
for proving Theorem 2.1. Let Xu,l(t), t ∈ E ⊂Rn, l ∈ Ku ⊂Rm, m ≥ 1 be a family of Gaussian
random fields with variance 1, where E ⊂Rn is a compact set containing 0 and Ku 
=∅.
Moreover, assume that gu,l, l ∈ Ku is a series of functions over E and ul, l ∈ Ku are positive
functions of u satisfying limu→∞ infl∈Ku ul = ∞. To obtain the uniform asymptotics of

P

{
supt∈E

Xu,l(t)
1 + gu,l(t)

> ul

}
with respect to l ∈ Ku, we impose the following assumptions.

(C1) There exists a function g such that

lim
u→∞ supl∈Ku

supt∈E

∣∣∣u2
l gu,l(t) − g(t)

∣∣∣= 0.

(C2) There exists a centered Gaussian random field V(t), t ∈ E with V(0) = 0 such that

lim
u→∞ supl∈Ku

sups,t∈E

∣∣∣u2
l Var(Xu,l(t) − Xu,l(s)) − 2Var(V(t) − V(s))

∣∣∣= 0.

(C3) There exist γ ∈ (0, 2] and C > 0 such that, for sufficiently large u,

supl∈Ku
sups
=t,s,t∈E u2

l
Var(Xu,l(t) − Xu,l(s))∑n

i=1 |si − ti|γ ≤ C.

At the beginning of Section 4, we noted that in the proof of Theorem 2.1 we would deter-
mine the precise asymptotics of the suprema for a collection of appropriately scaled Gaussian
fields Xu,l. The set of assumptions (C1)–(C3) is accommodated to these scaled processes.
In Section 4.2 we demonstrate that (A1) for X guarantees that (C2) and (C3) are uniformly
satisfied for all Xu,l. In addition, (A2) ensures that (C1) holds.

Lemma 4.1. Let Xu,l(t), t ∈ E ⊂Rn, l ∈ Ku be a family of Gaussian random fields with vari-
ance 1, gu,l, l ∈ Ku be functions defined on E and ul, l ∈ Ku be positive constants. If (C1)–(C3)
are satisfied then

lim
u→∞ supl∈Ku

∣∣∣∣∣P
{
supt∈E (Xu,l(t)/(1 + gu,l(t))) > ul

}
�(ul)

−Pg
V (E)

∣∣∣∣∣= 0,

where

Pg
V (E) =E

{
supt∈E e

√
2V(t)−σ 2

V (t)−g(t)
}

.
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4.2. Proof of Theorem 2.1

To simplify notation, we assume, without loss of generality, that �0 = {1, . . . , k0} and �i =
{ki−1 + 1, . . . , ki} for i = 1, 2, 3. Thus, we have M∗ = {t ∈A : ti = 0, i = k0 + 1, . . . , n} and
M= {t̃ : t ∈A, ti = 0, i = k0 + 1, . . . , n}. In the following, we present the proof of Theorem
2.1, postponing some tedious calculations to Appendix A.

4.2.1. Step 1. We divide A into two sets, i.e.

E2(u) = {t ∈A : ti ∈ [0, δi(u)], k0 + 1 ≤ i ≤ n}, δi(u) =
(

ln u

u

)2/βi

, k0 + 1 ≤ i ≤ n,

a neighborhood of M∗, which maximizes the variance of X(t) (with high probability the supre-
mum is realized in E2(u)) and the set A \ E2(u), over which the probability associated with
supremum is asymptotically negligible. For the lower bound, we only consider the process
over

E1(u) ={t ∈A : ti ∈ [0, δi(u)], k0 + 1 ≤ i ≤ k1;ti ∈ [0, u−2/αiλ], k1 + 1 ≤ i ≤ k2;

ti = 0, k2 + 1 ≤ i ≤ k3}, λ > 0,

a neighborhood of M∗.
To simplify notation, for �1, �2 ⊆Rn, let

Pu (�1) := P
{
supt∈�1

X(t) > u
}

, Pu (�1, �2) := P
{
supt∈�1

X(t) > u, supt∈�2
X(t) > u

}
.

For any u > 0, we have

Pu (E1(u)) ≤ Pu (A) ≤ Pu (E2(u)) + Pu (A \ E2(u)). (4.1)

Note that, in light of [31, Theorem 8.1], by (2.4) in assumption (A1) and (2.7) in assumption
(A2), for sufficiently large u,

Pu (A \ E2(u)) ≤Qvn(A)u
∑n

i=1 2/αi�

(
u

1 −Q1(ln u/u)2

)
. (4.2)

4.2.2. Step 2. We divide M into small hypercubes such that⋃
r∈V−

Mr ⊂M⊂
⋃

r∈V+
Mr,

where

Mr =
k0∏

i=1

[riv, (ri + 1)v], r = (r1, . . . , rk0 ), ri ∈Z, 1 ≤ i ≤ k0, v > 0,

and

V+ := {r : Mr ∩M 
=∅}, V− := {r : Mr ⊂M}.
For fixed r, we analyze the supremum of X over a set related to Mr. For this, let

E1,r(u) ={t : t̃ ∈Mr ; ti ∈ [0, δi(u)], k0 + 1 ≤ i ≤ k1 ; ti ∈ [0, u−2/αiλ], k1 + 1 ≤ i ≤ k2 ;

ti = 0, k2 + 1 ≤ i ≤ k3},
E2,r(u) ={t : t̃ ∈Mr ; ti ∈ [0, δi(u)], k0 + 1 ≤ i ≤ n}.
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Moreover, define an auxiliary set

E3,r(u) = {(t̃, t̄1, t̄2) : t̃ ∈Mr, ti ∈ [0, δi(u)], k0 + 1 ≤ i ≤ k2}.
We next focus on Pu(E1,r(u)) and Pu(E2,r(u)). The idea of the proof of this step is first to split
E1,r(u) and E2,r(u) into tiny hyperrectangles and uniformly derive the tail probability asymp-
totics on each hyperrectangle. Then, we apply the Bonferroni inequality to demonstrate that
the asymptotics over Ei,r(u) for i = 1, 2 are the sum of the asymptotics over the corresponding
hyperrectangles, respectively.

To this end, we introduce the following notation. For some λ > 0, let

Iu,i(l) =
[

l
λ

u2/αi
, (l + 1)

λ

u2/αi

]
, l ∈N,

l = (l1, . . . , ln), lj = (lkj−1+1, . . . , lkj), j = 1, 2,

Du(l) =
⎛⎝ k2∏

i=1

Iu,i(li)

⎞⎠×
n∏

i=k2+1

[0, εu−2/αi ],

Cu(l) =
⎛⎝ k1∏

i=1

Iu,i(li)

⎞⎠×
k2∏

i=k1+1

[0, λu−2/αi ] × 03,

with 03 = (0, . . . , 0) ∈Rn−k2 and

Mi(u) =
⌊

vu2/αi

λ

⌋
, 1 ≤ i ≤ k0, Mi(u) =

⌊
δi(u)u2/αi

λ

⌋
, k0 + 1 ≤ i ≤ k2.

In order to derive an upper bound for Pu(E2,r(u)) and a lower bound for Pu(E1,r(u)), we
introduce the following notation for some ε ∈ (0, 1):

L1(u) =
⎧⎨⎩l :

k2∏
i=1

Iu,i(li) ⊂ E3,r(u), li = 0, k1 + 1 ≤ i ≤ n

⎫⎬⎭ ,

L2(u) =
⎧⎨⎩l :

⎛⎝ k2∏
i=1

Iu,i(li)

⎞⎠∩ E3,r(u) 
=∅, li = 0, k1 + 1 ≤ i ≤ n

⎫⎬⎭ ,

L3(u) =
⎧⎨⎩l :

⎛⎝ k2∏
i=1

Iu,i(li)

⎞⎠∩ E3,r(u) 
=∅,

k2∑
i=k1+1

l2i > 0, li = 0, k2 + 1 ≤ i ≤ n

⎫⎬⎭ ,

K1(u) = {(l, j) : l, j ∈L1(u), Cu(l) ∩ Cu(j) 
=∅} ,

K2(u) = {(l, j) : l, j ∈L1(u), Cu(l) ∩ Cu(j) =∅} ,

u−ε
l1

= u

(
1 + (1 − ε) inf

t̄1∈[l1,l1+1]
p−

1,rg1(u−2/α1λt̄1)

)
,

u+ε
l1

= u
(

1 + (1 + ε) supt̄1∈[l1,l1+1] p+
1,rg1(u−2/α1λt̄1)

)
,

p+
j,r = supz̃∈Mr

pj(z̃), p−
j,r = inf

z̃∈Mr
pj(z̃), j = 1, 2, 3.
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The Bonferroni inequality gives, for sufficiently large u,

Pu
(
E1,r(u)

)≥
∑

l∈L1(u)

Pu (Cu(l)) −
2∑

i=1


i(u), (4.3)

Pu
(
E2,r(u)

)≤
∑

l∈L2(u)

Pu (Du(l)) +
∑

l∈L3(u)

Pu (Du(l)), (4.4)

where


i(u) =
∑

(l,j)∈Ki(u)

Pu (Cu(l), Cu(j)) , i = 1, 2.

