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Abstract
Systematic reviews (SRs) synthesize evidence through a rigorous, labor-intensive, and costly process. To accelerate
the title–abstract screening phase of SRs, several artificial intelligence (AI)-based semi-automated screening tools
have been developed to reduce workload by prioritizing relevant records. However, their performance is primarily
evaluated for SRs of intervention studies, which generally have well-structured abstracts. Here, we evaluate
whether screening tool performance is equally effective for SRs of prognosis studies that have larger heterogeneity
between abstracts. We conducted retrospective simulations on prognosis and intervention reviews using a screening
tool (ASReview). We also evaluated the effects of review scope (i.e., breadth of the research question), number
of (relevant) records, and modeling methods within the tool. Performance was assessed in terms of recall (i.e.,
sensitivity), precision at 95% recall (i.e., positive predictive value at 95% recall), and workload reduction (work
saved over sampling at 95% recall [WSS@95%]). The WSS@95% was slightly worse for prognosis reviews
(range: 0.324–0.597) than for intervention reviews (range: 0.613–0.895). The precision was higher for prognosis
(range: 0.115–0.400) compared to intervention reviews (range: 0.024–0.057). These differences were primarily
due to the larger number of relevant records in the prognosis reviews. The modeling methods and the scope of the
prognosis review did not significantly impact tool performance. We conclude that the larger abstract heterogeneity
of prognosis studies does not substantially affect the effectiveness of screening tools for SRs of prognosis. Further
evaluation studies including a standardized evaluation framework are needed to enable prospective decisions on
the reliable use of screening tools.

Highlights
What is already known?
• The conduct of SRs can be accelerated by AI-based semi-automated screening tools in which active learning

and machine learning are combined to prioritize potentially relevant abstracts.
• Previous studies using such tools have already shown substantial workload reductions in title–abstract

screening. However, these tools are most often tested for reviews of intervention studies.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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What is new?

• We evaluated the performance of a screening tool for SRs of prognosis studies as the larger heterogeneity
between abstracts of prognosis studies could negatively affect the tool performance.

• The performance of the tool was only slightly decreased for prognosis reviews compared to intervention
reviews. The scope of the review research question and modeling methods within the tool only slightly
affected the screening tool performance, while the effect of the number of (relevant) records in the dataset
was strongly related to tool performance.

Potential impact for RSM readers

• With this study, we demonstrate that screening tools are almost equally effective for prognosis reviews as
compared to intervention reviews.

• We also gained insight into some additional characteristics of reviews and/or tool settings that affect tool
performance. These insights in the context in which tools may perform well could eventually enable users
to prospectively decide the suitability of tool use for a given review.

1. Introduction

Systematic reviews (SRs) and clinical guidelines form an essential part of evidence-based medicine by
presenting thorough literature searches to collect and summarize all relevant primary studies to answer
a given research question. It is essential to maximize the sensitivity of the literature search to reduce
the amount of bias in the conclusions of the review or guideline. Hereto, a broad literature search in
electronic databases is typically applied, frequently resulting in large numbers of records that need to
be screened for relevance, first by title–abstract screening followed by full text screening. Conducted
manually, this process is error prone, labor-intensive, and time-consuming, with the average review
taking 1–2 years until completion.1 Moreover, as new evidence emerges faster by the increasing number
of studies that are published each year,2 a SR or guideline may already be outdated by the time it is
published.3

After one of the first attempts to accelerate the screening process with automated classification of
titles and abstracts by Cohen et al.4 many artificial intelligence (AI)-based (semi-)automated screening
tools and algorithms have been developed.5 These screening tools combine feature extraction models
that draw relevant features from the titles and abstracts with classification models that subsequently
use these features to predict probabilities of relevance for each study. In practice, such tools are
implemented either fully automated by providing the user with a binary outcome label (i.e., “relevant”
or “irrelevant”) for each of the records or, most often, semi-automated by not dichotomizing but rather
ranking or prioritizing the records based on the predicted probability of relevance.6 In the latter, records
are ranked according to the predicted relevance, and researchers screen the records in that order. The
screening tool is iteratively retrained by the decisions that the researcher makes, and the records are
reranked accordingly. This is also called “active learning” and can be divided into certainty based (in
which the researcher is first presented with the records that the algorithm is most certain about) and
uncertainty sampling (in which the algorithm presents the records that it is least certain about).7 By
using this procedure, semi-automated screening tools can have one of several functions such as (1)
increasing rate of screening and/or improving workflow by prioritizing relevant records, (2) functioning
as a second screener, and (3) reducing the number of records to screen by excluding records predicted
to be irrelevant.5 Currently, most tools are semi-automatic and mainly function as a second screener or
as improvement of workflow by prioritization during manual screening.7

