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Abstract

We study sequential optimal stopping with partial reversibility. The optimal stopping
problem is subject to implementation delay, which is random and exponentially dis-
tributed. Once the stopping decision is made, the decision maker can, by incurring a
cost, call the decision off and restart the stopping problem. The optimization criterion
is to maximize the expected present value of the total payoff. We characterize the value
function in terms of a Bellman principle for a wide class of payoff functions and poten-
tially multidimensional strong Markov dynamics. We also analyse the case of linear
diffusion dynamics and characterize the value function and the optimal decision rule for
a wide class of payoff functions.
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1. Introduction

The purpose of this paper is to study a sequential stopping problem where the stopping
decisions are partly reversible. The stopping payoffs are contingent on a stochastic process X.
Upon the first stopping decision, the decision maker has to pay a fixed cost K1. In return, an
exponentially distributed time variable, independent of X, is initiated such that the payoff is
realized when this time has elapsed. However, during the running time of this time variable,
the decision maker can make another stopping decision which stops the time variable from
running and restarts the stopping problem. In return, the decision maker receives a fixed sum
K2 <K1. If, on the other hand, the time variable runs until the end, the decision maker gets the
payoff g evaluated at the value of X at the time. The objective is then to maximize the expected
present value of the total payoff.

The first key aspect of our research problem is costly reversibility, a topic addressed by a
number of research papers. One of the early papers is that of Abel and Eberley [1], who stud-
ied capacity expansion of a firm under price uncertainty, fixed capital costs, and Cobb–Douglas
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2 J. LEMPA ET AL.

production function. The firm has the option to expand production capacity by capital acqui-
sition. Moreover, when the market deteriorates, the firm has the option to reduce the capacity
by selling the capital. Two related papers by Alvarez [4] and Hartman and Hendricksson [15]
reconsider the problem of [1] in a more general setting. In [4] more general price dynamics and
production functions are considered, whereas in [15] the capital costs are subject to stochastic
fluctuations. Adkins and Paxson [2] studied a problem where the investment can be abandoned
before the investment event. Similarly to [15], Adkins and Paxson considered a model with
three stochastic factors for project present value, investment cost, and abandonment value. In
this vein, we also mention Shibata and Wong [27], who considered abandonment options with
endogenously determined reversibility costs. On the more mathematical end of the spectrum,
we refer to Federico and Pham [13] and Løkka and Zervos [20] for more general analyses of,
respectively, singular stochastic control, and stochastic impulse control models in this context.

Another key aspect of our model is the implementation delay (or time-to-build), which has
also been extensively studied over recent decades. Aïd et al. [3] considered a singular stochas-
tic control model for capacity expansion with time-to-build, whereas Ø ksendal and Sulem
[23] were concerned with stochastic impulse control with implementation delay. Alvarez and
Keppo [5] studied a model where the time-to-build depends on the value of the state variable
at the time of the investment. Armerin and Song [6] were concerned with the case where the
cash flows, resulting from the investment subject to time-to-build, are distributed over time.
Liang and Yang [19] studied the optimal exercise boundary of an American put option with
fixed delivery lag. Chen and Song [8] considered a delayed optimal stopping model, similar to
[21], for investment timing when part of the investment is paid at the time of the investment
and the rest at the time of completion. Delayed optimal stopping subject ambiguity (Knightian
uncertainty) is the topic of the paper by Delaney [11]. The so-called Parisian implementation
delay was considered by Costeniuc et al. [10]; here, the option to invest is not exercised imme-
diately at the boundary of a favourable region but rather when the state process has remained
constantly in a favourable region for a sufficiently long period. Haejun [14] and Lempa [17, 18]
are concerned with optimal stopping when the implementation delay is stochastic and exoge-
nous. A general approximation approach for optimal stopping with random exercise delay has
been developed by Chen and Song [9].

The model of our study can be seen as an extension of the model studied in [17]. In this
paper, the exercise payoff is subject to an exponential delay, independent of X. As was men-
tioned above, we extend the model of [17] by introducing the costly reversibility to the stopping
problem. Thus the admissible decision rules in the problem are sequential. Further contribu-
tions of our study are twofold. First, we characterize the value function by means of a Bellman
principle for a wide class of payoff functions and time-homogeneous strong Markov dynam-
ics; the dynamics are allowed to be multidimensional. Moreover, we analyse the case of linear
diffusion dynamics and characterize the value function and the optimal decision rule for a wide
class of payoff functions.

The remainder of the paper is organized as follows. In Section 2 we set up the model for
the investment timing problem. The problem is then solved in Section 3. The main results are
illustrated with explicit examples in Section 4.

2. The problem

2.1. The dynamics

Let (�,F , F, P) be a complete filtered probability space satisfying the usual conditions,
where F= {Ft}t≥0; see [7, p. 2]. We assume that the underlying X is a strong Markov process
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Stopping with costly reversibility 3

defined on (�,F , F, P) and taking values in E ⊆R
d for some d ≥ 1 with the initial state x ∈ E.

We further assume that F is generated by X. We take E = (a1, b1) × · · · × (ad, bd), where
−∞ ≤ ai < bi ≤ ∞ for all i = 1, . . . , d. As usual, we augment the state space E with a topolog-
ically isolated element� if the process X is non-conservative. Then the process X can be made
conservative on the augmented state space E� := E ∪ {�}; see [25]. In what follows, we drop
the superscript � from the notation. By convention, we augment the definition of functions g
on E with g(�) = 0. Define the life-time of the process X as ζ = inf{t ≥ 0: Xt =�}.

Let Px denote the probability measure P conditioned on the initial state x and let Ex denote
the expectation with respect to Px. The process X is assumed to evolve under Px and the sample
paths are assumed to be right-continuous and left-continuous over stopping times, meaning the
following: if the sequence of stopping times τn ↑ τ , then Xτn → Xτ Px-almost surely as n → ∞.
There is a well-established theory of optimal stopping for this class of processes; see [24].

For r> 0, we let Lr
1 denote the class of real-valued measurable functions f on E satisfying

the integrability condition

Ex

[∫ ζ

0
e−rt|f (Xt)| dt

]
<∞ for all x ∈ E.

For a function f ∈ Lr
1, the resolvent Rrf : E →R is defined as

(Rrf )(x) =Ex

[∫ ζ

0
e−rsf (Xs) ds

]

for all x ∈R+. It is well known that the family (Rλ)λ≥0 is a strongly continuous contraction
resolvent and that it has the following connection to exponentially distributed random times:
if U ∼ Exp(λ) and independent of X, then λ(Rr+λg)(x) =Ex[e−rUg(XU)] whenever g ∈ Lr

1; see
[25]. Finally, the function h is said to be r-harmonic for X if h(x) =Ex[e−rτh(Xτ )] for all
F-stopping times τ .

2.2. The timing problem

We define the timing problem inductively and start by considering the case where the
stopping decision cannot be reversed. Let U ∼ Exp(λ) be independent of X, and define

V0
a (x) =Ex[e−rUg(XU)] = λ(Rr+λg)(x),

V0
i (x) = supτ Ex[e−rτ (λ(Rr+λg)(Xτ ) − K1)].

(2.1)

Here the function g is the payoff function; we assume that this function satisfies the following.

(A1) The payoff g : E →R is in L1
r , is lower-bounded, satisfies the condition S+ :=

{x : g(x)> 0} �= ∅, and the process X reaches the set S+ with positive probability for
all initial states x,

(A2) There exists an r-harmonic function h : E →R+ such that the function x �→ g(x)/h(x) is
bounded.

In (2.1), the function V0
a is the value of an active investment (i.e. the investment is initiated)

when there is no possibility of calling the investment off. Note that the value function V0
i is

(essentially) that of [17]. This corresponds to the case where the investment opportunity is
inactive (i.e. the investment is not initiated), the investment decision cannot be called off, and
initiation of the investment incurs a cost of K1.
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Proceeding inductively, for the case where a stopping decision can be reversed k times, we
write

Vk
a(x) = supτ Ex[e−rUg(XU)1(U < τ ) + e−rτ (Vk−1

i (Xτ ) + K2)1(U > τ )],

Vk
i (x) = supτ Ex[e−rτ (Vk

a(Xτ ) − K1)].
(2.2)

An alternative expression for the function Va above can be found. To find it, we first note that
the following holds for any measurable function f :

Ex[e−rτ f (Xτ )1(U > τ )] =Ex[Ex[e−rτ f (Xτ )1(U > τ )|Fτ ]]

=Ex[e−rτ f (Xτ )Ex[1(U > τ )|Fτ ]]

=Ex[e−rτ f (Xτ )e−λτ ]

=Ex[e−(r+λ)τ f (Xτ )].

Hence

Vk
a(x) = supτ Ex[e−rUg(XU)1(U < τ ) + e−rτ (Vk−1

i (Xτ ) + K2)1(U > τ )]

= supτ Ex[e−rUg(XU)) + e−rτ (Vk−1
i (Xτ ) − e−rUg(XU)) + K2)1(U > τ )]

= supτ Ex[e−rUg(XU)) + e−rτ (Vk−1
i (Xτ ) − λ(Rr+λg)(Xτ ) + K2)1(U > τ )]

= λ(Rr+λg)(x) + supτ Ex[e−(r+λ)τ (Vk−1
i (Xτ ) − λ(Rr+λg)(Xτ ) + K2)].

Our main problem can then be written as the limiting case

Va(x) = V∞
a (x) = lim

k→∞ Vk
a(x), Vi(x) = V∞

i (x) = lim
k→∞ Vk

i (x). (2.3)

The corresponding decision variables are then increasing sequences of stopping times denoted
as τ̄ = (τn)n≥1. The following proposition provides us with sufficient conditions for the main
problem (2.3) to be well-defined.