We first derive the upper bound of Pu
(
E2,r(u)

)
as u → ∞. To this end, we need to find the

upper bounds of
∑

l∈Lj(u) Pu (Du(l)) , j = 2, 3, separately.
Upper bound for

∑
l∈L2(u) Pu (Du(l)). By (2.6) in assumption (A2), we have, for sufficiently

large u,

∑
l∈L2(u)

Pu (Du(l)) ≤
∑

l∈L2(u)

P

{
supt∈Du(l)

X(t)

1 + (1 − ε)p−
2,rg2(t̄2)

> u−ε
l1

}

=
∑

l∈L2(u)

P

{
supt∈E(l,u)

Xu,l(t)

1 + (1 − ε)p−
2,rg2(u−2/α2 (a2(z̃(l, u)))−1 t̄2)

> u−ε
l1

}
,

where

Xu,l(t) = X
(

u−2/α1 (l1λ + (a1(z̃(l, u)))−1t1), . . . , u−2/αn (lnλ + (an(z̃(l, u))−1tn)
)
, (4.5)

with

z̃(l, u) = (u−2/α1 l1, . . . , u−2/αk lk)

and

E(l, u) =
⎛⎝ k2∏

i=1

[0, ai(z̃(l, u))λ]

⎞⎠×
n∏

i=k2+1

[0, ai(z̃(l, u))ε].

Note that by (2.7) in assumption (A2),

u−2g−
2,r(t̄2) ≤ g2(u−2/α2 (a2(z̃(l, u)))−1 t̄2) = u−2g2((a2(z̃(l, u)))−1 t̄2) ≤ u−2g+

2,r(t̄2),

where

g−
2,r(t̄2) = inf

z̃∈Mr
g2((a2(z̃)−1 t̄2), g+

2,r(t̄2) = supz̃∈Mr
g2((a2(z̃)−1 t̄2).

Moreover,

E−
r ⊂ E(l, u) ⊂ E+

r ,
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where

E+
r :=

⎛⎝ k2∏
i=1

[0, a+
i,rλ]

⎞⎠×
n∏

i=k2+1

[0, a+
i,rε], E−

r :=
⎛⎝ k2∏

i=1

[0, a−
i,rλ]

⎞⎠×
n∏

i=k2+1

[0, a−
i,rε]

with

a+
i,r = supz̃∈Mr

ai(z̃), a−
i,r = inf

z̃∈Mr
ai(z̃).

Hence, ∑
l∈L2(u)

Pu (Du(l)) ≤
∑

l∈L2(u)

P

{
supt∈E+

r

Xu,l(t)

1 + (1 − ε)u−2p−
2,rg

−
2,r(t̄2)

> u−ε
l1

}
. (4.6)

Applying Lemma 4.1, we obtain

∑
l∈L2(u)

Pu (Du(l)) ≤ Hp−
2,rg−

2,r(t̄2)
W (

∏k2
i=1 [0, a+

i,rλ])

λk1
vk0�−(u), u → ∞. (4.7)

We refer to Appendix A.1 for the detailed calculations proving (4.7).
Upper bound for

∑
l∈L3(u) Pu (Du(l)). We find a tight asymptotic upper bound for the second

term displayed on the right-hand side of (4.4) using an approach similar to that used in deriving
(4.7). For λ > 1, we get∑

l∈L3(u)

Pu (Du(l)) ≤Q3λ
k2−k1e−Q2λ

β∗
vk0�−(u), u → ∞, (4.8)

where β∗ = mink2
i=k1+1 (βi). The detailed derivation of inequality (4.8) can be found in

Appendix A.2.
Upper bound for Pu(E2,r(u)). The combination of (4.7) and (4.8) yields, for λ > 1 and

u → ∞,

Pu
(
E2,r(u)

)≤
⎛⎝Hp−

2,rg−
2,r(t̄2)

W (
∏k2

i=1 [0, a+
i,rλ])

λk1
+Q3λ

k2−k1 e−Q2λ
β∗
⎞⎠ vk0�−(u). (4.9)

Next, we find a lower bound for Pu(E1,r(u)) as u → ∞. To do this, we need to derive a lower
bound for

∑
l∈L1(u) Pu (Cu(l)) and upper bounds for 
i(u), where i = 1, 2.

Lower bound for
∑

l∈L1(u) Pu (Cu(l)). Analogously to (4.7), we derive, as u → ∞, ε → 0,

∑
l∈L1(u)

Pu (Cu(l)) ≥
Hp+

2,rg+
2,r(t̄2)

W

(∏k2
i=1 [0, a−

i,rλ]
)

λk1
vk0�+(u). (4.10)

Upper bound for 
i(u), i = 1, 2. Applying an approach analogous to that of the proof of
Theorem 8.2 in [31], we have, for λ > 1, as u → ∞,


1(u) ≤Q4λ
−1/2λ2k2−k1 vk0�−(u), (4.11)


2(u) ≤Q5λ
2k2−k1e−Q6λ

α∗
vk0�−(u), (4.12)

where α∗ = max (α1, . . . , αk1 ) and Qi, i = 4, 5, 6 are some positive constants.
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Lower bound for Pu(E1,r(u)). Inserting (4.10), (4.11), and (4.12) into (4.3), we obtain, for
λ > 1, as u → ∞,

Pu(E1,r(u))

≥
(Hp+

2,rg+
2,r(t̄2)

W (
∏k2

i=1 [0, a−
i,rλ])

λk1
−Q4λ

−1/2 −Q5λ
2k2−k1 e−Q6λ

α∗)
vk0�+(u). (4.13)

4.2.3. Step 3. In this step of the proof, we sum up the asymptotics derived in step 2. Set

�1(u) = u
∑k1

i=1 2/αi−∑k1
i=k+1 2/βi�(u).

Letting λ → ∞ in (4.9) and (4.13), it follows that

Pu
(
E1,r(u)

)≥Hp+
2,rg+

2,r(t̄2)
W

k1∏
i=1

a−
i,r

∫
t̄1∈[0,∞)k1−k

e−p+
1,rg1(t̄) dt̄1vk0�1(u),

Pu
(
E2,r(u)

)≤Hp−
2,rg−

2,r(t̄2)
W

k1∏
i=1

a+
i,r

∫
t̄1∈[0,∞)k1−k

e−p−
1,rg1(t̄) dt̄1vk0�1(u). (4.14)

We sum Pu(E1,r(u)) (and Pu(E2,r(u))) with respect to r to obtain a lower bound for Pu(E1(u))
(and an upper bound for Pu(E2(u))). Observe that

Pu (E1(u)) ≥
∑

r∈V−
Pu
(
E1,r(u)

)−
∑

r,r′∈V−,r 
=r′
Pu
(
E1,r(u), E1,r′ (u)

)
, (4.15)

Pu (E2(u)) ≤
∑

r∈V+
Pu
(
E2,r(u)

)
.

By applying (4.14) and demonstrating that the double-sum term in (4.15) is asymptotically
negligible, we obtain

lim inf
u→∞

Pu (E1(u))

�1(u)
≥
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃

(4.16)

and

lim sup
u→∞

Pu (E2(u))

�1(u)
≤
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃,

(4.17)

as v → 0. The detailed derivation of (4.16) and (4.17) is delegated to Appendix A.3.
The proof is completed by combining (4.16) and (4.17) with (4.1) and (4.2).

Appendix A. Complementary derivations for the proof of Theorem 2.1

In this section we provide detailed derivations of (4.7), (4.8), (4.16), and (4.17), and we

prove the positivity of Hg2(t̄2)
W .
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A.1. Proof of (4.7)

We begin with aligning the notation used in Lemma 4.1 with that used in Theorem 2.1. Let
Xu,l be as in (4.5), and let

ul = u−ε
l1

, gu,l(t) = (1 − ε)u−2p−
2,rg

−
2,r(t̄2), Ku =L2(u).

We note that limu→∞ infl∈L2(u) u−ε
l1

= ∞, which combined with continuity of g2 implies that

lim
u→∞ supl∈Ku

supt∈E+
r

∣∣∣u2
l gu,l(t) − (1 − ε)p−

2,rg
−
2,r(t̄2)

∣∣∣= 0.