Performance evaluations of semi-automated screening tools have shown an average workload reduc-
tion of about 50%, but this varies greatly across contexts.6,8 This heterogeneity in tool performance
is presumably related to factors such as the tool and its modeling methods,9 number of records to
be screened for the review,6,10 number of labeled records used for training the models within the
tool,8,11 complexity/breadth of the research question,12,13 abstract structure and coherence,14 number of
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relevant records,8,15 review type (e.g., intervention, prognosis, or diagnosis), and/or medical topic .15,16

However, the validation of a semi-automated screening tool is often based on performance evaluations
with only one or just a few SRs,10 and each evaluation study uses different methods as there is no
standardized way for evaluation.5 Therefore, it is difficult to make valid comparisons across evaluation
studies to assess the effect of aforementioned factors on tool performance and to subsequently decide
prospectively whether tool use is suitable in a given setting.

Within the medical field, tools have mostly been validated on (therapeutic or preventive) intervention
reviews, especially concerning randomized clinical trials (RCTs). For RCTs, there is typically better
adherence to strict abstract reporting guidelines,11 as compared to, for example, prognosis and diagnosis
studies. Therefore, poor generalizability of performance to these types of studies is expected.17 For
diagnostic test accuracy reviews, for example, it was already suspected that the unreliable identification
of eligible records by semi-automated screening was caused by the inconsistent terminology used in
the abstracts of these studies.12 Similarly, reports of prognosis studies are even more variable, and this
heterogeneity between abstracts can even further increase for prognosis reviews that have topics with
broader scopes (i.e., a broader research question to be answered by the review). For such broad scopes,
a broader search strategy is typically applied, resulting in a larger number and a larger variability in
retrieved records. In such cases, the algorithms of the tools may have more difficulty to find the features
needed to predict a probability of relevance. At the same time, prognosis reviews generally have more
records to be screened based on the search strategy,13 and the potential workload reduction that can be
obtained by using a semi-automated tool for these reviews is thereby higher.

We evaluated whether the performance of title–abstract screening methods is equally sufficient for
SRs of prognosis studies compared to intervention studies. We illustrate this by using a currently
available screening tool as a case study. Additionally, we investigated whether factors such as the scope
of the review, the number of (relevant) records of the review, and the modeling methods used in the
tool contribute to performance differences between these review types.

2. Methods

2.1. Title–abstract screening tool

From the currently available AI-based semi-automated screening tools for title–abstract screening, the
ASReview tool15 (hereafter called the screening tool) was chosen to compare the performance of semi-
automated ranking algorithms when applied to SRs of prognosis and intervention studies. As a free,
open-source tool based on Python, it allows researchers to flexibly conduct large amounts of simulations
on screening tool use in contrast to other tools that are not open source. The tool has been evaluated for
previous reviews including reviews within the medical domain.16 Several options are offered by the tool
to perform simulation studies on labeled review datasets, with different feature extraction, classification,
and query models among others to be chosen by the user. The classification models include methods
such as support vector machines (SVMs) and naive Bayes (NB) that are also incorporated in other
commonly used screening tools (such as AbstrackR,18 DistillerAI,19 EPPI-Reviewer,20 and Rayyan21)
and could thereby give an indication of the performance of the algorithms within these tools as well. By
using a labeled dataset and the chosen modeling methods, the screening tool conducts active learning
in which the models are iteratively retrained to predict probabilities of relevance based on the titles
and abstracts of the records and uses these probabilities to rank and prioritize the records to the user
accordingly (Figure 1).