Proposition 2.1. The problem (2.3) is well-defined, i.e. the limiting functions limk→∞ Vk
a and

limk→∞ Vk
i exist.

Proof. We prove the result for Vi; the function Va is handled similarly. For the purpose of
the argument, we write the value function Vk

i = Vk
i (·,K1,K2); here, Ki are the cost param-

eters in the definition of the problem. Then it is straightforward to show by induction that
Vk

i (·,K1,K2) ≤ Vk
i (·, 0, 0).

Our task is to show that the function Vk
i (·, 0, 0) can be represented as the value of an optimal

stopping problem. To this end, we first note that by [24, Theorem 1 and Corollary, p. 124],
the optimal stopping problem V(x) = supτ∈T Ex[e−rτg(Xτ )], where T is the set of F-stopping
times, has a finite solution under assumptions (A1) and (A2). Now let N be a Poisson process,
independent of X, with rate λ. Furthermore, let FN be the filtration generated by N and (Xt)
and let TN be the set of FN-stopping times. Let VN(x) = supτ∈TN

Ex[e−rτg(Xτ )]. Since X is
FN-adapted and the payoff is independent of N, we find that V = VN .

Let ((τi, σi))k
i=1 be a vector of pairs of F-stopping times such that τi ≤ σi ≤ τi+1 ≤ σi+1 for

all i = 1, . . . , k − 1 with σk = ∞. For such a vector, let τ be the first arrival of N such that its
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arrival time T ∈ (τi, σi) for some i = 1, . . . , k; if this does not occur, set τ = ∞. Then τ ∈ TN ;
denote the set of such τ as Sk. Moreover, since τ ≥ τ1, we find that

Ex[e−rτg(Xτ )] =Ex[e−rτ1EXτ1
[e−rτg(Xτ )]]

=Ex[e−rτ1EXτ1
[e−rτg(Xτ )1(τ < σ1) + e−rτg(Xτ )1(τ > σ1)]]

=Ex[e−rτ1EXτ1
[e−rUg(XU)1(U <σ1) + e−rσ1EXσ1

[e−rτg(Xτ )]1(U >σ1)]],

where U ∼ Exp(λ) is independent of X. In the last equality, we used the memoryless property
of the exponential distribution. Now we can proceed with the term EXσ1

[e−rτg(Xτ )] in the same
way and eventually recover the objective functional in (2.2) with costs equal to zero. Finally,
since the stopping times τ are indexed by the vectors ((τi, σi))k

i=1, we find that Vk
i (x, 0, 0) =

supτ∈Sk
Ex[e−rτg(Xτ )]. Thus

Vk
i (x) = Vk

i (x,K1,K2) ≤ Vk
i (x, 0, 0) ≤ VN(x) = V(x) for all k,

since Sk ⊂ TN .
To conclude, we observe that the sequence (Vk

i ) is increasing; indeed, we can augment any
k-vector ((τi, σi))k

i=1 to a (k + 1)-vector with τk+1 = σk+1 = ∞, which yields the same payoff
as the original k-vector. Consequently the limit Vi = limk→∞ Vk

i exists and is finite. �

Remark 2.1. The limiting case K2 → −∞ corresponds to the case where abandonment of
the project becomes prohibitively expensive. In this case the problem is reduced to V0

i (X) =
supτ Ex[e−rτ (λ(Rr+λg)(Xτ ) − K1)].

The limiting case λ→ ∞ corresponds to the case where the implementation delay vanishes
and the payoff is realized immediately at the exercise. In this case the problem is reduced to
the standard optimal stopping problem V(x) = supτ Ex[e−rτ (g(Xτ ) − K1)].

3. Bellman principle

The purpose of this section is prove the Bellman principle of optimality for the problem
(2.3). More precisely, we define the Bellman operator on an appropriate function space and
prove that the value function is the unique fixed point of this operator. We study the problem
(2.3) under the following assumption.

Assumption 3.1. The process X is time-homogeneous.

Since the process X is time-homogeneous, it is reasonable to expect that after a single
‘inactive–active’ cycle has been completed, the problem starts afresh with the same remaining
value. Thus we will look for a Bellman operator over a single ‘inactive–active’ cycle.

Next we set up the function space on which we define our Bellman operator. Let B be the
set of functions f : E →R satisfying the conditions

(B1) f is continuous,

(B2) the function f /h is bounded, where h is the harmonic function in assumption (A2).

Define the norm

‖ f ‖B =
∥∥∥∥ f

h

∥∥∥∥
u

on B; under the metric induced by this norm, the space B is a complete metric space.
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We elaborate the definition of the function space by setting up auxiliary stopping problems.
For f ∈ B, define the first auxiliary stopping problem

Wa(x; f ) = supσ Ex[e−rUg(XU)1(U <σ ) + e−rσ (f (Xσ ) + K2)1(U ≥ σ )]

= λ(Rr+λg)(x) + supσ Ex[e−(r+λ)σ (f (Xσ ) + K2 − λ(Rr+λg)(Xσ ))].
(3.1)

Assumption 3.2. The function Wa(·, f ) is continuous for all f ∈ B.

Under this assumption, we know from the general theory of optimal stopping (see [24,
Corollary I.2.9]) that there is an optimal stopping time σ ∗

f in (3.1) which can be identified as
the first hitting time for the closed set

Sa
f = {x | Wa(x; f ) = f (x) + K2 − λ(Rr+λg)(x)}.

For f ∈ B, the second auxiliary stopping problem is defined as

Wi(x; f ) = supτ Ex[e−rτ (Wa(x; f ) − K1)]. (3.2)

Assumption 3.3. The function Wi(·, f ) is continuous for all f ∈ B.

Under this assumption, we find (again by [24, Corollary I.2.9]) that there is an optimal
stopping time τ ∗

f in (3.2) which can be identified as the first hitting time for the closed set

Si
f = {x | Wi(x; f ) = Wa(x; f ) − K1}.

Assumption 3.4. The resolvent (Rr+λg)(x) is continuous.

Assumption 3.4 is required to show that the value function is sufficiently well-behaved.

Remark 3.1. Assumptions 3.1–3.4 are satisfied for linear diffusion dynamics for payoffs sat-
isfying assumptions (A1) and (A2), if the payoff is also continuous. See Section 4.1 for
details.

To work in the space B, using Doob’s excessive transform (see [7]), we rewrite the optimal
stopping problems (3.1) and (3.2) as

Wa(x; f ) = h(x)Eh
x

[
g(XU)

h(XU)
1
(
U <σ ∗

f

) +
( f

(
Xσ ∗

f

) + K2

h
(
Xσ ∗

f

) )
1
(
U >σ ∗

f

)]
,

Wi(x; f ) = h(x)Eh
x

[Wa
(
Xτ∗

f
; f

) − K1

h
(
Xτ∗

f

) ]
.

(3.3)

Using these formulations, we define the Bellman operator

(�f ) = Wi(·, f ), (3.4)

for all f ∈ B.
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We narrow down the considered function space by the two additional conditions

(B3) (�f ) ≥ f ,

(B4) �f is continuous.

The function space satisfying assumptions (B1)–(B4) is denoted by B̂; we point out that
B̂ �= ∅, since the function f = 0 is in B̂. Intuitively, assumption (B3) describes the fact that
increased flexibility has to yield additional value.

Lemma 3.1. The function space B̂ is a complete metric space under the metric induced by the
norm ‖ · ‖B and � is a mapping from B̂ to B̂.

Proof. Since B is a complete metric space, it is enough to show that B̂ is closed. For stopping
times τ ≤ σ , function f , and point x, let us define the J operator

J(x; τ, σ, f ) = h(x)Eh
x

[
E

h
Xτ

[
g(XU)

h(XU)
1(U <σ ) + f (Xσ ) + K2

h(Xσ )
1(U >σ )

]
− K1

h(Xτ )

]
. (3.5)

Suppose there is a sequence of functions fn ∈ B̂ such that fn → f with respect to the
norm ‖ · ‖B. We need to prove that (�f )(x) ≥ f (x). To do that, we first show that (�f )(x) =
limn→∞ (�fn)(x).

Let τ, σ be any stopping times such that τ ≤ σ . For a given x, there exists nε for each ε > 0
such that for each n> nε, the functions satisfy∣∣∣∣ fn(x)

h(x)
− f (x)

h(x)

∣∣∣∣< ε

h(x)
.

Hence

|J(x; τ, σ, fn) − J(x; τ, σ, f )|

= h(x)

∣∣∣∣Eh
x

[
E

h
Xτ

[
g(XU)

h(XU)
1(U <σ ) +

(
fn(Xσ ) + K2

h(Xσ )

)
1(U ≥ σ )

]
− K1

h(Xτ )

]

−E
h
x

[
E

h
Xτ

[
g(XU)

h(XU)
1(U <σ ) +

(
f (Xσ ) + K2

h(Xσ )

)
1(U ≥ σ )

]
− K1

h(Xτ )

]∣∣∣∣
= h(x)

∣∣∣∣Eh
x

[
E

h
Xτ

[(
fn(Xσ ) − f (Xσ )

h(Xσ )

)
1(U ≥ σ )

]]∣∣∣∣
≤ h(x)Eh

x

[
E

h
Xτ

[∣∣∣∣
(

fn(Xσ ) − f (Xσ )

h(Xσ )

)
1(U ≥ σ )

∣∣∣∣
]]

≤ h(x)Eh
x

[
E

h
Xτ

[
ε

h(Xσ )

]]

≤ ε,
which implies that

|�fn(x) −�f (x)| = | supτ,σ J(x; τ, σ, fn) − supτ,σ J(x; τ, σ, f )| ≤ ε.