Therefore, (C1) holds with g(t̄) = (1 − ε)p−
2,rg

−
2,r(t̄2). By (2.2) and (2.3) in assumption (A1),

using the homogeneity of the increments of W for fixed t̄2 and t̄3, we have

lim
u→∞ supl∈Ku

sups,t∈E+
r

∣∣∣u2
l Var(Xu,l(t) − Xu,l(s)) − 2Var(W(t) − W(s))

∣∣∣= 0.

Hence, (C2) is satisfied with the limiting stochastic process W defined in (A1). Assumption
(C3) follows directly from (2.4) in assumption (A1). Therefore, we conclude that

lim
u→∞ supl∈Ku

∣∣∣∣∣P{supt∈E+
r

(Xu,l(t)/(1 + (1 − ε)u−2p−
2,rg

−
2,r(t̄2))) > u−ε

l1
}

�(u−ε
l )

− H(1−ε)p−
2,rg−

2,r(t̄2)
W

(
E+

r
)∣∣∣∣= 0, (A.1)

where

H(1−ε)p−
2,rg−

2,r(t̄2)
W (E+

r ) =E
{

supt∈E+
r

e
√

2W(t)−σ 2
W (t)−(1−ε)p−

2,rg−
2,r(t̄2)

}
.

Therefore, we have, as u → ∞,∑
l∈L2(u)

P
{
supt∈E Xu,l(t) > u−ε

l

}
≤

∑
l∈L2(u)

H(1−ε)p−
2,rg−

2,r(t̄2)
W (E+

r )�(u−ε
l )

≤H(1−ε)p−
2,rg−

2,r(t̄2)
W (E+

r )�(u)

⎛⎝ k0∏
i=1

vu2/αi

λ

⎞⎠
×

k1∑
i=k0+1

Mi(u)∑
li=0

e−(1−ε) inft̄1∈[l1,l1+1] p−
1,rg1(u2/β1−2/α1λt̄1)

∼ H(1−ε)p−
2,rg−

2,r(t̄2)
W (E+

r )

λk1
vk0�(u)u

∑k1
i=1 2/αi−∑k1

i=k0+1 2/βi

×
∫

t̄1∈[0,∞)k1−k0
e−(1−ε)p−

1,rg1(t̄1) dt̄1. (A.2)
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Note that

lim
ε→0

H(1−ε)p−
2,rg−

2,r(t̄2)
W (E+

r ) =E
{

sup
(t̃,t̄1,t̄2)∈∏k2

i=1 [0,a+
i,rλ]

e
√

2W(t̃,t̄1,t̄2,0̄3)−σ 2
W (t̃,t̄1,t̄2,0̄3)−p−

2,rg−
2,r(t̄2)

}

:= Hp−
2,rg−

2,r(t̄2)
W

⎛⎝ k2∏
i=1

[0, a+
i,rλ]

⎞⎠
and by the dominated convergence theorem, it follows that

lim
ε→0

∫
t̄1∈[0,∞)k1−k0

e−(1−ε)p−
1,rg1(t̄) dt̄1 =

∫
t̄1∈[0,∞)k1−k0

e−p−
1,rg1(t̄) dt̄1.

Hence, letting ε → 0 in (A.2), we have

∑
l∈L2(u)

Pu (Du(l)) ≤ Hp−
2,rg−

2,r(t̄2)
W (

∏k2
i=1 [0, a+

i,rλ])

λk1
vk0�−(u), u → ∞, (A.3)

where

�±(u) := �(u)u
∑k1

i=1 2/αi−∑k1
i=k+1 2/βi

∫
t̄1∈[0,∞)k1−k

e−p±
1,rg1(t̄) dt̄1.

A.2. Proof of (4.8)

For sufficiently large u,∑
l∈L3(u)

Pu (Du(l)) ≤
∑

l∈L3(u)

P
{

supt∈Du(l) X(t) > u−ε
l1,l2

}
=

∑
l∈L3(u)

P
{

supt∈E X̃u,l(t) > u−ε
l1,l2

}
,

where

X̃u,l(t) = X(u−2/α1 (l1λ + t1), . . . , u−2/αn (lnλ + tn)), E = [0, λ]k2 × [0, ε]n−k2,

u−ε
l1,l2

= u

(
1 + (1 − ε) inf

t̄1∈[l1,l1+1]
g1(u−2/α1λt̄1) + (1 − ε) inf

t̄2∈[l2,l2+1]
g2(u−2/α2λt̄2)

)
.

Let Zu(t) be a homogeneous Gaussian random field with variance 1 and the correlation function
satisfying

ru(s, t) = e−u−22Q2
∑n

i=1|si−ti|αi . (A.4)

According to (2.4), under assumption (A1) and applying Slepian’s inequality (see [2, Theorem
2.2.1]), we find that, for sufficiently large u,

P
{

supt∈E X̃u,l(t) > u−ε
l1,l2

}
≤ P

{
supt∈E Zu(t) > u−ε

l1,l2

}
, l ∈L3(u).

Similarly as in the proof of (A.1), we have

lim
u→∞ supl∈L3(u)

∣∣∣∣∣P{supt∈E Zu(t) > u−ε
l1,l2

}
�(u−ε

l1,l2
)

−J (E)

∣∣∣∣∣= 0, (A.5)
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where

J (E) =
⎛⎝ k2∏

i=1

HBαi [0, (2Q2)1/αiλ]

⎞⎠⎛⎝ n∏
i=k2+1

HBαi [0, ε(2Q2)1/αiλ]

⎞⎠ .

Hence, using the above asymptotics and (2.7) in assumption (A2),∑
l∈L3(u)

Pu (Du(l))

≤
∑

l∈L3(u)

J (E)�(u−ε
l1.l2

)

≤J (E)�(u)
∑

l∈L3(u)

e−(1−ε) inft̄1∈[l1,l1+1] u2g1(u−2/α1λt̄1)−(1−ε) inft̄2∈[l2,l2+1] u2g2(u−2/α2λt̄2)

≤J (E)�(u)

⎛⎝ k0∏
i=1

vu2/αi

λ

⎞⎠ k1∑
i=k0+1

Mi(u)∑
li=0

e−(1−ε) inft̄1∈[l1,l1+1] g1(u2/β1−2/α1λt̄1)

×
∑

l2k1+1+···+l2k2
≥1,li≥0,k1+1≤i≤k2

e−(1−ε) inft̄2∈[l2,l2+1] g2(u2/β2−2/α2λt̄2).

Moreover, the direct calculation shows that

k1∑
i=k0+1

Mi(u)∑
li=0

e−(1−ε) inft̄1∈[l1,l1+1] g1(u2/β1−2/α1λt̄1)

∼ u
∑k1

i=k0+1 (2/αi−2/βi)
λk0−k1

∫
t̄1∈[0,∞)k1−k0

e−(1−ε)g1(t̄) dt̄1, u → ∞.

Given the assumption (2.7) and the fact that α2 = β2, we find that, for λ > 1,∑
l2k1+1+···+l2k2

≥1,li≥0,k1+1≤i≤k2

e−(1−ε) inft̄2∈[l2,l2+1] g2(u2/β2−2/α2λt̄2)

≤
∑

l2k1+1+···+l2k2
≥1,li≥0,k1+1≤i≤k2

e
−(1−ε)c2,1

∑k2
i=k1+1 (liλ)βi

≤Q3e−Q2λ
β∗

,

where β∗ = mink2
i=k1+1 (βi). In addition,

lim
ε→0

J (E) =
k2∏

i=1

HBαi [0, (2Q2)1/αiλ]

and, for λ > 1,

k2∏
i=1

HBαi [0, (2Q2)1/αiλ] ≤Q3λ
k2 .
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Thus, for λ > 1, ∑
l∈L3(u)

Pu (Du(l)) ≤Q3λ
k2−k1e−Q2λ

β∗
vk0�−(u), u → ∞. (A.6)

A.3. Proof of (4.16) and (4.17)

Note that g+
2,r(t̄2) ∈ G, r ∈ V+ and p2(z̃)g2(a−1

2 (z̃)t̄2) ∈ G, z̃ ∈M with fixed c and β2. Thus,
(A.11) implies that, for any ε > 0, there exists λ0 > 0 such that, for any λ > λ0 > 0 and r ∈ V+
and z̃ ∈M, ∣∣∣∣Hp+

2,rg+
2,r(t̄2)

W −Hp+
2,rg+

2,r(t̄2)
W ([0, λ]k2 )λ−k1

∣∣∣∣< ε,∣∣∣∣Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W −Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W ([0, λ]k2 )λ−k1

∣∣∣∣< ε. (A.7)

Hence, it follows that, as u → ∞ and λ > λ0,∑
r∈V− Pu

(
E1,r(u)

)
�1(u)

≥
∑

r∈V−
Hp+

2,rg+
2,r(t̄2)

W

k1∏
i=1

a−
i,r

∫
t̄1∈[0,∞)k1−k

e−p+
1,rg1(t̄) dt̄1vk0

≥
∫
M

∑
r∈V−

(
(Hp+

2,rg+
2,r(t̄2)

W ([0, λ]k1 )λ−k1 − ε)
k1∏

i=1

a−
i,r

∫
t̄1∈[0,∞)k1−k

e−p+
1,rg1(t̄) dt̄1

)
IMr (z̃) dz̃.