2.2. Datasets

To evaluate the performance of the screening tool, retrospective simulations were performed using
a convenience sample of manually screened datasets of previously published prognosis (n = 6) and
intervention reviews (n = 6) (Table 1). The reviews consist of a range of different topics and the
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REVIEW DATASETS
(n = 12)

ORIGINAL ADAPTED

50 relevant/
500 records

50 relevant/
1000 records

50 relevant/
2000 records

MODELING METHODS

FEATURE EXTRACTOR & CLASSIFIER

sBERT & LR
sBERT & SVM
TF-IDF & LR
TF-IDF & NB
TF-IDF & SVM

Initial training set

Records with highest probability

(10 new records each time)

Remaining records

per modeling method

Simulated

200 times

ACTIVE LEARNING
SIMULATION

ITERATE BETWEEN TRAINING, (RE)RANKING RELEVANCE PREDICTIONS OF THE

REMAINING RECORDS, AND UPDATING OF MODELS WITH NEW RECORDS

S

SCREENING TOOL

per dataset

varying numbers of (relevant) records/
scope breadth

MODELING METHODS

FEATURE EXTRACTOR & CLASSIFIER

TF-IDF & NB

per dataset

Training set

(10 relevant & 10 non-relevant records)

(re)ranked from highest to lowest probability of relevance

Figure 1. Overview of the active learning simulations that were conducted to evaluate the performance
of a title–abstract screening tool. The scope breadth of the datasets, the modeling methods, and the
number of (relevant) records were varied.
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Table 1. Description of the review datasets used for evaluating the performance of a semi-automated title–abstract screening tool.

Review Total records

Relevant
records

(title–abstract
screening) (%)

Final included
records (full

text screening) Reference Title
Prognosis reviews

1a 2,482 312 (12.6) 152 Andaur Navarro
et al.22

Completeness of reporting of clinical prediction models
developed using supervised machine learning: a
systematic review

2c 777 91 (11.7) 38 Damen et al.23 Performance of the Framingham risk models and pooled
cohort equations for predicting 10-year risk of
cardiovascular disease: a systematic review and
meta-analysis

3a 4,871 347 (7.1) 146 Heus et al.24 Poor reporting of multivariable prediction model studies:
towards a targeted implementation strategy of the
TRIPOD statement

4b 4,274 377 (8.8) 88 Pladet et al.25 Prognostic models for mortality risk in patients requiring
ECMO

5b 10,664 953 (8.9) 114 Takada et al.26 Prognostic models for radiation-induced complications
after radiotherapy in head and neck cancer patients

6c 3,999 1,064 (26.6) 107 Vernooij et al.27 The comparative and added prognostic value of
biomarkers to the Revised Cardiac Risk Index for
preoperative prediction of major adverse cardiac
events and all-cause mortality in patients who undergo
noncardiac surgery

(Continued)
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Table 1. (Continued).

Review Total records

Relevant
records

(title–abstract
screening) (%)

Final included
records (full

text screening) Reference Title
Intervention reviews

1 9,160 54 (0.6) 25 Arikpo et al.28* Educational interventions for improving primary
caregiver complementary feeding practices for
children aged 24 months and under

2 12,319 88 (0.7) 81 Chen et al.29* First-line drugs inhibiting the renin angiotensin system
versus other first-line antihypertensive drug classes for
hypertension

3 2,815 37 (1.3) 10 Ijaz et al.30* Psychological therapies for treatment-resistant
depression in adults

4 3,874 52 (1.3) 12 Kahale et al.31* Anticoagulation for people with cancer and central
venous catheters

5 8,867 23 (0.3) 9 Kaufman
et al.32*

Face-to-face interventions for informing or educating
parents about early childhood vaccination

6 5,392 112 (2.1) 68 Solomon
et al.33*

Anti-vascular endothelial growth factor for neovascular
age-related macular degeneration

A1
(Supplementary
Material)

3,574 11 (0.3) 8 Kahn et al.34* Interventions for implementation of thromboprophylaxis
in hospitalized patients at risk for venous
thromboembolism

* Retrieved from https://github.com/CLEF-TAR/tar/tree/master/2019-TAR/Task2.
a–c From broad to moderate to narrow review scope (i.e., the breadth of the research question of the review).
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number of records to be screened. The intervention review datasets are publicly available as being
part of the Conference and Labs of the Evaluation Forum 2019 (CLEF 2019) challenge,35 and for the
current study, a selection was made of the intervention reviews with the largest number of records
(ranging from 2,815 to 12,319 records) to match (and reduce the potential effect of) the larger size
of prognosis reviews (ranging from 777 to 10,664 records). Since the intervention review by Kahn
et al. (2018) did not have enough relevant records to run simulations with default settings (as described
under “Simulations”), the results for this review were not included in the main analysis but can be
found in the Supplementary Material instead (Part IV: Figure A3 and Table A8 in the Supplementary
Material).