Then �f (x) = limn→∞ �fn(x) ≥ limn→∞ fn(x) = f (x), and thus B̂ is a complete metric space.
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Next we show that �f ∈ B̂. We start by proving that the function �f /h is bounded. First,
by definition of �, we have �f ≥ 0. Moreover, since h is r-harmonic, it is strictly positive
inside the state space. Now, since τ ∗

f ≤ σ ∗
f and K2 <K1, we find by monotonicity and Jensen’s

inequality that

�f (x)

h(x)
=

(
�f (x)

h(x)

)+

=E
h
x

[
E

h
Xτ∗f

[
g(XU)

h(XU)
1
(
U <σ ∗

f

) +
( f

(
Xσ ∗

f

) + K2

h
(
Xσ ∗

f

) )
1
(
U ≥ σ ∗

f

)] − K1

h
(
Xτ∗

f

)]+

≤
(

‖g‖B + ‖ f ‖B +E
h
x

[
E

h
Xτ∗f

[
K2

h
(
Xσ ∗

f

)]
− K1

h
(
Xτ∗

f

)])+

≤ (‖g‖B + ‖ f ‖B)+ +
(

1

h(x)

(
K2Ex

[
e−rσ ∗

f
] − K1Ex

[
e−rτ∗

f
]))+

= ‖g‖B + ‖ f ‖B

for all x. Thus ‖�f ‖B <∞. We also find that

(�2f )(x)

= supτ Ex
[
e−rτ (supσ Ex

[
e−rUg(XU)1(U <σ ) + ((�f )(Xσ ) + K2)1(U >σ )

] − K1
)]

≥ supτ Ex
[
e−rτ (supσ Ex

[
e−rUg(XU)1(U <σ ) + (f (Xσ ) + K2)1(U >σ )

] − K1
)]

= (�f )(x).

The function �f is continuous by Assumption 3.2. Finally, since �f ∈ B, the function �2f is
also continuous by Assumption 3.2. Thus � is a function from B̂ to B̂. �

Lemma 3.2. The mapping � : B̂ → B̂ is a contraction.

Proof. Let f1, f2 ∈ B̂. Then the distance

|(�f1)(x) − (�f2)(x)| = ((�f1)(x) − (�f2)(x))1((�f1)(x)> (�f2)(x))

+ ((�f2)(x) − (�f1)(x))1((�f2)(x)> (�f1)(x))

= (
J
(
x; τ ∗

f1 , σ
∗
f1, f1

) − J
(
x; τ ∗

f2 , σ
∗
f2, f2

))
1((�f1)(x)> (�f2)(x))

+ (
J
(
x; τ ∗

f2 , σ
∗
f2, f2

) − J
(
x; τ ∗

f1 , σ
∗
f1, f1

))
1((�f2)(x)> (�f1)(x))

≤ (
J
(
x; τ ∗

f1 , σ
∗
f1 , f1

) − J
(
x; τ ∗

f1 , σ
∗
f1 , f2

))
1((�f1)(x)> (�f2)(x))

+ (
J
(
x; τ ∗

f2 , σ
∗
f2, f2

) − J
(
x; τ ∗

f2 , σ
∗
f2, f1

))
1((�f2)(x)> (�f1)(x)).
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By the definition of J, we find that

J
(
x; τ ∗

f1 , σ
∗
f1 , f1

) − J
(
x; τ ∗

f1 , σ
∗
f1, f2

)

=E
ψr
x

[
E
ψr
Xτ∗f1

[( f1
(
Xσ ∗

f1

)
ψr

(
Xσ ∗

f1

) −
f2

(
Xσ ∗

f1

)
ψr

(
Xσ ∗

f1

))
1
(
U >σ ∗

f1

)]]

≤ ‖ f1 − f2‖BE
ψr
x

[
E
ψr
Xτ∗f1

[
1
(
U >σ ∗

f1

)]]
.

Define

γ = supx

(
max

{
E
ψr
x

[
E
ψr
Xτ∗f1

[
1
(
U >σ ∗

f1

)]]
,Eψr

x

[
E
ψr
Xτ∗f2

[
1
(
U >σ ∗

f2

)]]})
.

Since (�f ) ≥ f , we must have Sa
f ∩ Si

f = ∅ for all f ∈ B̂ and consequently γ < 1.
These yield the desired result:

‖�f1 −�f2‖B ≤ γ ‖ f1 − f2‖B,

where γ < 1. �

Using the operator �, we can rewrite the value functions Vk
i as follows.

Lemma 3.3. The value functions Vk
i in the problem (2.2) can be written as

Vn
i (x) =�n+1(λ(Rr+λg)(x) − K2).

Proof. First we study the function V0
i . We find that

V0
i (x) = supτ Ex[e−rτ

EXτ [e−rUg(XU)]]

= supτ Ex[e−rτ λ(Rr+λg)(Xτ )]

= supτ Ex[e−rτ (λ(Rr+λg)(Xτ ) + supσ EXτ [e−(r+λ)σ · 0])]

= supτ Ex[e−rτ (λ(Rr+λg)(Xτ )

+ supσ EXτ [e−(r+λ)σ (λ(Rr+λg)(Xσ ) − K2 − λ(Rr+λg)(Xσ ) + K2)])]

=�(λ(Rr+λg)(x) − K2).

The claim then follows inductively from the fact that Vn+1
i =�Vn

i . �

Now we can write a similar expression for the value function of the problem with infinitely
many reversals as

Vi(x) = lim
n→∞ Vn

i (x) = lim
n→∞�n+1(λ(Rr+λ)g(x) − K2) =�∞(λ(Rr+λg)(x) − K2).

Next we show that λ(Rr+λg)(x) − K2 ∈ B. The first condition is true by Assumption 3.4;
next we will prove a lemma to guarantee the second one.

Lemma 3.4. If f /h is a bounded function, for some function f and some r-harmonic function
h, and then Rr+λf /h is bounded for all λ> 0.
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Proof. Let M be a constant such that f (x)/h(x) ≤ M, and let r, λ > 0. Now, for all x, we find
that

(Rr+λf )(x)

h(x)
= Ex

[∫ ∞
0 e−(r+λ)tf (Xt) dt

]
h(x)

= Ex
[∫ ∞

0 e−(r+λ)t f (Xt)
h(Xt)

h(Xt) dt
]

h(x)

≤ MEx
[∫ ∞

0 e−(r+λ)th(Xt) dt
]

h(x)

= M(Rr+λh)(x)

h(x)

=
M
λ

h(x)

h(x)

= M

λ
,

and thus (Rr+λf )(x)/h(x) is bounded by definition. �

To show that the value function Vi is the unique fixed point in B̂, we still have to show
that Vi ∈ B̂. First we see that since the resolvent λ(Rr+λg)(x) is continuous, and by Lemma 3.4
the ratio λ(Rr+λg)(x)/h(x) is bounded, and those conditions apply for constants and sums of
functions fulfilling the conditions, it follows that λ(Rr+λg) − K2 ∈ B.

By recalling that V0
i =�(λ(Rr+λg) − K2), we see that V0

i is continuous by Assumptions 3.2
and 3.3, and the boundedness of V0

i /h is inherited from λ(Rr+λg) − K2 since the operator � is
a contraction with respect to the norm ‖ · ‖B by Lemma 3.2. Then, since �V0

i = V1
i , it follows

by the monotonous order of Vk
i that�V0

i ≥ V0
i . Finally, by Assumptions 3.2 and 3.3, it follows

that �f is continuous, and hence V0
i ∈ B̂.

Since the operator� is closed in space B̂, it follows inductively that Vk
i ∈ B̂ for all k. Finally,

since B̂ is a complete metric space, it follows that Vi = limk→∞ Vk
i ∈ B̂.

Using that expression and the previous lemma, we can prove the main result of this section.

Theorem 3.1. (Bellman principle.) The value function Vi is the unique fixed point of the
operator � in B̂.

Proof. Since by Lemma 3.2 the operator � is a contraction, for every ε > 0, there exists nε
such that

|Vi(x) − Vn
i (x)| = |(�∞ξ )(x) − (�nξ )(x)|

≤ |(�n+iξ )(x) − (�nξ )(x)| + ε

2

≤ γ n|(�iξ )(x) − ξ (x)| + ε

2

≤ γ n|(�∞ξ )(x) − ξ (x)| + ε

2

≤ ε

2
+ ε

2

= ε

https://doi.org/10.1017/jpr.2025.10033 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10033


Stopping with costly reversibility 11

for all i and all n> nε, where ξ (x) = λ(Rr+λg)(x) − K2. Consequently we have

|Vi −�Vi| ≤ |Vi −�Vn
i | + |�Vn

i −�Vi|
≤ |Vi − Vn+1

i | + γ |Vn
i − Vi|

→ 0

when n → ∞. Thus the value function Vi is a fixed point of �. By Banach’s fixed point
theorem, the fixed point is unique. �

4. A class of solvable problems: Linear diffusion dynamics

4.1. The problem specification

We assume that the process X follows a regular linear diffusion on the positive real line R+.
Furthermore, we assume that the boundaries of the state space are natural. Now, the evolution
of X is completely determined by its scale function S and speed measure m inside R

+; see [7,
pp. 13–14]. Furthermore, we assume that the function S and the measure m are both absolutely
continuous with respect to the Lebesgue measure, have smooth derivatives, and that S is twice
continuously differentiable. Under these assumptions, we know that the infinitesimal generator
A : D(A) → Cb(R+) of X can be expressed as

A= 1

2
σ 2(x)

d2

dx2
+μ(x)

d

dx
,

where the functions σ and μ are related to S and m via the formulæ

m′(x) = 2

σ 2(x)
eB(x) and S′(x) = e−B(x) for all x ∈R+,

where

B(x) :=
∫ x 2μ(y)

σ 2(y)
dy,

see [7, p. 17]. From these definitions we find that

σ 2(x) = 2

S′(x)m′(x)
and μ(x) = − S′′(x)

S′2(x)m′(x)
for all x ∈R

+.