Note that, for any fixed z̃ ∈Mo, where Mo ⊂M is the interior of M,

lim
v→0

∑
r∈V−

⎛⎝(Hp+
2,rg+

2,r(t̄2)
W ([0, λ]k1 )λ−k1 − ε)

k1∏
i=1

a−
i,r

∫
t̄1∈[0,∞)k1−k

e−p+
1,rg1(t̄) dt̄1

⎞⎠ IMr (z̃)

= (Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W ([0, λ]k1 )λ−k1 − ε)

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

≥ (Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W − 2ε)

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

≥Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1, ε → 0.

Moreover, it is clear that there exists Q< ∞ such that, for any λ > 1 and v > 0,⎛⎝(Hp+
2,rg+

2,r(t̄2)
W ([0, λ]k1 )λ−k1 − ε)

k1∏
i=1

a−
i,r

∫
t̄1∈[0,∞)k1−k

e−p+
1,rg1(t̄) dt̄1

⎞⎠ IMr <Q8.
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Consequently, the dominated convergence theorem gives

lim inf
u→∞

∑
r∈V− Pu

(
E1,r(u)

)
�1(u)

≥
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃. (A.8)

Next, we focus on the double-sum term in (4.15). For r ∈ V−, r′ ∈ V−, Mr ∩ Mr′ =∅, we have

Pu
(
E1,r(u), E1,r′ (u)

)≤ P
(

sups∈E1,r,t∈E1,r′ X(s) + X(t) > 2u
)

.

By (2.5) in assumption (A1), there exists 0 < δ < 1 such that, for all r ∈ V−, r′ ∈ V−, Mr ∩
Mr′ =∅,

sups∈E1,r,t∈E1,r′ Var(X(s) + X(t)) < 4 − δ.

According to the Borell-TIS inequality (see, for example, [2, Theorem 2.1.1]), for u > a, we
have

P
(

sups∈E1,r,t∈E1,r′ X(s) + X(t) > 2u
)

≤ e−4(u−a)2/2(4−δ),

where a =E(sups∈A,t∈A X(s) + X(t))/2 =E( supt∈A X(t)). Consequently,∑
r,r′∈V−,Mr∩Mr′=∅

Pu
(
E1,r(u), E1,r′ (u)

)≤Qe−4(u−a)2/2(4−δ) = o(�1(u)), u → ∞.

For r, r′ ∈ V−, r 
= r′, Mr ∩ Mr′ 
=∅,

Pu
(
E1,r(u), E1,r′ (u)

)= Pu
(
E1,r(u)

)+ Pu
(
E1,r′

)− Pu
(
E1,r(u), E1,r′ (u)

)
.

In light of (A.7) and (A.8), we have∑
r,r′∈V−,r 
=r′,Mr∩Mr′ 
=∅

Pu
(
E1,r(u), E1,r′ (u)

)= o(�1(u)), u → ∞, v → 0.

Therefore, we have∑
r,r′∈V−,r
=r′

Pu
(
E1,r(u), E1,r′ (u)

)= o(�1(u)), u → ∞, v → 0,

implying that

lim inf
u→∞

Pu (E1(u))

�1(u)
≥
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃.

Similarly, we can obtain, as v → 0,

lim sup
u→∞

Pu (E2(u))

�1(u)
≤
∫
M

⎛⎝Hp2(z̃)g2(a−1
2 (z̃)t̄2)

W

⎛⎝ k1∏
i=1

ai(z̃)

⎞⎠∫
t̄1∈[0,∞)k1−k

e−p1(z̃)g1(t̄1) dt̄1

⎞⎠ dz̃.
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A.4. Existence of Hg2(t̄2)
W

We follow a similar idea as that used in the proof of Lemmas 7.1 and 8.3 in [31]. Thus, we
present only the main steps of the argument. We assume that

a(z̃) = 1, pj(z̃) = 1, j = 1, 2, 3, z̃ ∈Mr.

Dividing (4.9) and (4.13) by vk0�−(u) and letting u → ∞, we derive that

lim sup
λ→∞

Hg2(t̄2)
W ([0, λ]k2 )

λk1
≤ lim inf

λ→∞
Hg2(t̄2)

W ([0, λ]k2 )

λk1
< ∞.

The positivity of the above limit follows from the same arguments as in [31]. Therefore,

Hg2(t̄2)
W := lim

λ→∞
Hg2(t̄2)

W ([0, λ]k2 )

λk1
∈ (0, ∞). (A.9)

Moreover, using (4.9) and (4.13), we have, for λ > 1,∣∣∣∣∣H
g2(t̄2)
W ([0, λ]k2 )

λk1
−Hg2(t̄2)

W

∣∣∣∣∣≤Q7(λ−1/2 + λ2k2−k1e−Q6λ
α∗ + λk2−k1 e−Q2λ

β∗
). (A.10)

Let G := {g2:g2 is continuous, ug2(t̄2) = g2(u1/β2 t̄2), u > 0, inf∑k2
i=k1+1 |ti|βi=1

g2(t̄2) > c > 0},
where c and β2 are fixed. For any g2 ∈ G, (4.7) and (4.8)–(4.13) are still valid. Hence, (A.10)
also holds. This implies that, for any λ > 1,

supg2∈G

∣∣∣∣∣H
g2(t̄2)
W ([0, λ]k2 )

λk1
−Hg2(t̄2)

W

∣∣∣∣∣≤Q7(λ−1/2 + λ2k2−k1e−Q6λ
α∗ + λk2−k1e−Q2λ

β∗
).

(A.11)

Appendix B. Proof of Proposition 3.1

For Zα(t) introduced in (3.1), we write σ 2
Z for the variance of Zα and rZ for its correla-

tion function. Moreover, let σ∗ = maxt∈Sn σZ(t) and recall that Sn = {0 = t0 ≤ t1 ≤ · · · ≤ tn ≤
tn+1 = 1}. The expansions of σZ and rZ are displayed in the following lemma, which is crucial
for the proof of Proposition 3.1. We skip its proof as it only needs some standard but tedious
calculations.

Lemma B.1. (i) For α ∈ (0, 1), the standard deviation σZ attains its maximum on Sn at only
one point z0 = (z1, . . . , zn) ∈ Sn with zi =∑i

j=1 a2/(1−α)
j /

∑n+1
j=1 a2/(1−α)

j , i = 1, . . . , n, and its

maximum value is σ∗ = (
∑n+1

i=1 a2/(1−α)
i )(1−α)/2. Moreover,

lim
δ→0

supt∈Sn|t−z0|≤δ

∣∣∣∣ 1 − σZ(t)/σ∗
(α(1 − α)(

∑n+1
i=1 a2/(1−α)

i )/4)
∑n+1

i=1 a2/(α−1)
i ((ti − zi) − (ti−1 − zi−1))2

− 1

∣∣∣∣= 0,

(B.1)
with z0 := 0, zn+1 := 1, and

lim
δ→0

sups 
=t,s,t∈Sn
|s−z0|,|t−z0|<δ

∣∣∣∣ 1 − rZ(s, t)

(1/2σ 2∗ )(
∑n

i=1

(
a2

i + a2
i+1

) |si − ti|α)
− 1

∣∣∣∣= 0. (B.2)

https://doi.org/10.1017/apr.2025.10031 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10031


Gaussian random fields with nonadditive dependence structure 23

(ii) For α = 1 and m defined in (3.3), if m= n + 1, σZ(t) ≡ 1, t ∈ Sn, and if m< n + 1,
function σZ attains its maximum equal to 1 on Sn at M= {t ∈ Sn :

∑
j∈N |tj − tj−1| = 1} and

satisfies

lim
δ→0

supz∈M supt∈Sn|t−z|≤δ

∣∣∣∣ 1 − σZ(t)

(1/2)
∑

j∈N c (1 − a2
j )|tj − tj−1|

− 1

∣∣∣∣= 0. (B.3)

In addition, for 1 ≤m≤ n + 1, we have

lim
δ→0

sups
=t,s,t∈Sn
|s−z|,|t−z|<δ

z∈M

∣∣∣∣∣ 1 − rZ(s, t)

(1/2)
∑n+1

i=1 a2
i min (|ti−1 − si−1| + |ti − si| , |ti − ti−1| + |si − si−1|)

− 1

∣∣∣∣∣= 0.