Each of the datasets consists of records with manually labeled relevant/irrelevant labels based on title
and abstract screening, which were used as the reference standard. The percentages of the manually
included relevant records were generally low for the six intervention reviews (ranging from 0.3 to
2.1% of all screened records), while for prognosis reviews, the percentages were much higher (ranging
from 7.1 to 26.6%). In addition to the division into review type (prognosis vs intervention), a further
subdivision based on the scope of the review (i.e., breadth of the research question) was made for
prognosis reviews to further examine the effect of abstract heterogeneity on screening tool performance.
The scopes of the prognosis reviews could be roughly divided into: (A) broad scope reviews that had no
restrictions for the population, outcome, or prediction model (prognosis reviews 1 and 3), (B) moderate
scope reviews that had restrictions for population and outcome but not for prediction model (prognosis
reviews 4 and 5), and (C) narrow scope reviews that had restrictions for the population, outcome, and
prediction model (prognosis reviews 2 and 6).

2.3. Simulations

The title–abstract screening process was simulated with the datasets of these 12 reviews. To initiate a
simulation, a predefined number of 10 relevant and 10 irrelevant records was randomly sampled from
the review dataset by the tool. This sample functioned as the training dataset for the model to initiate
the record ranking based on the probability of inclusion. For the ranking, the trained model was applied
by the tool to the remaining records, and for each record, the probability of relevance was computed.
The records were then ranked according to their relevance probability from highest to lowest (using
the default query method of “maximum probability”) and simulated as being presented to the tool
user, by starting with the record with the highest probability and using the relevant/irrelevant label
of the respective record as the supposed decision by the user. After having presented the predefined
number of 10 highest-ranking records, the model was updated while taking these 10 records and their
labels into account. Then, the process of presenting the highest-ranking records, retrieving labels, and
model updating was iterated until all records had passed. Since the initial training set (of 10 relevant
and 10 irrelevant records) was sampled randomly, the entire process was repeated 200 times, in which
each time, a new set of relevant and irrelevant records was sampled. Furthermore, since the number
of relevant records differed per dataset, some datasets may have suffered from class imbalance (i.e.,
few relevant records compared to irrelevant records) more than others. In the screening tool, we
set the balancing strategy that deals with this class imbalance to the tool’s default strategy (double
balance).

Several variations within the simulations were introduced to test their effects. First, we used a
sample of prognosis reviews consisting of different scope breadths, as described under Datasets.
Broader scopes result in a larger variation in retrieved studies due to the broader search strategy,
and therefore, more heterogeneity between titles and abstracts was expected. This can, in turn,
influence the performance of the screening tool in distinguishing between relevant and irrelevant
records.

Second, we varied the modeling methods within the tool. These modeling methods consist of
algorithms which combine a feature extraction model with a classification model. A feature extraction
model extracts features from the text, such as how often words occur in the abstracts. These features can
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then be used by a classification model that learns, based on these features, which abstracts are relevant
and irrelevant and can then apply this knowledge to make predictions for unseen abstracts (e.g., it may
learn that the occurrence of “high blood pressure” may be indicative that the abstract is likely relevant
in a review on antihypertensive medication). For each of the datasets, we tested two different feature
extraction models (term frequency-inverse document frequency [TF-IDF] and sentence Bidirectional
Encoder Representations from Transformers [sBERT]) and three different classification models (NB,
logistic regression, and SVM), leading to five different feature extraction and classification model
combinations (as sBERT is not compatible with NB):

(1) TF-IDF with NB (screening tool default),
(2) TF-IDF with SVM,
(3) TF-IDF with logistic regression,
(4) sBERT with SVM,
(5) sBERT with logistic regression.

Third, we varied the number of records in the review datasets to compare intervention reviews to
prognosis reviews while ruling out the influence of review size and/or number of relevant records. The
datasets were manually adapted to consist of a random sample of 500, 1,000, and 2,000 records, of
which 50 were relevant. Each random sample from the original datasets was drawn five times. This was
conducted only for the eight review datasets that allowed this in terms of available relevant records (i.e.,
intervention reviews 1, 2, 4, and 6 and prognosis reviews 3, 4, 5, and 6). Thus, an additional number
of 24 manually adapted review datasets were simulated 200 times each, but here only with the tool’s
default modeling settings (TF-IDF with NB).