In what follows, we assume that the functions μ and σ 2 are continuous. The assumption that
the state space is R+ is done for convenience. In fact we could assume that the state space is
any interval I in R and the subsequent analysis would hold with obvious modifications.

Denote the hitting time for set S as τS and the hitting time for point y as τy. Then we
call a state in E =R

+ regular if P(τ(0,x) = 0) = P(τ(x,∞) = 0) = 1. Under our assumptions, the
process X is a regular linear diffusion and the speed measure m is absolutely continuous with
respect to the Lebesgue measure. Thus we see that by [7, p. 13], all states in R+ are regular.

Then we let ψr and ϕr, respectively, denote the increasing and the decreasing solution of the
second-order linear ordinary differential equation Au = ru, where r> 0, defined on the domain
of the characteristic operator of X. The functions ψr and ϕr can be identified as the minimal
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r-excessive functions ψr and ϕr of X; see [7, pp. 18–20]. Finally, it is well known (see [7, p.
19]) that for a given f ∈ Lr

1 the resolvent Rrf can be expressed as

(Rrf )(x) = B−1
r ϕr(x)

∫ x

0
ψr(y)f (y)m′(y) dy + B−1

r ψr(x)
∫ ∞

x
ϕr(y)f (y)m′(y) dy (4.1)

for all x ∈R+, where

Br = ψ ′
r(x)

S′(x)
ϕr(x) − ϕ′

r(x)

S′(x)
ψr(x)

denotes the Wronskian determinant.
Next, we propose the class of payoff functions for which we study the problem (2.3). In

what follows, we use the notation

gl(x) = g(x) − Kl
r + λ

λ
, l = 1, 2, (4.2)

for brevity.

Assumption 4.1. For l = 1, 2,

(1) the payoff gl ∈ Lr
1 is bounded from below and continuous,

(2) there exists a unique 0 ≤ x0
l <∞ such that gl(x) � 0, when x � x0

l ,

(3) there is a unique state x∗
l which maximizes the function

x �→ gl(x)

ψr(x)

and that this function is non-decreasing on (0, x∗
l ) and non-increasing on (x∗

l ,∞).
Further, the limiting conditions

lim
x→0+

gl(x)

ψr(x)
≤ 0 ≤ lim

x→∞
gl(x)

ψr(x)
<∞

hold,

(4) the function

x �→ gl(x)

ϕr(x)

is non-decreasing.

Assumption 4.1 is fairly weak and easy to verify; similar assumptions appear frequently
in optimal stopping. Roughly speaking, the assumption means that the payoff g should be
continuous and non-decreasing, and satisfy suitable limiting conditions at the boundaries.
Furthermore, the payoff can be unbounded but the rate of growth is constrained by item (3).
The assumptions are similar to the irreversible problem with exercise lag studied in [17].

We show that that the problem specification of this section satisfies Assumptions 3.2 and
3.3; Assumption 3.1 is assumed to hold. To this end, we recall the definition of the fine topol-
ogy. A set A is finely open with respect to a process X if for each x ∈ A there exists a nearly
Borel set B ⊂ A such that Px(τBc > 0) = 1. We prove the following lemma.

https://doi.org/10.1017/jpr.2025.10033 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10033


Stopping with costly reversibility 13

Lemma 4.1. Let X be a strong Markov process in R
+ with almost surely continuous paths,

such that each x ∈ E = I is a regular state. Then a set A is finely open if and only if it is open.

Proof. First, let A be an open set. Thus, for each x ∈ A, there exists a ball B(x, δ) ⊂ A for
some δ > 0. Now, since the paths of X are almost surely continuous, it follows that for each
ω ∈�, barring a zero-measured set of exceptions, there exists tδ(ω) such that Xt(ω) ∈ B(x, δ/2)
for all 0 ≤ t ≤ tδ(ω). Consequently, τB(x,δ)c(ω) ≥ τB(x,δ/2)c (ω) ≥ tδ(ω)> 0, yielding

Px(τb(x,δ)c > 0) = 1.

Since this is true for all x ∈ A, the set A is finely open by definition.
Next, assume that A is not open. Then there exists a sequence xi of points in Ac that con-

verges to some x ∈ A. Either an infinite number of those points are on the left side of x, or an
infinite number of them are on the right side of x. By symmetry, let us assume the left side of
x has infinite number of points xi. Then those points form a subsequence that also converges
to x.

Now, since x is a regular point, the stopping time τ(0,x) = 0 almost surely. Thus, if t> 0, for
each ω, barring a zero-measured set of exceptions, there exists a time index u(ω)< t such that
Xu(ω)(ω)< x. There exists a member of xi such that Xu(ω)(ω)< xi(ω) < x, implying that

τBc ≤ τAc ≤ τxi ≤ u< t

for chosen ω, where the inequality τxi ≤ u follows from the path of Xt being almost surely
continuous (the exceptions to this can also be disregarded as a null set). Since the claim is
true for any nearly Borel B ⊂ A and for any t> 0, it follows that τBc = 0 almost surely for any
nearly Borel B ⊂ A, implying that A is not finely open, and completing the proof. �

As an immediate consequence we get the following.

Corollary 4.1. Let the process X satisfy the assumptions of Lemma 4.1. Then a function
f : R→R is continuous if and only if it is finely continuous with respect to X.

We have shown that fine continuity and continuity are equivalent in one-dimensional
Markov processes satisfying the assumptions of Lemma 4.1. Thus the next result follows by
[28, Theorem 5, p. 135].

Corollary 4.2. Let the process X satisfy the assumptions of Lemma 4.1 and let g be a
continuous function. Then Assumptions 3.2 and 3.3 hold.

The process X does satisfy the assumptions of Lemma 4.1, so we only need to show that
Assumption 3.4 holds. By [22, Lemma 8.1.4, p. 143] the function u(t, x) =Ex[f (Xt)] is contin-
uous for all bounded and continuous functions f . Then, if ε > 0 and M is an upper bound for
|g(x)|, there exists a number T > 0 such that

∫ ∞

T
e−rt dt = 1

r
e−rT <

ε

4M
.
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Then, if δ > 0 is such that for all y ∈ B(x, δ) we have |g(x) − g(y)|< rε/2, we get

|(Rrg)(x) − (Rrg)(y)| ≤
∫ T

0
e−rt|u(t, x) − u(t, y)| dt

+
∣∣∣∣Ex

[∫ ∞

T
e−rtg(Xt) dt

]
−Ey

[∫ ∞

T
e−rtg(Xt) dt

]∣∣∣∣
≤

∫ T

0
e−rt rε

2
dt + 2

∫ ∞

T
M e−rt dt

= ε(1 − e−rT )

2
+ ε

2

< ε.

Thus the resolvent (Rrg)(x) is also continuous when g is bounded, as also claimed by [22,
Lemma 8.1.3, p. 143]. Now, if g is continuous and the ratio g/h is bounded for some r-harmonic
function h, we get

(Rr+λg)(x) =
∫ ∞

0
Ex[e−(r+λ)tg(Xt)] dt =

∫ ∞

0
E

h
x

[
e−(λ)t g(Xt)

h(Xt)

]
dt = Rh

λ

(
g

h

)
(x)

in other words, the resolvent can be represented in terms of another resolvent in the h-
transformed space, where the argument is g/h and the rate is λ. That resolvent is continuous,
since its argument is bounded and continuous. Thus we have shown the following proposition.

Proposition 4.1. Assumption 3.4 holds for the process X and the gain function g satisfying
Assumption 4.1.

To close the subsection, we present the following lemma without a proof, as it follows from
the representation (4.1) and [16, Lemma 2.1] by means of differentiation.

Lemma 4.2. Let f ∈ Lr
1. Then

ψ ′
r(x)ϕr+λ(x) −ψr(x)ϕ′

r+λ(x) = λS′(x)(�ψr)(x),

λ(Rr+λf )′(x)ϕr+λ(x) − λ(Rr+λf )(x)ϕ′
r+λ(x) = λS′(x)(�f )(x),

λ(Rr+λf )′(x)ψr(x) − λ(Rrf )(x)ψ ′
r(x) = λ2S′(x)

Br+λ
((�f )(x)(�ψr)(x) − (�f )(x)(�ψr)(x)),

where

(�f )(x) =
∫ ∞

x
ϕr+λ(y)f (y)m′(y) dy, (�f )(x) =

∫ x

0
ψr+λ(y)f (y)m′(y) dy.

4.2. The solution

We start by first deriving a candidate solution to our main problem, then show that this
function is in the function space B̂ (for the r-harmonic function ψr), and finally show that it
satisfies the Bellman principle of Proposition 3.1.

4.2.1. Deriving the candidate. Since we are dealing with a time-homogeneous problem, we
start with the working assumption that the optimal policy is of the following type: consider
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thresholds y1 > y2 and the rule that

• an inactive investor should engage the investment once the state variable X is above the
threshold y1,

• an active investor should disengage the investment once the state variable X is below the
threshold y2.

Denote the candidate solution for the inactive investor as Gi. Then the rule described above
can be expressed as

Gi(x) =ψr(x)Eψr
x

[(
E
ψr
Xτy1

[
g(XU)

ψr(XU)
1(U <σy2 ) + Gi(Xσy2

) + K2

ψr(Xσy2
)

1(U >σy2 )

]
− K1

ψr(Xτy1
)

)]
.

(4.3)

This condition is expressed in terms of the ψr-transform; we have already used this way of
writing in the previous section. The reason for this is the same as above: it lends itself well
to fixed point arguments. The following lemma tells us that it is reasonable to work with the
condition (4.3) in the first place.

Lemma 4.3. There is a unique continuous function Gi satisfying the condition (4.3) such that
Gi/ψr is bounded.