(B.4)

(iii) For α ∈ (1, 2), function σZ attains it maximum on Sn at m points z(j), j ∈N = {i : ai =
1, i = 1, . . . , n + 1}, where z(j) = (0, . . . , 0, 1, 1, . . . , 1) (the first 1 stands at the jth coordi-
nate) if j ∈N and j < n + 1, and z(n+1) = (0, . . . , 0) if n + 1 ∈N . We further have σ∗ = 1 and,
as t → z(j),

lim
δ→0

supt∈Sn
|t−z(j)|≤δ

∣∣∣∣ 1 − σZ(t)

(1/2)(α|tj − tj−1 − 1| −∑
1≤i≤n+1,i 
=j a2

i |ti − ti−1|α)
− 1

∣∣∣∣= 0. (B.5)

Case 1: α ∈ (0, 1). From Lemma B.1(i), it follows that σZ on Sn attains its maximum σ∗ at
the unique point z0 = (z1, . . . , zn) with

zi =
∑i

j=1 a2/(1−α)
j∑n+1

j=1 a2/(1−α)
j

, i = 1, . . . , n.

Moreover, from (B.1) we have, for t ∈ Sn,

1 − σZ(t)
σ∗

∼ α(1 − α)(
∑n+1

i=1 a2/(1−α)
i )

4

×
(

a2/(α−1)
1 (t1 − z1)2 + a2/(α−1)

n+1 (tn − zn)2 +
n∑

i=2

a2/(α−1)
i ((ti − zi) − (ti−1 − zi−1))2

)

as |t − z0| → 0 and from (B.2), for t, s ∈ Sn,

1 − rZ(s, t) ∼ 1

2σ 2∗

(
n∑

i=1

(a2
i + a2

i+1) |si − ti|α
)

as |s − z0| , |t − z0| → 0. Furthermore, we have

E
{

(Zα(s) − Zα(t))2
}

≤ 4
n∑

i=1

|ti − si|α . (B.6)
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Therefore, by [31, Theorem 8.2] we obtain, as u → ∞,

P{supt∈Sn
Zα(t) > u} ∼ (HBα )n

n∏
i=1

(
a2

i + a2
i+1

2σ 2∗

)1/α( u

σ∗

)(2/α−1)n ∫
Rn

e−f (x) dx�

(
u

σ∗

)
,

where

f (x) = α(1 − α)(
∑n+1

i=1 a2/(1−α)
i )

4

×
(

a2/(α−1)
1 x2

1 + a2/(α−1)
n+1 x2

n +
n∑

i=2

a2/(α−1)
i (xi − xi−1)2

)
, x ∈Rn.

A direct calculation demonstrates that

∫
Rn

e−f (x) dx =
(

4π

α(1 − α)

)n/2

σ
−n/(1−α)∗

⎛⎝n+1∑
j=1

∏
i 
=j

a2/(α−1)
i

⎞⎠−1/2

.

This completes the proof of this case.

Case 2: α = 1. First, we consider the case m< n + 1. Let k∗ = max{i ∈N } and denote

N0 = {i ∈N , i < k∗}, N c
0 = {i ∈N c, i < k∗}.

To facilitate our analysis, we make the transformation

xi = ti, i ∈N0, xi = ti − ti−1, i ∈N c,

which implies that x = (x1, . . . , xk∗−1, xk∗+1, . . . , xn+1) ∈ [0, 1]n and

ti = ti(x) =

⎧⎪⎨⎪⎩
xi if i ∈N0,

1 −∑n+1
j=i+1 xj if i ≥ k∗,∑i

j=max{k∈N : k<i} xj if i ∈N c
0 ,

(B.7)

with the convention that max∅= 0. Define Y(x) = Z(t(x)) and S̃n = {x : t(x) ∈ Sn}, with t(x)
given in (B.7). By Lemma B.1(ii) it follows that σY (x), the standard deviation of Y(x), attains
its maximum equal to 1 at

{x ∈ S̃n : xi = 0, if i ∈N c}.

Moreover, let x̃ = (xi)i∈N0 , x̄ = (xi)i∈N c and denote, for any δ ∈ (0, 1/(n + 1)2),

S̃∗
n (δ) =

{
x ∈ S̃n : 0 ≤ xi ≤ δ

(n + 1)2
, if i ∈N c

}
,

M̃= {̃x ∈ [0, 1]m−1 : xi ≤ xj, if i, j ∈N0 and i < j},
M̃(δ) = {̃x ∈ [δ, 1 − δ]m−1 : xj − xi ≥ δ, if i, j ∈N0 and i < j} ⊆ M̃,

S̃n(δ) = {x ∈ S̃∗
n (δ) : x̃ ∈ M̃(δ)}.
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We note that

P
{

supx∈S̃n
Y(x) > u

}
≥ P

{
supx∈S̃n(δ) Y(x) > u

}
, (B.8)

and

P
{

supx∈S̃n
Y(x) > u

}
≤ P

{
supx∈S̃n\S̃∗

n (δ) Y(x) > u
}

+ P
{

supx∈S̃∗
n (δ)\S̃n(δ) Y(x) > u

}
+ P

{
supx∈S̃n(δ) Y(x) > u

}
. (B.9)

By applying Theorem 2.1, we derive the asymptotics of P{supx∈S̃n(δ) Y(x) > u} as u → ∞.
Subsequently, we demonstrate that the other two terms in (B.9) are asymptotically negligible.
We begin with finding the asymptotics of P{supx∈S̃n(δ) Y(x) > u}. First, observe

S̃n(δ) =
{

x : x̃ ∈ M̃(δ), 0 ≤ xi ≤ δ

(n + 1)2
, if i ∈N c

}
,

which is a set satisfying the assumption in Theorem 2.1. Moreover, it follows from (B.3) that

lim
δ→0

supx∈S̃n(δ)

∣∣∣∣∣ 1 − σY (x)

(1/2)
∑

i∈N c (1 − a2
i )xi

− 1

∣∣∣∣∣= 0. (B.10)

Taking t̃ = x̃ and t̄2 = x̄ in Theorem 2.1, (B.10) implies that (A2) holds with g2(x̄) =
1
2

∑
i∈N c (1 − a2

i )xi and p2(̃x) = 1 for x̃ ∈ S̃∗
n (δ). We note that �1 = �3 =∅ in this case.

We next check assumption (A1). To compute the correlation structure, we note that, for
x, y ∈ S̃n(δ) and |x − y| < δ/(n + 1)2, if i ∈N0 then

|xi − yi| + |ti−1(x) − ti−1(y)| < δ

(n + 1)2
+ nδ

(n + 1)2
= δ

n + 1
≤ δ

2

and

|ti(x) − ti−1(x)| =

⎧⎪⎪⎨⎪⎪⎩
|xi − xi−1| ≥ δ if i − 1 ∈N0,∣∣∣∣∣∣xi −

i−1∑
j=max{k∈N : k<i−1}

xj

∣∣∣∣∣∣≥ δ − nδ

(n + 1)2
>

δ

2
if i − 1 ∈N c,

while, if i = k∗ then we have

|tk∗−1(y) − tk∗−1(x)| + |tk∗ (y) − tk∗(x)| < nδ

(n + 1)2
<

δ

2
,

and, for k∗ − 1 ∈N0,

|tk∗(x) − tk∗−1(x)| =
∣∣∣∣∣∣1 −

n+1∑
j=k∗+1

xj − xk∗−1

∣∣∣∣∣∣≥ 1 − (1 − δ) − nδ

(n + 1)2
>

δ

2
,

and, for k∗ − 1 ∈N c,

|tk∗(x) − tk∗−1(x)| =
∣∣∣∣∣∣1 −

n+1∑
j=k∗+1

xj −
k∗−1∑

j=max{k∈N : k<k∗−1}
xj

∣∣∣∣∣∣≥ 1 − (1 − δ) − nδ

(n + 1)2
>

δ

2
.
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Hence, for rY (x, y), the correlation function of Y(x), we derive from Lemma 2(ii) that, for
x, y ∈ S̃n(δ) and |x − y| < δ/(n + 1)2, as δ → 0,

1 − rY (x, y)