2.4. Performance evaluation

A 2x2 cross-tabulation was used in which the reference standard of manual relevant/irrelevant labels
was compared to predictions of the screening tool at a given percentage of records screened. The
following sections describe the choice of metrics to quantify and compare the performance of the
screening tool. The formulas for calculations and corresponding definitions of each metric can be found
in the Supplementary Material (Part I).

The recall (or sensitivity) at a given number of records screened indicates the proportion of correctly
classified positives by the tool. For SRs in the medical field, a recall of at least 95% is desired to
prevent the introduction of bias in the results. However, at each given number of records screened, the
number of false negatives is by default more likely to be lower when less relevant records are present
in the dataset, and therefore, the recall is subsequently also more likely to be higher in such datasets
compared to datasets that contain more relevant records. Thus, given this dependence of the recall on
the number of relevant records that are present in the dataset, we additionally provided the maximum
achievable recall at increasing numbers of records screened. This maximum value is dependent on the
number of relevant records in the dataset; for example, if you have a tool with perfect performance (only
returns true relevant records) and one screens 100 out of 1,000 records (of which 150 are relevant), the
maximum achievable recall would be 100 (TP)/(100 (TP) + 50 (FN)) = 0.67, while if one screens 100
out of 1,000 records (of which 100 are relevant) the maximum achievable recall would be 100 (TP)/(100
(TP) + 0 (FN) = 1 already.

The precision (or positive predictive value) is defined by the proportion of correctly classified
positives among the total number of classified positives and was calculated at the point that 95%
recall was reached (precision@95%). The precision relates to the screening burden, and a higher value
indicates that fewer irrelevant records need to be screened.

The Work Saved over Sampling (WSS) introduced by Cohen et al. 4 is defined as the proportion of
records of the entire dataset that would not have to be screened after a given value of recall has been
achieved and was also calculated at 95% recall (WSS@95%). Due to the dependence of the WSS on the
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number of relevant records, we additionally computed the normalized WSS (n-WSS@95%) introduced
by Kusa et al.36 for better comparison between the prognosis and intervention reviews as the latter have
fewer relevant records.

The absolute workload reduction was defined by both the number of records not needed to screen
(assuming the reviewer could stop screening at 95% recall) and by the corresponding amount of time
saved in hours. To calculate the time saved, an average duration of 30s was considered as the time
needed to screen one record, i.e., title and abstract.

3. Results

3.1. Screening tool performance in original datasets

Based on the original datasets, the intervention reviews (Figure 1) generally reached a recall of 95%
earlier in the simulations of the screening process compared to prognosis reviews (Figure 2), that is, a
smaller percentage of records needs to be screened for intervention reviews to find 95% of the relevant
records. This is also apparent from the higher WSS@95% values that were achieved for intervention
reviews (WSS@95% range: 0.613–0.895) compared to prognosis reviews (WSS@95% range: 0.324–
0.597), and this difference in WSS between intervention and prognosis reviews remained after
normalization of the WSS@95% (n-WSS@95% range 0.674–0.946 and 0.454–0.701, respectively)
(Part II: Table A1 in the Supplementary Material; default TF-IDF with NB models). This corresponds
to a workload reduction of 17.4–76.4 hours (2.087–9.137 records) for intervention reviews compared
to a workload reduction of 3.6–54.4 hours (430–6.524 records) for prognosis reviews. However,
the precision@95% was overall much lower for intervention reviews (precision range: 0.024–0.057)
compared to prognosis reviews (precision range: 0.115–0.400) (Part II: Table A1 in the Supplementary
Material; default TF-IDF with NB models).

3.2. Variations between prognosis review scopes

With regard to the effect of the scope of the prognosis reviews on the performance of the screening tool,
there was no indication of increased performance for reviews with narrower scopes (prognosis reviews
6 and 2), compared to moderate scopes (prognosis reviews 4 and 5) or to broad scopes (prognosis
reviews 1 and 3) based on the simulations of the original datasets (Figures 2 and 3).