Proof. Recall the function space B. For y1 > y2, define the operator � : B → B as (�f ) =
J( · ;τy1, σy2, f ); see the definition of the operator � in (3.5). Take f1, f2 ∈ B. Then

‖�f1 −�f2‖B = supx

∣∣∣∣Eψr
x

[
E
ψr
y1

[(
f1(y2)

ψr(y2)
− f2(y2)

ψr(y2)

)
1(U >σy2 )

]]∣∣∣∣
≤ η‖ f1 − f2‖B,

where

η= supx E
ψr
x

[
E
ψr
y1

[1(U >σy2 )]
]
< 1.

Thus there is a unique fixed point Gi to the operator �. �

By reversing the ψr-transform, we rewrite the condition (4.3) as

Gi(x) =Ex
[
e−rτy1 (Ga(Xτy1

) − K1)
]
, (4.4)

where
Ga(x) =Ex

[
e−rUg(XU)1(U <σy2 ) + e−rσy2 (Gi(Xσy2

) + K2)1(U >σy2 )
]
.

Let x< y1 and stopping time τ < τy1 . Then the condition (4.4) and the strong Markov property
yield

Gi(x) =Ex[e−rτGi(Xτ )].

In other words, the function Gi is r-harmonic for x< y1, so we can write Gi(x) = Aψr(x) +
A′ϕr(x), where A and A′ are constants, for x< y1. Since Gi/ψr is bounded, the constant A′ = 0.
Moreover, since Gi is continuous, we can write

Gi(x) =
{

Ga(x) − K1, x ≥ y1,

Aψr(x), x< y1.
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Let x ≥ y1. Then

Ga(x) =Ex
[
e−rUg(XU)1(U <σy2 ) + e−rσy2 (Gi(Xσy2

) + K2)1(U >σy2 )
]

= λ(Rr+λg)(x) +Ex
[
e−(r+λ)σy2 (Gi(y2) + K2 − λ(Rr+λg)(y2))

]
= λ(Rr+λg)(x) + (Aψr(y2) + K2 − λ(Rr+λg)(y2))

ϕr+λ(x)

ϕr+λ(y2)
.

By continuity, this yields

Aψr(y1) = λ(Rr+λg)(y1) + (Aψr(y2) + K2 − λ(Rr+λg)(y2))
ϕr+λ(y1)

ϕr+λ(y2)
− K1.

Solving for A, we find that

A = A(y1, y2) = (K2 − λ(Rr+λg)(y2))ϕr+λ(y1) − (K1 − λ(Rr+λg)(y1))ϕr+λ(y2)

ψr(y1)ϕr+λ(y2) −ψr(y2)ϕr+λ(y1)
.

Summarizing, we can write the candidate solutions as

Gi(x) =
{
λ(Rr+λg)(x) + C(y1, y2)ϕr+λ(x) − K1, x ≥ y1,

A(y1, y2)ψr(x), x> y1,
(4.5)

and

Ga(x) =
{
λ(Rr+λg)(x) + C(y1, y2)ϕr+λ(x), x ≥ y2,

A(y1, y2)ψr(x) + K2, x> y2,
(4.6)

where

C(y1, y2) = 1

ϕr+λ(y2)
(A(y1, y2)ψr(y2) + K2 − λ(Rr+λg)(y2))

= (K2 − λ(Rr+λg)(y2))ψr(y1) − (K1 − λ(Rr+λg)(y1))ψr(y2)

ψr(y1)ϕr+λ(y2) −ψr(y2)ϕr+λ(y1)
.

To find optimal thresholds, we impose the smooth-pasting condition: we assume that the
candidate functions are continuously differentiable over their respective boundaries. This leads
to the conditions

λ(Rr+λg)′(y1) + C(y1, y2)ϕ′
r+λ(y1) = A(y1, y2)ψ ′

r(y1),

λ(Rr+λg)′(y2) + C(y1, y2)ϕ′
r+λ(y2) = A(y1, y2)ψ ′

r(y2).
(4.7)

A simple computation yields

λ(Rr+λg)(x) − Kl = λ(Rr+λgl)(x);

recall expression (4.2). Using this notation, we readily verify that the necessary conditions

https://doi.org/10.1017/jpr.2025.10033 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2025.10033


Stopping with costly reversibility 17

(4.7) can be rewritten as

λ(Rr+λg2)(y2)G(y1) + F2(y1)ϕr+λ(y2) = F1(y1)ψr(y2),

λ(Rr+λg1)(y1)I(y2) + J2(y2)ϕr+λ(y1) = J1(y2)ψr(y1),
(4.8)

where

F1(x) = λ(Rr+λg1)(x)ϕ′
r+λ(x) − λ(Rr+λg1)′(x)ϕr+λ(x),

F2(x) = λ(Rr+λg1)(x)ψ ′
r(x) − λ(Rr+λg1)′(x)ψr(x),

G(x) = −I(x) =ψ ′
r(x)ϕr+λ(x) −ψr(x)ϕ′

r+λ(x),

J1(x) = λ(Rr+λg2)′(x)ϕr+λ(x) − λ(Rr+λg2)(x)ϕ′
r+λ(x),

J2(x) = λ(Rr+λg2)′(x)ψr(x) − λ(Rr+λg2)(x)ψ ′
r(x).

We observe that the conditions (4.8) can be further expressed as

λ(Rr+λg)(y2) + F2(y1)

G(y1)
ϕr+λ(y2) = F1(y1)

G(y1)
ψr(y2) + K2,

λ(Rr+λg)(y1) + J2(y2)

I(y2)
ϕr+λ(y1) − K1 = J1(y2)

I(y2)
ψr(y1).

By coupling these with expressions (4.5) and (4.6), we obtain the conditions

F2(y1)

G(y1)
= J2(y2)

I(y2)
,

F1(y1)

G(y1)
= J1(y2)

I(y2)
.

Using Lemma 4.2, these can be further expressed as

H1(y1) = H2(y2),

R1(y1) = R2(y2),
(4.9)

where

Hl(x) = (�gl)(yl)

(�ψr)(yl)
,

Rl(x) = (�gl)(yl)
(�ψr)(yl)

(�ψr)(yl)
− (�gl)(yl),

for l = 1, 2.
To analyse the solvability of the pair (4.9), we prove some auxiliary results. The next lemma

shows that the fractions
(�gl)(x)

(�ψr)(x)
and

(�gl)(x)

(�ψr)(x)
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have properties very similar to those of

gl(x)

ϕr(x)
and

gl(x)

ψr(x)

in Assumption 4.1.

Lemma 4.4. There exist unique states x̂l < x∗
l and x̌l > x∗

l such that

x̂l = argmax

{
�gl

�ψr

}
and x̌l = argmax

{
�gl

�ψr

}

and the functions

x �→ (�gl)(x)

(�ψr)(x)
and x �→ (�gl)(x)

(�ψr)(x)

are non-decreasing on (0, x̂l) and (0, x̌l), and non-increasing on (x̂l,∞) and (x̌l,∞).
Furthermore, x̂2 < x̂1 and x̌2 < x̌1.

Proof. The main claim is [17, Lemma 3.4]. Thus we show that x̂2 < x̂1, and then x̌2 < x̌1
follows similarly.

Let x̂1 be the unique maximum of the function (�g1)/(�ψr), so that it satisfies the
equation

ψr(x̂1)(�g1)(x̂1) = g1(x̂1)(�ψr)(x̂1).

Then, because g2 = g1 +�, where �= (K1 − K2)(r + λ)/λ, we find that

ψr(x̂1)(�g2)(x̂1) − g2(x̂1)(�ψr)(x̂1)

<ψr(x̂1)(�g1)(x̂1) − g1(x̂1)(�ψr)(x̂1) +�(ψr(x̂1)(�1)(x̂1) − (�ψr)(x̂1))

< 0,

where the last inequality follows because ψr is increasing. Hence the point x̂1 is on the part
where

x �→ (�g2)(x)

(�ψr)(x)

is decreasing, which implies that x̂2 < x̂1. �

The following lemma summarizes the needed properties of the functions Hl and Rl, l = 1, 2.

Lemma 4.5. Let x̂1 and x̂2 be as in Lemma 4.4. Then

(1) H′
l(x) = −ϕr+λ(x)m′(x)

(�ψr)(x)2
(ψr(x)(�gl)(x) − (�ψr)(x)gl(x)),

(2) R′
l(x) = Br+λψr(x)m′(x)

λ(�ψr)(x)2
(ψr(x)(�gl)(x) − (�ψr)(x)gl(x)),

(3) H2(x̂2)<H1(x̂1),

(4) R2(x̂2)< R1(x̂1),

(5) limx→0 H2(x)> 0 and limx→0 R2(x)< 0.
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Proof. Parts (1) and (2) follow by straightforward differentiation and the formula (4.1).
For parts (3) and (4), since g1(x)< g2(x) we find that H2(x)<H1(x) for all x. By Lemma 4.4

we have x̂2 < x̂1 and thus H2(x̂2)<H2(x̂1). We find that

H2(x̂2)<H2(x̂1)<H1(x̂1).

The proof of part (4) is analogous.
For part (5), let x< x0. Then we find that

(�g2)(x) =
∫ x0

x
g2(z)ϕr+λ(z)m′(z) dz +

∫ ∞

x0
g2(z)ϕr+λ(z)m′(z) dz.