= 1 − rZ(t(x), t(y))

∼ 1

2

n+1∑
i=1

a2
i min (|ti−1(y) − ti−1(x)| + |ti(y) − ti(x)| , |ti(y) − ti−1(y)| + |ti(x) − ti−1(x)|)

= 1

2

∑
i∈N

( |ti−1(y) − ti−1(x)| + |ti(y) − ti(x)| )

+ 1

2

∑
i∈N c

a2
i min (|ti−1(y) − ti−1(x)| + |ti(y) − ti(x)| , |ti(y) − ti−1(y)| + |ti(x) − ti−1(x)|)

= 1

2

∑
i∈N0

(|xi − yi| + |ti−1(x) − ti−1(y)|)

+ 1

2
|tk∗−1(x) − tk∗−1(y)| + 1

2

∣∣∣∣∣∣
n+1∑

j=k∗+1

(xj − yj)

∣∣∣∣∣∣
+ 1

2

∑
i∈N c

0

a2
i min (|ti−1(x) − ti−1(y)| + |ti(x) − ti(y)| , xi + yi)

+ 1

2

n+1∑
i=k∗+1

a2
i min

⎛⎝∣∣∣∣∣∣
n+1∑
j=i

(xj − yj)

∣∣∣∣∣∣+
∣∣∣∣∣∣

n+1∑
j=i+1

(xj − yj)

∣∣∣∣∣∣ , xi + yi

⎞⎠ . (B.11)

By (B.7), we have, for any i = 1, . . . , n + 1,

|ti(y) − ti(x)| ≤
n+1∑
i=1
i 
=k∗

|xi − yi|.

Then, for x, y ∈ S̃n(δ) and |x − y| < δ/(n + 1)2 with δ > 0 sufficiently small,

1

2

∑
i∈N0

|xi − yi| ≤ 1 − rY (x, y) ≤Q
n+1∑
i=1
i 
=k∗

|xi − yi|,

implying that (2.4) holds.
Recall that

W(x) =
√

2

2

∑
i∈N

(Bi(si(x)) − B̃i(si−1(x))) +
√

2

2

∑
i∈N c

ai (Bi(si(x)) − Bi(si−1(x))) , (B.12)

where Bi, B̃i are i.i.d. standard Brownian motions and

si(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi if i ∈N0,
i∑

j=max{k∈N : k<i}
xj if i ∈N c

0 ,

n+1∑
j=i+1

xj if i ≥ k∗.
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Direct calculation gives us that E{(W(x) − W(y))2} coincides with (B.11) for any x, y ∈
[0, ∞)n. This implies that (2.2) holds with W given in (B.12) and a(x̃) ≡ 1 for x̃ ∈ M̃(δ).

Using (B.11) and the fact that, for any i = 1, . . . , n, si(x) − si(y) is the absolute value of the
combination of xj − yj, j ∈ {1, . . . , k∗ − 1, k∗ + 1, . . . , n + 1}, we derive that, for a fixed x̄,
the increments of W(x) = W (̃x, x̄) are homogeneous with respect to x̃. In addition, it is easy to
check that (2.5) also holds. Hence, (A1) is satisfied.

Consequently, by Theorem 2.1, as u → ∞, we have

P
{

supx∈S̃n(δ) Y(x) > u
}

∼ vm−1(M̃(δ))HWu2(m−1)�(u), (B.13)

where

HW = lim
λ→∞

1

λm−1
E
{

supx∈[0,λ]n e
√

2W(x)−σ 2
W (x)− 1

2

∑
j∈N c (1−a2

j )xj
}

= lim
λ→∞

1

λm−1
E

⎧⎨⎩supx∈[0,λ]n e

√
2W(x)−(

∑n+1
i=1

i 
=k∗
xi)
⎫⎬⎭ .

We now proceed to the negligibility of the other two terms in (B.9). In light of the Borell-TIS
inequality, we have, as u → ∞,

P
{

supx∈S̃n\S̃∗
n (δ) Y(x) > u

}
≤ exp

(
(u −E( supx∈S̃n\S̃∗

n (δ) Y(x)))2

2(1 − ε)2

)
= o(�(u)), (B.14)

where ε = 1 − supx∈S̃n\S̃∗
n (δ) σY (x). By Slepian’s inequality and Theorem 2.1, we have

P
{

supx∈S̃∗
n (δ)\S̃n(δ) Y(x) > u

}
≤ vm−1

(M̃ \ M̃(δ)
) H̃W1 u2(m−1)�(u)

= o(u2(m−1)�(u)), u → ∞, δ → 0. (B.15)

A combination of the fact that

lim
δ→0

vm−1(M̃(δ)) = vm−1(M̃) = 1

(m− 1)!
with (B.8), (B.9), and (B.13)–(B.15) leads to

P
{
supt∈Sn

Z(t) > u
}= P

{
supx∈S̃n

Y(x) > u
}

∼ 1

(m− 1)!HWu2(m−1)�(u), u → ∞.

Case m= n + 1: for some small ε ∈ (0, 1), define E(ε) = {t ∈ Sn : ti − ti−1 ≥ ε, i =
1, . . . , n + 1}. Thus, we have

P
{
supt∈E(ε) Z(t) > u

}≤ P {supt∈Sn
Z(t) > u

}
≤ P {supt∈Sn\E(ε) Z(t) > u

}+ P {supt∈E(ε) Z(t) > u
}

. (B.16)

Let us first derive the asymptotics of Z over E(ε). For s, t ∈ E(ε), by (B.4) we have

1 − r(s, t) ∼
n∑

i=1

|si − ti| , |t − s| → 0.
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Moreover, it follows straightforwardly that Var(Z(t)) = 1 for t ∈ E(ε) and corr(Z(t), Z(s)) < 1
for any s 
= t and s, t ∈ E(ε). Hence, by [31, Lemma 7.1] we have

P
{
supt∈E(ε) Z(t) > u

}∼ vn(E(ε))u2n�(u) ∼ vn(Sn)u2n�(u), u → ∞, ε → 0. (B.17)

Moreover, by Slepian’s inequality and [31, Lemma 7.1], as u → ∞, ε → 0,

P
{
supt∈Sn\E(ε) Z(t) > u

}≤ vn(Sn \ E(ε))(2HB1Q4)nu2n�(u) = o
(

u2n�(u)
)

. (B.18)

Inserting (B.17) and (B.18) into (B.16), we obtain

P
{
supt∈Sn

Z(t) > u
}∼ 1

n!u2n�(u), u → ∞.

The claim is established by Remark 3.1(ii).

Case 3: α ∈ (1, 2). For s, t ∈ Sn, one can easily check that

rZ(s, t) = E {Zα(t)Zα(s)}
σZ(t)σZ(s)

=
∑n+1

i=1 a2
i E
{
(Bα

i (ti) − Bα
i (ti−1))(Bα

i (si) − Bα
i (si−1))

}
σZ(t)σZ(s)

< 1

if s 
= t. In light of Lemma 2(iii), σZ attains its maximum at m distinct points z(j), j ∈N .
Consequently, by [31, Corollary 8.2], we have

P
{
supt∈Sn

Zα(t) > u
}∼

∑
j∈N

P
{

supt∈�δ,j
Zα(t) > u

}
, u → ∞,

where �δ,j =
{
t ∈ Sn : |t − z(j)

∣∣≤ 1
3 }.

Define Ej(u) := {t ∈ �δ,j : 1 − (ln u/u)2 ≤ tj − tj−1 ≤ 1} � zj. Observe that

P
{

supt∈Ej(u) Zα(t) > u
}

≤ P
{

supt∈�δ,j
Zα(t) > u

}
≤ P

{
supt∈Ej(u) Zα(t) > u

}
+ P

{
supt∈�δ,j\Ej(u) Zα(t) > u

}
.

We first find the exact asymptotics of P{supt∈Ej(u) Zα(t) > u} as u → ∞. Clearly, for any u ∈R,

P
{

supt∈Ej(u) Zα(t) > u
}

≥ P {Zα(zj) > u
}= �(u).