3.3. Variations in modeling methods within the screening

The simulations showed that the five modeling methods within the screening tool did not clearly differ
in screening performance, except for a slight decreased performance when using sBERT as the feature
extraction model in intervention reviews 2 and 4 and in prognosis review 2 compared to using TF-IDF
(Figures 1 and 2). These and some slight differences between other models, if present, were usually
found earlier in the screening process and would therefore not affect the WSS@95% or precision@95%
(Part II: Table A1 in the Supplementary Material). Given this similarity in performance between the
models, the remaining results were focused on the default models (TF-IDF with NB) only.

3.4. Variations between the number of (relevant) records

When the total number of records and the number of relevant records were equal between intervention
and prognosis reviews after manual adaptation (500, 1,000, or 2,000 records with 50 relevant), the
performance of the prognosis reviews still did not fully match the intervention reviews (Part II:
Figures A2–A7 in the Supplementary Material). The WSS@95% was generally slightly larger for the
intervention reviews (WSS@95% range: 0.446–0.865) compared to the prognosis reviews (WSS@95%
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Figure 2. Performance in terms of recall at increasing percentages of records screened for prognosis
reviews.
Abbreviations: logistic: logistic regression; NB: Naive Bayes; SVM: support vector machine; sBERT: sentence Bidirectional Encoder Representa-

tions from Transformers; TF-IDF: term frequency-inverse document frequency.

range 0.355–0.738) and also after normalization (n-WSS@95% range: 0.513–0.939 and n-WSS@95%
range: 0.410–0.801, respectively) (Part III: Table A2 in the Supplementary Material). The precision
was also slightly higher for intervention reviews (precision@95% range: 0.041–0.5819) compared
to prognosis reviews (precision@95% range: 0.034–0.291) (Part III: Table A2 in the Supplementary
Material). In addition to this slight difference in performance between prognosis and intervention
reviews, the specific data that was sampled in the adapted datasets (i.e., the fixed numbers of randomly
sampled relevant and irrelevant records) also affected the performance of the screening tool (Part III:
Figures A2 and A3 in the Supplementary Material).
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Figure 3. Performance in terms of recall at increasing percentages of records screened for intervention
reviews.
Abbreviations: logistic: Logistic Regression; NB: Naive Bayes; SVM: Support Vector Machine; sBERT: sentence Bidirectional Encoder

Representations from Transformers; TF-IDF: Term Frequency-Inverse Document Frequency.

4. Discussion

The performance of AI-based semi-automated title–abstract screening methods was compared between
prognosis studies and intervention studies. We selected one of the available screening tools (ASReview)
to illustrate the performance of semi-automated title–abstract screening. The amount of work saved,
expressed as the (n-)WSS@95%, was slightly larger for intervention reviews, but the precision (i.e.,
positive predictive value) of the tool was lower compared to prognosis reviews. When the proportion of
relevant records was manipulated by randomly sampling equal numbers of records for intervention and
prognosis review datasets, the WSS@95% was still slightly larger for intervention reviews, and also,
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the precision was larger compared to prognosis reviews. Furthermore, there were only minor effects of
modeling methods in either review type, and there was no clear effect of the scope (i.e., breadth of the
research question) of the prognosis review on the performance of the tool.

As would be expected, the screening tool performed slightly worse for prognosis reviews compared
to intervention reviews, but this difference was not substantial. It is plausible that this lower
performance was due to the larger heterogeneity in abstracts of prognosis studies, causing the feature
extraction models to have more difficulty in learning the appropriate features to subsequently classify
the abstracts as relevant or irrelevant. Accordingly, the percentage of work saved was slightly higher for
intervention reviews. However, the absolute number of records that needs to be screened is, in practice,
generally higher for prognosis reviews. Therefore, this implies that the absolute number of records that
do not need to be screened, thus the absolute amount of work saved, could in practice be much larger
for prognosis reviews. Future work could further evaluate the potential impact of abstract heterogeneity
on screening tool performance by incorporating reviews from other domains that may be more affected
by this issue.