The last integral is finite since g2 ∈ Lr
1, and for the first we find by the mean value theorem that

∫ x0

x
g2(z)ϕr+λ(z)m′(z) dz = g2(ξ )

∫ x0

x
ϕr+λ(z)m′(z) dz = g2(ξ )

(
ϕ′

r+λ(x0)

S′(x0)
− ϕ′

r+λ(x)

S′(x)

)
,

where ξ ∈ [x, x0]. As g2(ξ )< 0 and

lim
x→0

−ϕ
′
r+λ(x)

S′(x)
= ∞

(the lower boundary is natural), we find that limx→0 (�g2)(x) = −∞. As ψr is increasing, we
find by similar calculations that limx→0 (�ψr)(x) = ∞. Thus L’Hôpital’s rule with part (4) of
Assumption 4.1 yields

lim
x→0

H2(x) = lim
x→0

− g2(x)ϕr+λ(x)m′(x)

ψr(x)ϕr+λ(x)m′(x)
= − lim

x→0

g2(x)

ψr(x)
≥ 0.

The proof for the limit of R1(x) is analogous. �

We are now in a position to prove that the pair (4.9) has a unique solution under our
assumptions. With the next result, we can continue our analysis with a unique candidate
function Gi.

Proposition 4.2. Let Assumption 4.1 hold. Then there exists a unique solution to the pair of
equations given by (4.9).

Proof. Let ·̂ and ·̌ denote the restrictions to the domains (0, x̂2) and (x̂1,∞) respectively.
Define the function K : (0, x̂2) → (0, x̂2) as

K(x) = (
Ĥ−1

2 ◦ Ȟ1 ◦ Ř−1
1 ◦ R̂2

)
(x).

We notice that y2 is the fixed point of K if and only if the pair (y2, y1), where y1 = (
Ř−1

1 ◦
R̂2

)
(x), solves the pair of equations (4.9). By Lemma 4.5 the function K is well-defined. A

direct differentiation and parts (1) and (2) of Lemma 4.5 yield

K′(x) = (
Ĥ−1′

2 ◦ Ȟ1 ◦ Ř−1
1 ◦ R̂2

)
(x) · (Ȟ′

1 ◦ Ř−1
1 ◦ Ȟ2

)
(x) · (Ř−1′

1 ◦ R̂2
)
(x) · R̂′

2(x)> 0,

showing that K is increasing. Thus K is a monotonic mapping from an interval to its open
subset and must have a fixed point. We denote this fixed point by y2. Consequently, the pair
(y2, y1), where y1 = (Ř−1

1 ◦ R̂2)(x), gives a solution to the pair of equations (4.9).
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To prove uniqueness we use the fixed point property of y2 and find by Lemma 4.5 parts (1)
and (2) that

K′(y2) = H′
1(y1)

R′
1(y1)

R′
2(y2)

H′
2(y2)

= ψr(y2)

ψr(y1)

ϕr+λ(y1)

ϕr+λ(y2)
< 1.

Thus, whenever K intersects the diagonal of R+, the intersection must be from above. �

4.2.2. Candidate belongs to B̂. To use Proposition 3.1 to show that the candidate value is the
actual value of our main problem, we need to show that Gi ∈ B̂. To this end, we first prove the
following lemma.

Now we are ready to prove the following proposition.

Proposition 4.3. The candidate function Gi belongs to the space B̂.

Proof. To complete the proof, we have to show that the following claims are true:

(1) Gi is continuous,

(2) Gi/h is bounded,

(3) �Gi ≥ Gi.

Claim (1) is true since Gi is readily known to be continuous. Claim (3) is also trivially true,
since it is known that �Gi = Gi. It is left to show that claim (2) holds.

First, let x ≥ y1. Then, for some constants a and b, we have

Gi(x)

h(x)
= λ(Rr+λg1)(x) + Cϕr+λ(x)

aψr(x) + bϕr(x)

≤ λ(Rr+λg1)(x)

aψr(x)
+ Cϕr+λ(x)

aψr(x)

= λ(Rr+λg1)(x)

aψr(x)
+ Cϕr+λ(y1)

aψr(y1)
.

Now, since λ(Rr+λg1)/(aψr) is bounded by Lemma 3.4, the rightmost function is also bounded.
Thus Gi(x)/h(x) is bounded for x ≥ y1.

Then let x ≤ y1. Now

Gi(x)

h(x)
= Aψr(x)

aψr(x) + bϕr(x)
≤ Aψr(x)

aψr(x)
= A

a

and thus Gi(x)/h(x) is also bounded for x ≤ y1. This completes the proof. �

4.2.3. Candidate satisfies the Bellman principle. Knowing that Gi ∈ B̂, we show next that it
satisfies the Bellman principle. We start by proving a series of lemmas.

Lemma 4.6. Define the functions fψ : R+ →R and fϕ : R+ →R as

fψ (x) = λ(Rr+λg1)(x) − C(y1, y2)ϕr+λ(x)

ψr(x)
, fϕ(x) = H1(x) − C(y1, y2)ϕr+λ(x)

ϕr(x)
.
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Then the following claims are true:

(i) fψ is non-increasing at x ≥ y1,

(ii) fψ is non-decreasing at x for y2 ≤ x ≤ y1,

(iii) fϕ is non-decreasing at x for x ≥ y1.

Proof. Define the function

Ĉ(x) = λ(Rr+λg1)′(x)ψr(x) − λ(Rr+λg1)(x)ψ ′
r(x)

ϕ′
r+λ(x)ψr(x) − ϕr+λ(x)ψ ′

r(x)
.

Then, differentiating and rearranging the terms, we find that the inequality f ′
ψ (x) ≥ 0 is

equivalent to
Ĉ(x) ≤ Ĉ(y1). (4.10)

This inequality holds if the function Ĉ is increasing on the interval [x, y1]. In addition, if Ĉ(x)
is also increasing in [y1,∞), the converse of (4.10) holds for x ≥ y1, which would complete
the proof of claim (i). Proceeding as in the derivation of (4.9), we can re-express Ĉ(x) as

Ĉ(x) = − λ

Br+λ
R1(x). (4.11)

Thus, by Lemma 4.5 (2), we find that

Ĉ′(x) ≥ 0 if and only if
g1(x)

ψr(x)
≥ (�g1)(x)

(�ψr)(x)
. (4.12)

Since by the lemma (4.4) it holds that x̂1 < y1, we find that inequality (4.12) holds when
x ∈ [x̂1,∞). The same calculation also shows that Ĉ(x) is decreasing when x ∈ [y2, x̂1]. This
implies that (i) is proved, and for (ii) it remains to be shown that (4.10) is true at x = y2.

Using the expression (4.11) for Ĉ(y2) and the second equation in (4.9), we find that we need
to show that

(�g1)(y2) − (�g1)(y2)(�ψr)(y2)

(�ψr)(y2)
≤ (�g2)(y2) − (�g2)(y2)(�ψr)(y2)

(�ψr)(y2)
.

Since the boundaries of the state space are natural, we have

(�1)(y2) = ψ ′
r+λ(y2)

S′(y2)
, (�1)(y2) = −ϕ

′
r+λ(y2)

S′(y2)
,

which implies, together with the application of Lemma 4.2 to function G defined in (4.8), that

(�g1)(y2) − (�g1)(y2)(�ψr)(y2)

(�ψr)(y2)
− (�g2)(y2) + (�g2)(y2)(�ψr)(y2)

(�ψr)(y2)

= −�(�1)(y2) + (�ψr)(y2)

(�ψr)(y2)
�(�1)(y2)

= �

S′(y2)

(
−ψ ′

r+λ(y2) − ψr+λ(y2)ψ ′
r(y2) −ψ ′

r+λ(y2)ψr(y2)

ϕ′
r+λ(y2)ψr(y2) − ϕr+λ(y2)ψ ′

r(y2)
ϕ′

r+λ(y2)

)
,
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where

�= r + λ

r
(K1 + K2) = g2(x) − g1(x).

Because ϕ′
r+λ(y2)ψr(y2) − ϕr+λ(y2)ψ ′

r(y2)< 0, S′ and � are always positive, we find that the
above expression is negative if and only if

−ψ ′
r+λ(y2)[ϕ′

r+λ(y2)ψr(y2) − ϕr+λ(y2)ψ ′
r(y2)]

− ϕ′
r+λ(y2)[ψr+λ(y2)ψ ′

r(y2) −ψ ′
r+λ(y2)ψr(y2)]> 0.

Finally, cancelling the terms, we get the equivalent condition

ψ ′
r+λ(y2)ϕr+λ(y2)ψ ′

r(y2) − ϕ′
r+λ(y2)ψr+λ(y2)ψ ′

r(y2) = Br+λψ ′
r(y2)> 0,

which holds since ψr is increasing. This completes the proof for (ii).
By [26, Lemma 3.6], the mapping

x �→ ϕr+λ(x)

ϕr(x)

is decreasing, which implies that

ϕ′
r+λ(x)ϕr(x) − ϕr+λ(x)ϕ′

r(x) = ϕ2
r (x)

(
ϕr+λ(x)

ϕr(x)

)′
< 0.

To show that fϕ(x) is non-decreasing at x ≥ y1, we first find by differentiation that

f ′
ϕ(x) = (H′

1(x)ϕr(x) − H1(x)ϕ′
r(x)) − C(y1, y2)((ϕ′

r+λ(x)ϕr(x) − ϕr+λ(x)ϕ′
r(x)))

ϕ2
r (x)

.

Thus the claim is equivalent to

(H′
1(x)ϕr(x) − H1(x)ϕ′

r(x)) − C(y1, y2)((ϕ′
r+λ(x)ϕr(x) − ϕr+λ(x)ϕ′

r(x))) ≥ 0.

Noting that C(y1, y2) = Ĉ(y1), we find after rearrangement that the above is equivalent to

ϕ′
r(x)H1(x) − ϕr(x)H′

1(x)

ϕ′
r(x)ϕr+λ(x) − ϕr(x)ϕ′

r+λ(x)
≤ ψ ′

r(y1)H1(y1) − ϕr(y1)H′
1(y1)

ϕ′
r(y1)ϕr+λ(y1) − ϕr(y1)ϕ′

r+λ(y1)
.