Moreover, for s, t ∈ Sn, there exists a constant c > 0 such that inft∈Sn σZ(t) ≥ 1/
√

2c. Hence,
in light of (B.6) we have

1 − rZ(s, t) ≤ 4c
n∑

i=1

|ti − si|α . (B.19)

Let U2(t), t ∈Rn be a centered homogeneous Gaussian field with continuous trajectories, unit
variance, and the correlation function rU2 (s, t) satisfying

rU2 (s, t) = 1 − exp

(
8c

n∑
i=1

|ti − si|α
)

.
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Set Ẽj(u) = [0, ε1u−2/α]j−1 × [1 − ε1u−2/α, 1]n−j+1 for some constant ε1 ∈ (0, 1). Then it fol-
lows that Ej(u) ⊂ Ẽj(u) for sufficiently large u. By Slepian’s inequality and [31, Lemma 6.1],

P
{

supt∈Ej(u) Zα(t) > u
}

≤ P
{

supt∈Ẽj(u) U2(t) > u
}

∼
(
HBα [0, (8c)1/αε1]

)n
�(u) ∼ �(u)

as u → ∞, ε1 → 0, where

lim
λ→0

HBα [0, λ] = lim
λ→0

E

{
sup

t∈[0,λ]
e
√

2Bα(t)−tα
}

= 1.

Consequently,

P
{

supt∈Ej(u) Zα(t) > u
}

∼ �(u), u → ∞. (B.20)

Note that, for t ∈ Sn,

n+1∑
i=1
i 
=j

a2
i |ti − ti−1|α ≤ ∣∣tj − tj−1 − 1

∣∣ .

Hence, by (B.5), for sufficiently large u,

supt∈�δ,j\Ej(u) σZ(t) ≤ supt∈�δ,j\Ej(u)

(
1 − (1 − ε)(α − 1)

2

∣∣tj − tj−1 − 1
∣∣)

≤ 1 − (1 − ε)(α − 1)

2

(
ln u

u

)2

, (B.21)

where ε ∈ (0, 1) is a constant. In light of (B.19) and (B.21), by [31, Theorem 8.1] we have, for
sufficiently large u,

P
{

supt∈�δ,j\Ej(u) Zα(t) > u
}

≤Q9u2n/α�

(
u

1 − ((1 − ε)(α − 1)/2)(ln u/u)2

)
= o (� (u)), u → ∞,

which combined with (B.20) leads to

P
{

supt∈�δ,i
Zα(t) > u

}
∼ P

{
supt∈Ej(u) Zα(t) > u

}
∼ �(u), u → ∞.

Consequently, with m= #N given in (3.3), we obtain

P
{
supt∈Sn

Zα(t) > u
}∼

∑
j∈N

P
{

supt∈�δ,j
Zα(t) > u

}
∼m�(u), u → ∞.

This completes the proof. �
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Appendix C. Proof of Remark 3.1

(i) For the 1 ≤m≤ n case, we first show that HW ≥ 1. Recall that N0 = {i ∈N , i < k∗},
N c = {i : ai < 1, i = 1, . . . , n + 1} and x̃ = (xi)i∈N0 .

For xi = 0, i ∈N c, by the definition of W in (3.4), we have⎧⎨⎩√
2W(x) −

n+1∑
i=1,i 
=k∗

xi, x̃ ∈ [0, λ]m−1

⎫⎬⎭ d=
⎧⎨⎩∑

i∈N0

√
2Bi(xi) −

∑
i∈N0

xi, x̃ ∈ [0, λ]m−1

⎫⎬⎭ .

Hence,

HW ≥ lim
λ→∞

1

λm−1
E
{

sup̃x∈[0,λ]m−1 e
∑

i∈N0

√
2Bi(xi)−∑i∈N0

xi
}

=
∏

i∈N0

HBi ,

where HBi is defined in (2.11). Note that HBi = 1; see e.g. [31] (or [4]). Therefore, HW ≥ 1.
We next derive the upper bound of HW for 1 ≤m≤ n. We use the notation introduced in the
proof of Proposition 3.1(ii) (specifically, Y and S̃n(δ)). For δ ∈ (0, 1/(n + 1)2), let

A(δ) =
{

x : x̃ ∈ B(δ), 0 ≤ xi ≤ δ

(n + 1)2
, if i ∈N c

}
,

where B(δ) =∏m−1
i=1 [2iδ, (2i + 1)δ]. Clearly, A(δ) ⊂ S̃n(δ). Moreover, by (B.11) it follows that,

for any ε > 0, there exists δ ∈ (0, 1/(n + 1)2) such that, for any x, y ∈ A(δ),

1 − rY (x, y) ≤ (n + ε)
n+1∑
i=1
i 
=k∗

|xi − yi| .

Let us introduce a centered homogeneous Gaussian field U4(x), x ∈ [0, ∞)n with continuous
trajectories, unit variance, and the correlation function

rU4 (x, y) = exp
(
−E

{
(W4(x) − W4(y))2

})
, with W4(x) = √

n + ε

n+1∑
i=1
i 
=k∗

Bi(xi),

where Bi, i = 1, . . . , k∗ − 1, k∗ + 1, n + 1 are i.i.d. standard Brownian motions. By (B.10)
and Slepian’s inequality, we have, for 0 < ε < 1,

P

{
supx∈A(δ)

U4(x)

1 +∑
i∈N c ((1 − a2

i )/(2 − ε))xi
> u

}
≥ P {supx∈A(δ) Y(x) > u

}
.

Analogously to (B.13), we have

P
{
supx∈A(δ) Y(x) > u

}∼ vm−1 (B(δ))HWu2(m−1)�(u)

and

P

{
supx∈A(δ)

U4(x)

1 +∑
i∈N c ((1 − a2

i )/(2 + ε))xi
> u

}
∼ vm−1 (B(δ))HW4 u2(m−1)�(u),
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where

HW4 = lim
λ→∞

1

λm−1
E

⎧⎨⎩supx∈[0,λ]n e

√
2(n+ε)

∑n+1
i=1

i 
=k∗
Bi(xi)−(n+ε)

∑n+1
i=1

i 
=k∗
xi−∑i∈N c ((1−a2

i )/(2−ε))xi

⎫⎬⎭
= (n + ε)m−1

⎛⎝∏
i∈N0

HBi

⎞⎠ ∏
i∈N c

P (1−a2
i )/(2−ε)(n+ε)

Bi
,

with Pc
Bi

for c > 0 being defined in (2.11). Using the fact that HBi = 1 and, for c > 0, Pc
Bi

=
1 + 1/c (see, e.g., [4]), we have

HW4 = (n + ε)m−1
∏

i∈N c

(
1 + (2 + ε)(n + ε)

1 − a2
i

)
.

Hence,

HW ≤HW4 = (n + ε)m−1
∏

i∈N c

(
1 + (2 + ε)(n + ε)

1 − a2
i

)
.

We establish the claim by letting ε → 0.
(ii) If m= n + 1, we have N0 = {1, . . . , n} and

HW = lim
λ→∞

1

λn
E
{

sup̃x∈[0,λ]n e
∑

i∈N0

√
2Bi(xi)−∑i∈N0

xi
}

=
∏

i∈N0

HBi = 1.

This completes the proof. �

Appendix D. Proof of Proposition 3.2

Let us recall that by (3.12)

P
(
supt∈[0,1] χ (t) > u

)= P (sup(θ ,t)∈E Z(θ , t) > u
)
,

with Z(θ , t) defined in (3.11).
Observe that, for 0 < ε < π/4,

P
(

sup(θ ,t)∈E1,ε
Z(θ , t) > u

)
≤ P (sup(θ ,t)∈E Z(θ , t) > u

)
≤

3∑
i=1

P
(

sup(θ ,t)∈Ei,ε
Z(θ , t) > u

)
, (D.1)

where

E1,ε = [ε, π − ε]n−2 × [0, 2π − ε) × [0, ε],

E2,ε = [0, π ]n−2 × [0, 2π ) × [ε, 1],

E3,ε = E/(E1,ε ∪ E2,ε).
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In the rest of the proof, we apply Theorem 2.1 to obtain the asymptotics over E1,ε . Then, using
the Borell-TIS inequality and Slepian’s inequality respectively, we find tight upper bounds of
the exceedance probabilities over E2,ε and E3,ε . Finally, we combine all the obtained results to
show the asymptotics over the whole set.

The asymptotics over E1,ε . To this end, we analyze the variance and correlation of Z. By
(3.7), we have

σZ(θ, t) = 1

1 + btα
, t ∈ [0, 1]. (D.2)

Hence, σZ(θ , t) attains its maximum equal to 1 at [0, π ]n−2 × [0, 2π ) × {0} and

lim
δ↓0

supθ∈[0,π ]n−2×[0,2π ),0<t<δ

∣∣∣∣1 − σZ(θ , t)

btα
− 1

∣∣∣∣= 1.