It should be noted that a considerable part of the initial difference in performance between the
original datasets of prognosis and intervention reviews could be explained by the lower number of
actually relevant records in the intervention review datasets. A low number of relevant records impacts
the maximum achievable values of the performance metrics (i.e., these values are increased for WSS
and recall and decreased for precision), which was compensated for in this study by our selection
of intervention and prognosis reviews based on similar number of records and by the additional
analysis in which equal numbers of (included) records were selected from the reviews for simulations.
Consequently, this highlights that evaluating performance on datasets with limited variation in numbers
of relevant records and with limited reporting of metrics may give misleading impressions on the
general performance of a screening tool. The same applies to the size of the dataset; the maximum
achievable value for WSS is inherently related to the total number of records (under a constant number
of relevant records). Nevertheless, these aspects are hardly ever addressed in comparative evaluation or
validation studies of semi-automated title–abstract screening tools but should be considered along with
the need for standardized evaluation and reporting.

Interestingly, the performance of the tool did not differ between the size of the scope of the prognosis
reviews. Nevertheless, there were only a few reviews for each scope breadth, and the true relation
between scope breadth and coherence of the relevant abstracts was not further assessed in this study,
but could influence the model performance.14 Furthermore, similar to the results of the comparative
review on screening tool performance by Feng et al.10 there were only minor differences in performance
between the modeling methods. These differences mainly involved the sBERT feature extraction model
which not only took longer to train due to its complexity, but also performed similar to even slightly
worse compared to the simple method of TF-IDF as has also previously been suggested.37

Even though this study indicates that the performance of semi-automated screening tools is not
substantially different between SRs of prognosis and intervention studies, there are still some issues
that need to be overcome before the implementation of semi-automated tools in either review type.
First, there is still a lack of trust by the SR community in the adoption of these tools38 which could be
related to the lack of standardized evaluation and (external) validation of tools.39 Without standardized
ways of evaluation of tool performance, it becomes difficult to compare tools and to draw conclusions
on the generalizability of performance to other contexts. Although there is a lack of validation studies,
the number of studies on developing new tools or algorithms is growing,5 making end users lose track
of what tools they can use for their specific context.

Furthermore, there is still no consensus reached on what the appropriate stopping criterion for semi-
automated screening should be in order to balance the trade-off between screening costs and sensitivity
of the classification, including how this can prospectively be defined with sufficient certainty. As a
result, such stopping criteria have not been incorporated in most of the currently available ready-to-use
tools.37 Stopping criteria that have been proposed include time-based or pragmatic approaches (i.e.,
stopping after a certain time or percentage screened), heuristic or data-driven approaches (i.e., stopping
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after encountering a predefined number of consecutive irrelevant records), and sampling approaches
(i.e., estimating the number of relevant records based on screening a sample of the records). More
statistical methods have also been proposed which use more advanced methods to prospectively
estimate the recall including its certainty.40,41

Limitations of the current study include the reference standard of manual screening that was used
in the simulations. This standard is likely to contain errors due to screening fatigue and screeners’
over-inclusiveness.5 Since this effect would be the same for the intervention and prognosis datasets,
it could be assumed to not have affected the comparison between the two review types. The datasets
consisted of a convenience sample and are thereby no true representation of all reviews of either type
which could possibly have led to selection bias. The records eligible for full text screening were used
as the reference standard as opposed to records that were final inclusions in the review, in order to
have the simulations resemble title–abstract screening in practice. As such, we have no clear indication
of the impact of the missed records during title–abstract screening on missing final inclusions in the
review and subsequently on potential bias in the results.

5. Conclusion

In this study, we evaluated the performance of an AI-based screening tool for semi-automated title–
abstract screening in the development of SRs for both intervention and prognosis studies. While
intervention reviews have been extensively studied in the context of screening tool evaluations,
prognosis reviews have not yet been thoroughly assessed. Despite the anticipated lower performance
for prognosis reviews due to the larger heterogeneity of abstracts, the screening tool still demonstrated
significant amounts of workload reduction for prognosis reviews that were only slightly lower
compared to intervention reviews. Furthermore, we found no significant effects of the review’s scope
(i.e., breadth of the research question of the review) or the specific modeling methods applied within the
tool on its performance for either type of review. Instead, factors that did significantly affect screening
tool performance were related to the number of records retrieved and the proportion of relevant records
within the review. Given these findings, further evaluation studies should focus on developing methods
to predict the tool’s performance based on the number of records retrieved and the expected proportion
of relevant records. Nevertheless, the implementation of a screening tool in which active learning is
combined with machine learning algorithms has been shown to be sufficiently applicable for semi-
automated screening in both intervention and prognosis SRs.
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