Similar to (4.11), we can re-express the inequality as

(�ϕr)(x)

(�ϕr)(x)
(�g1)(x) − (�g1)(x) ≥ (�ψr)(y1)

(�ψr)(y1)
(�g1)(y1) − (�g1)(y1). (4.13)

We now show that (4.13) holds at x = y1 and that the left-hand side is non-decreasing with
respect to x. At x = y1 it suffices to show that

(�ϕr)(y1)

(�ϕr)(y1)
≥ (�ψr)(y1)

(�ψr)(y1)
.
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Now, since ϕr is strictly decreasing and ψr strictly increasing, we have

ϕ(z)

ϕ(y1)
≥ 1 ≥ ψr(z)

ψr(y1)

whenever z ≤ y1 and

ϕ(z)

ϕ(y1)
≤ 1 ≤ ψr(z)

ψr(y1)

when z ≥ y1. Thus

(�ϕr)(y1)

(�ϕr)(y1)
=

∫ y1
0 ϕr(z)ψr+λ(z)m′(z) dz∫ ∞
y1
ϕr(z)ϕr+λ(z)m′(z) dz

=
∫ y1

0
ϕ(z)
ϕ(y1)ψr+λ(z)m′(z) dz∫ ∞

y1

ϕ(z)
ϕ(y1)ϕr+λ(z)m′(z) dz

≥
∫ y1

0
ψr(z)
ψr(y1)ψr+λ(z)m′(z) dz∫ ∞

y1

ψr(z)
ψr(y1)ϕr+λ(z)m′(z) dz

= (�ψr)(y1)

(�ψr)(y1)
.

Denote the left-hand side of equation (4.13) by u, that is,

u(x) = (�ϕr)(x)

(�ϕr)(x)
(�g1)(x) − (�g1)(x).

The derivative of u can be expressed as

u′(x) = (�g1)′(x)(�ϕr)(x)(�ϕr)(x) + (�g1)(x)(�ϕr)′(x)(�ϕr)(x)

(�ϕr(x))2

− (�g1)(x)(�ϕr)(x)(�ϕr)′(x) + (�g1)′(x)(�ϕr)2(x)

(�ϕr(x))2

= m′(x)

(�ϕr)2(x)
[ϕr+λ(�ϕr)(x) +ψr+λ(x)(�ϕr)(x)] [ϕr(x)(�g1)(x) − g1(x)(�ϕr(x))(x)].

Since the first two factors are positive, it now suffices to prove

(�g1)(x)

(�ϕr(x))(x)
≥ g1(x)

ϕr(x)
.
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Now, since g1(x)/ϕr(x) is non-decreasing (by item (4) of Assumption 4.1),

(�g1)(x) =
∫ ∞

x
(g1(z)ϕr+λ(z)m′(z) dz)

=
∫ ∞

x

(
g1(z)

ϕr(z)
ϕr(z)ϕr+λ(z)m′(z) dz

)

≥
∫ ∞

x

(
g1(x)

ϕr(x)
ϕr(z)ϕr+λ(z)m′(z) dz

)

= g1(x)

ϕr(x)

∫ ∞

x
(ϕr(z)ϕr+λ(z)m′(z) dz)

= g1(x)

ϕr(x)
(�ϕr(x))(x),

which concludes the proof. �

The following lemma gives a useful ordering of the candidate functions Gi and Ga.

Lemma 4.7. The candidate value functions Gi and Ga satisfy

Ga(x) − K2 ≥ Gi(x) ≥ Ga(x) − K1

for all x ∈R+.

Proof. For x ∈ (y1,∞) and for x ∈ (0, y2), the claim holds by construction. Thus we assume
that x ∈ [y2, y1] for the rest of this proof.

By a direct calculation we find for x ∈ [y2, y1] that

Gi(x) − Ga(x) + K1 = ψr(x)

ψr(y1)
(λ(Rr+λg1)(y1) − C(y1, y2)ϕr+λ(y1))

− λ(Rr+λg1)(x) + C(y1, y2)ϕr+λ(x).

Reorganizing the terms above, we find that the proposed inequality is equivalent to

fψ (x) ≤ fψ (y1),

where

fψ (x) = λ(Rr+λg1)(x) − C(y1, y2)ϕr+λ(x)

ψr(x)
.

The claim then follows from part (ii) of Lemma 4.6. �

Next, we show that Gi is r-excessive and Ga − λ(Rr+λg2) is (r + λ)-excessive, in order to
use the inequalities

Gi(x) ≥Ex[e−rτGi(Xτ )]

and
Ga(x) − λ(Rr+λg2)(x) ≥Ex[e−(r+λ)τ (Ga(Xτ ) − λ(Rr+λg2)(Xτ ))]

for all stopping times τ .

Lemma 4.8. The function Gi is r-excessive.
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Proof. Since limx→∞ fψ (x) ≥ 0, we find that that Gi(x) ≥ 0 for all x ∈R+. We now show
that

Ex[e−rτ ′
Gi(Xτ ′ )] ≤ Gi(x),

where τ ′ = inf{t ≥ 0 | Xt ∈ [c, d]}, from which the r-excessivity follows by [7, p. 32]. When
x ∈ [c, d], this condition trivially holds, so we consider the remaining cases (1) x< c and (2)
x> d. We split these cases further depending on where y1 is located. Let x< c. Then for c< y1
we find by Lemma 4.6 that

Ex[e−rτc Gi(Xτc )] = ψr(x)

ψr(c)
Gi(c)

= ψr(x)

ψr(c)
ψr(c)fψ (y1)

=ψr(x)fψ (y1)

= Gi(x),

and for y1 < c,

Ex[e−rτc Gi(Xτc)] = ψr(x)

ψr(c)
Gi(c)

= ψr(x)

ψr(c)
ψr(c)fψ ( max{y1, c})

=ψr(x)fψ (c)

≤ψr(x)fψ ( max{x, y1})
= Gi(x).

The case x> d is proved similarly by using part (iii) of Lemma 4.6. �

Lemma 4.9. The function Ga − λ(Rr+λg) is (r + λ)-excessive.

Proof. Recall that Ga is defined as

Ga(x) =
{
λ(Rr+λg)(x) + C(y1, y2)ϕr+λ(x), if x ≥ y2,

Aψr(x) + K2, otherwise.

Then differentiation and rearranging yields

(A− (r + λ))(Ga(x) − λRr+λg(x)) =
{

0, if x ≥ y2,

−λAψr(x) + λ2g2(x), else.

Thus we need to prove that −λAψr(x) + λ2g2(x) ≤ 0 for all x ≤ y2.
First, by Lemma 4.4 and the pair of equations (4.9), we have

g2(x)

ψr(x)
<

(�g2)(x)

(�ψr)(x)
<

(�g2)(y2)

(�ψr)(y2)
= (�g1)(y1)

(�ψr)(y1)
.

Then, similarly to the derivation of (4.9), we can rewrite the above as

λ
g2(x)

ψr(x)
< fψ (y1).
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Multiplying by ψr(x) yields

λg2(x)<
ψr(x)

ψr(y1)
(H1(y1) − C(y1, y2)φr+λ(y1)).

Consequently,

−λAψr(x) + λ2g2(x) = −λ ψr(x)

ψr(y1)
(H1(y1) − C(y1, y2)φr+λ(y1)) + λ2g2(x)< 0,

which concludes the proof. �

Having the auxiliary results at our disposal, we can now show that Gi satisfies the
Bellman principle of Proposition 3.1. First, since the function Gi satisfies the condition (4.3),
we have

Gi(x) =Ex
[
e−rτy1 (Ga(Xτy1

) − K1)
]
,

Ga(x) = λ(Rr+λg)(x) +Ex
[
e−(r+λ)σy2 (Gi(Xσy2

) − λ(Rr+λg)(Xσy2
) + K2)

]
.

On the other hand, by Lemmas 4.7–4.9 we find that

Gi(x) ≥Ex[e−rτGi(Xτ )] ≥Ex[e−rτ (Ga(Xτ ) − K1)] (4.14)

and

Ga(x) − λ(Rr+λg)(x) ≥Ex[e−(r+λ)τ (Ga(Xτ ) − λ(Rr+λg)(Xτ ))]

≥Ex[e−(r+λ)τ (Gi(Xτ ) − λ(Rr+λg)(Xτ ) + K2)],

which implies

Ga(x) ≥ λ(Rr+λg)(x) +Ex[e−(r+λ)τ (Ga(Xτ ) − λ(Rr+λg)(Xτ ))]. (4.15)

Since inequalities (4.14) and (4.15) are true for all stopping times τ , it follows that

Gi(x) ≥ supτ Ex[e−rτ (Ga(Xτ ) − K1)],

Ga(x) ≥ supσ (λRr+λg(x) +Ex[e−(r+λ)σ (Ga(Xσ ) − λ(Rr+λg)(Xσ ))]).

Then, since for stopping times τ ∗ = τy1 and σ ∗ = σy2 we have

Gi(x) =Ex[e−rτ∗
(Ga(Xτ∗ ) − K1)],

Ga(x) = (λ(Rr+λg)(x) +Ex[e−(r+λ)σ ∗
(Ga(Xσ ∗ ) − λ(Rr+λg)(Xσ ∗ ))]),

it follows that

Gi(x) = supτ Ex[e−rτ (Ga(Xτ ) − K1)], (4.16)

Ga(x) = supσ
(
λ(Rr+λg)(x) +Ex[e−(r+λ)σ (Ga(Xσ ) − λ(Rr+λg)(Xσ ))]

)
. (4.17)

Using these, we obtain that (i) for all pairs of stopping times (τ, σ ), we can use equations
(4.16) and (4.17) to conclude that

Gi(x) ≥Ex[e−rτ (Ga(Xτ ) − K1)]

≥Ex[e−rτ (EXτ [e−rUg(XU)1(U <σ ) + e−rσ (Gi(Xσ ) + K2)1(U >σ )] − K1)].
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(ii) For the pair (τ ∗, σ ∗), we have

Gi(x) =Ex[e−rτy1 (Ga(Xτy1
) − K1)]

=Ex[e−rτy1 (EXτy1
[e−rUg(XU)1(U <σy2 )

+ e−rσy2 (Gi(Xσy2
) + K2)1(U >σy2 )] − K1)].