This implies that assumption (A2) is satisfied. For assumption (A1), by (3.8), we have

1 − corr(Z(θ , t), Z(θ ′, t′))

∼ aVar(Y(t) − Y(t′)) + 1

2

n∑
i=1

(vi(θ ) − vi(θ
′))2

∼ aVar(Y(t) − Y(t′)) + (θ1 − θ ′
1)2

2
+ 1

2

n−1∑
i=2

⎛⎝i−1∏
j=1

sin (θj)

⎞⎠2

(θi − θ ′
i )

2

as (θ, t), (θ ′, t′) ∈ E and |t − t′|, |θ − θ ′| → 0. Let

W(θ, t) =
n−1∑
i=1

B2
i (θi) + √

aY(t), θ ∈Rn−1 ×R+, (D.3)

where B2
i are independent fractional Brownian motions with index 2 and Y is a self-similar

Gaussian process, as defined in (3.8), that is independent of B2
i . Moreover, let a(ϕ) =

(a1(ϕ), . . . , an−1(ϕ)), ϕ ∈ [0, π ]n−2 × [0, 2π ) with

a1(ϕ) = 1√
2

and ai(ϕ) = 1√
2

i−1∏
j=1

sin (ϕj), i = 2, . . . , n − 1.

It follows that, for 0 < ε < π/4,

lim
δ↓0

supϕ∈[ε,π−ε]n−2×[0,2π )
(θ ,t),(θ ′,t′)∈E,|(θ ,t)−(ϕ,0)|,|(θ ′,t′)−(ϕ,0)|<δ

∣∣∣∣∣∣ 1 − corr(Z(θ, t), Z(θ ′, t′))

E
{(

W(a(ϕ)θ , t) − W(a(ϕ)θ ′, t′)
)2} − 1

∣∣∣∣∣∣= 0.

By the fact that

Var(W(θ, t) − W(θ ′, t′)) = aVar(Y(t) − Y(t′)) +
n−1∑
i=1

(θi − θ ′
i )

2, (D.4)
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we know that W(θ, t) is homogeneous with respect to θ if t is fixed. This implies that (2.2)
holds with W defined in (D.3).

Moreover, by self-similarity of Y and (D.4) we have

Var(W(u−1θ , u−2/αt) − W(u−1θ ′, u−2/αt′)) = u−2Var(W(θ, t) − W(θ ′, t′)),

showing that (2.3) holds with αi = 2, i = 1, . . . , n − 1, and αn = α. In addition, by (B1) and
(B2), there exists d > 0 such that, for |θ, t) − (θ ′, t′)| < δ with (θ , t), (θ ′, t′) ∈ E1,ε ,

Q1

n−1∑
i=1

(θi − θ ′
i )

2 ≤ 1 − corr(Z(θ, t) ≤Q2

(
|t − t′|α +

n−1∑
i=1

(θi − θ ′
i )

2

)
.

Hence, (2.4) is confirmed. Moreover, (2.5) is clearly satisfied over E1,ε . Therefore, (A1) is
verified for Z over E1,ε . Note that, for Z over E1,ε , we are in the case of �0 = {1, . . . , n − 1},
�1 =∅, �2 = {n}, and �3 =∅ of Theorem 2.1. Consequently, it follows from Theorem 2.1
that, as u → ∞,

P
(

sup(θ ,t)∈E1,ε
Z(θ , t) > u

)
∼Hbtα

W

∫
θ∈[ε,π−ε]n−2×[0,2π−ε]

∏
i∈�0

|ai(θ)| dθu
∑

i∈�0
2/αi�(u)

=Hbtα
W

∫
θ∈[ε,π−ε]n−2×[0,2π−ε]

2−(n−1)/2
n−1∏
i=1

| sin (θi)|n−i−1 dθ1 . . . dθn−1un−1�(u),

where W is given in (D.3).
Upper bound for the asymptotics over E2,ε . By (D.2), there exists 0 < δ < 1 such that

sup(θ ,t)∈E2,ε
Var(Z(θ , t)) ≤ 1 − δ.

It follows from the Borell-TIS inequality that, as u → ∞,

P( sup(θ ,t)∈E2,ε
Z(θ , t) > u) ≤ exp

(
− (u −E{sup(θ ,t)∈E2,ε

Z(θ , t)})2

2(1 − δ)

)
= o(un−1�(u)).

Upper bound for the asymptotics over E3,ε . Direct calculation shows that

1 − corr(Z(θ , t) ≤Q2

(
|t − t′|α +

n−1∑
i=1

(θi − θ ′
i )

2

)
holds for (θ , t), (θ ′, t′) ∈ E3,ε . Define U3(θ, t), (θ, t) ∈Rn to be a centered homogeneous
Gaussian field with continuous trajectories, unit variance, and the correlation function
rU3 (θ, t, θ ′, t′) satisfying

rU3 (θ , t, θ ′, t′) = 1 − exp

(
−2Q2

(
|t − t′|α +

n−1∑
i=1

(θi − θ ′
i )

2

))
.

By Slepian’s inequality and Theorem 8.2 in [31], we have

P
(

sup(θ ,t)∈E3,ε
Z(θ , t) > u

)
≤ P

(
sup(θ ,t)∈E3,ε

U3(θ , t)

1 + btα
> u

)
≤Qvn(E3,ε)un−1�(u), u → ∞.
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Noting that limε→0 vn(E3,ε) = 0, the combination of the above asymptotics and upper
bounds leads to

P
(
sup(θ ,t)∈E Z(θ , t) > u

)
∼Hbtα

W

∫
θ∈[0,π ]n−2×[0,2π )

2−(n−1)/2
n−1∏
i=1

| sin (θi)|n−i−1 dθ1 . . . dθn−1un−1�(u), u → ∞.

By the fact that ∫
θ∈[0,π ]n−2×[0,2π )

n−1∏
i=1

| sin (θi)|n−i−1 dθ1 . . . dθn−1 = 2πn/2


(n/2)
,

and Hbtα
W =Pb√

aY
(HB2 )n−1 =Pa−1b

Y π−(n−1)/2, where we used the fact that HB2 = π−1/2, we
have

P
(
sup(θ ,t)∈E Z(θ , t) > u

)∼ 2(3−n)/2√π


(n/2)
Pa−1b

Y un−1�(u), u → ∞.
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[13] DĘBICKI, K. AND Tabiś, K. (2020). Pickands-Piterbarg constants for self-similar Gaussian processes. Probab.

Math. Statist. 40, 297–315.
[14] DZHAPARIDZE, K. AND ZANTEN, H. (2004). A series expansion of fractional Brownian motion. Probab.

Theory Relat. Fields 130, 39–55.
[15] FATALOV, V. (1993). Asymptotics of large deviation probabilities for Gaussian fields: Applications. Izvestiya

Natsionalnoi Akademii Nauk Armenii 28, 25–51.
[16] GLYNN, P. AND WHITT, W. (1991). Departures from many queues in series. Ann. Appl. Probab. 546–572.
[17] GRABINER, D. (1999). Brownian motion in a Weyl chamber, non-colliding particles, and random matrices.

Annales de l’IHP Probabilités et Statistiques 35, 177–204.
[18] GRAVNER, J., TRACY, C. AND WIDOM, H. (2001). Limit theorems for height fluctuations in a class of discrete

space and time growth models. J. Stat. Phys. 102, 1085–1132.
[19] HASHORVA, E. AND JI, L. (2015). Piterbarg theorems for chi-processes with trend. Extremes 18, 37–64.
[20] HOUDRÉ, C. AND VILLA, J. (2003). An example of infinite dimensional quasi-helix. In Stochastic Models

(Mexico City, 2002), Contemporary Mathematics, Vol. 336. American Mathematical Society, pp. 195–202.
[21] LEDOUX, M. (1996). Isoperimetry and Gaussian Analysis. Springer Berlin Heidelberg, Berlin, Heidelberg.
[22] LEI, P. AND NUALART, D. (2009). A decomposition of the bifractional Brownian motion and some

applications. Statist. Probab. Lett. 79, 619–624.
[23] LI, W. AND SHAO, Q. (2004). Lower tail probabilities for Gaussian processes. Ann. Probab. 32, 216–242.
[24] LIFSHITS, M. (2013). Gaussian Random Functions, Vol. 322. Springer, Dordrecht.
[25] LINDGREN, G. (1980). Extreme values and crossing for the chi-square processes and other functions of

multidimensional Gaussian process, with reliability applications. Adv. Appl. Probab. 12, 746–774.
[26] LIU, P. (2016). Extremes of Gaussian random fields with maximum variance attained over smooth curves.

arXiv preprint arXiv:1612.07780.
[27] LIU, P. AND JI, L. (2016). Extremes of chi-square processes with trend. Probab. Math. Statist. 36, 1–20.
[28] LIU, P. AND JI, L. (2017). Extremes of locally stationary chi-square processes with trend. Stoch. Process. Appl.

127, 497–525.
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