Thus Gi is the solution to the problem (2.3). Summarizing, we have proved the following result.

Theorem 4.1. Let Assumption 4.1 hold. Then

Vi(x) =
{
λ(Rr+λg)(x) + C(y1, y2)ϕr+λ(x) − K1, x ≥ y1,

A(y1, y2)ψr(x), x> y1,

and

Va(x) =
{
λ(Rr+λg)(x) + C(y1, y2)ϕr+λ(x), x ≥ y2,

A(y1, y2)ψr(x) + K2, x> y2,

where

A(y1, y2) = (K2 − λ(Rr+λg)(y2))ϕr+λ(y1) − (K1 − λ(Rr+λg)(y1))ϕr+λ(y2)

ψr(y1)ϕr+λ(y2) −ψr(y2)ϕr+λ(y1)
,

C(y1, y2) = (K2 − λ(Rr+λg)(y2))ψr(y1) − (K1 − λ(Rr+λg)(y1))ψr(y2)

ψr(y1)ϕr+λ(y2) −ψr(y2)ϕr+λ(y1)
.

Here, the thresholds are uniquely given by the conditions

H1(y1) = H2(y2),

R1(y1) = R2(y2),

where

Hl(x) = (�gl)(yl)

(�ψr)(yl)
,

Rl(x) = (�gl)(yl)
(�ψr)(yl)

(�ψr)(yl)
− (�gl)(yl)

for l = 1, 2.

We have shown that in the diffusion case the optimal rule is to activate the investment once
revenue process X is above the threshold y1 and abandon an active investment if the revenue
process reaches the level y2 before the project is completed. Figure 1 shows an example of a
realization of using this kind of stopping strategy. The agent starts as inactive (the path for the
inactive agent is plotted in black), and when the process hits the threshold y1 the agent invests
and his/her status changes to active (the path for the active agent is plotted in grey). When
the status is changed to active a Poisson process with intensity λ is immediately started. This
starting time is plotted as a dashed vertical line and marked as T0. In this realization of the path
the process hits the threshold y2 before the first jump of the Poisson process (dashed vertical
line T1). Thus the agent abandons the project and goes back to inactive at y2 so that she can
wait for a better opportunity. Then the agent again invests and activates when the process hits
y1, but this time the Poisson process jumps before the process hits y2, so the agent receives the
payoff g(XT4 ).
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FIGURE 1. An illustration of a possible realization of the underlying process and the usage of the optimal
policy given by Theorem 4.1.

4.3. An illustration

Let X be the diffusion with initial state X0 = x and the infinitesimal generator

A=μx
d

dx
+ 1

2
σ 2x2 d2

dx2
,

where μ ∈R and σ > 0. This diffusion process is called a geometric Brownian motion. The
state space of the process is R+ and the endpoints of the state space are natural. We further
assume that μ< r and that μ− 1

2σ
2 > 0, so that Xt → ∞ almost surely as t → ∞. The scale

density and the density of the speed measure read as

S′(x) = x−2μ/σ 2
, m′(x) = 2

σ 2
x2μ/σ 2−2.

We fix the constants r, λ > 0 and denote

βλ = 1

2
− μ

σ 2
+

√(
1

2
− μ

σ 2

)2

+ 2(r + λ)

σ 2
> 1,

αλ = 1

2
− μ

σ 2
−

√(
1

2
− μ

σ 2

)2

+ 2(r + λ)

σ 2
< 0.

Then the minimal r-excessive functions for X are

ψr(x) = xβ0 , ϕr(x) = xα0 .
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Further, we consider the linear payoff g(x) = xθ − η, where θ ∈ (0, 1] and η >K2(r + λ)/λ. We
notice now that our assumptions are satisfied.

By straightforward integration we find that

(�g)(x) = 2

σ 2

xθ−βλ
βλ − θ

− η
2

σ 2

x−βλ
βλ

, (�g)(x) = 2

σ 2

xθ−αλ
θ − αλ

+ η
2

σ 2

x−αλ
αλ

,

(�ψr)(x) = 2

σ 2

xβ0−βλ
βλ − β0

, (�ψr)(x) = 2

σ 2

xβ0−αλ
β0 − αλ

.

Using the above calculations, we find using the representation (4.1) that

λ(Rr+λg)(x) = 2λ

σ 2

xθ

(βλ − θ )(θ − αλ)
− ηλ

r + λ
.

We note that analogous calculations also hold for g1 and g2 instead of g. Using these calcu-
lations, we first find that the solutions to the classical stopping problem (Vc(x), x∗) and the
problem with exercise lag but without reversibility (16) (Vr(x), y∗) are given by

Vc(x) =
⎧⎨
⎩

xθ − η− K1, x ≥ x∗,
x∗θ − η− K1

x∗β0
xβ0 , x< x∗,

Vr(x) =

⎧⎪⎪⎨
⎪⎪⎩

2λ

σ 2

xθ

(βλ − θ )(θ − αλ)
− (η+ K1)λ

r + λ
, x ≥ y∗,(

2λ

σ 2

y∗θ−β0

(βλ − θ )(θ − αλ)
− (η+ K1)λy∗−β0

r + λ

)
xβ0 , x< y∗,

where x∗ and y∗ are given by

x∗ =
(

(η+ K1)β0

β0 − θ

)1/θ

,

y∗ =
(

(η+ K1)β0(βλ − θ )(θ − αλ)

αλβλ(θ − β0)

)1/θ

= x∗
(

(θ − βλ)(θ − αλ)

αλβλ

)1/θ

.

Similar calculations show that the solution to the reversible problem studied in previous
sections is characterized by the value functions

Vi(x) =
⎧⎨
⎩

2λ

σ 2

xθ

(βλ − θ )(θ − αλ)
− ηλ

r + λ
+ C(y1, y2)xαλ − K1, x ≥ y1,

A(y1, y2)xβ0 , x ≤ y1,

(4.18)

and

Va(x) =
⎧⎨
⎩

2λ

σ 2

xθ

(βλ − θ )(θ − αλ)
− ηλ

r + λ
+ C(y1, y2)xαλ, x ≥ y2,

A(y1, y2)xβ0 − K2, x ≤ y2,

(4.19)
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FIGURE 2. Optimal thresholds when the rate λ changes.

where

C(y1, y2) = 2λ

σ 2

( yθ1
(βλ−θ)(θ−αλ) − ηλ

r+λ − K1
)
yβ0

2 − ( yθ2
(βλ−θ)(θ−αλ) − ηλ

r+λ − K2
)
yβ0

1

yβ0
1 yαλ2 − yαλ1 yβ0

2

,

A(y1, y2) = 2λ

σ 2

( yθ1
(βλ−θ)(θ−αλ) − ηλ

r+λ − K1
)
yαλ2 − ( yθ2

(βλ−θ)(θ−αλ) − ηλ
r+λ − K2

)
yαλ1

yβ0
1 yαλ2 − yαλ1 yβ0

2

.

Further, the thresholds y1 and y2 in (4.18) and (4.19) are given as the unique solution to the
pair of equations

y−β0
1

(
yθ1

βλ − θ
− η+ K1

r+λ
λ

βλ

)
= y−β0

2

(
yθ2

βλ − θ
− η+ K2

r+λ
λ

βλ

)
,

y−αλ
1

[
βλ − β0

β0 − αλ

(
yθ1

βλ − θ
− η+ K1

r+λ
λ

βλ

)
− yθ1
θ − αλ

− η+ K1
r+λ
λ

αλ

]

= y−αλ
2

[
βλ − β0

β0 − αλ

(
yθ2

βλ − θ
− η+ K2

r+λ
λ

βλ

)
− yθ2
θ − αλ

− η+ K2
r+λ
λ

αλ

]
.

Since it seems that it is not possible to solve the pair of equations explicitly, we illustrate
the results numerically. We select the parameters μ= 0.2, σ = 0.5, r = 0.25, λ= 1.0, θ = 1.0,
η= 1.0, K1 = 0.05, and K2 = 0.04. Using these parameters we find that y2 ≈ 4.46 and y1 ≈
6.25. If we let λ vary but keep the other parameters fixed, we find that the solution approaches
a classical stopping problem, in the sense that y1 → x∗, as λ→ ∞; see Figure 2. This result
is intuitive since in the limit λ→ ∞ there are no changes to reverse the investment and thus
the payoff is immediately realized. Similarly, when K2 → −∞ (so that it is never optimal to
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FIGURE 3. Optimal thresholds when the payoff/cost K2 changes.

Exercise lag

Costly
reversibility

Classical
stopping

2
→

−
∞

→

∞

→ ∞

FIGURE 4. Limiting relations between the problems.

reverse the investment because the cost is too high), we find that y2 → 0 and y1 → y∗, and
hence the problem reduces to the stopping problem with time-to-build considered in [17]; see
Figure 3. These observations are also collected in Figure 4.

Lastly, in Figure 3 we also notice that y2 → y1, when K2 → K1. Interestingly, in this case it is
reasonable to assume that the decision maker effectively follows a Poisson process and at each
jump time makes the decision to either continue or stop and receive the payoff. Consequently,
we conjecture that in this limiting case our considered problem could be represented as a
Poisson stopping problem, as in [12, 16], for example. Unfortunately, the proper treatment
of these considerations is beyond the scope of the present study and therefore left for future
research.
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