Check for
updates

J. Appl. Probab. 1-33 (2025)
doi:10.1017/jpr.2025.10033

A SEQUENTIAL STOPPING PROBLEM WITH COSTLY REVERSIBILITY

JUKKA LEMPA * **
HARTO SAARINEN,*** AND
TARMO TAIPALE,* **** University of Turku

Abstract

We study sequential optimal stopping with partial reversibility. The optimal stopping
problem is subject to implementation delay, which is random and exponentially dis-
tributed. Once the stopping decision is made, the decision maker can, by incurring a
cost, call the decision off and restart the stopping problem. The optimization criterion
is to maximize the expected present value of the total payoff. We characterize the value
function in terms of a Bellman principle for a wide class of payoff functions and poten-
tially multidimensional strong Markov dynamics. We also analyse the case of linear
diffusion dynamics and characterize the value function and the optimal decision rule for
a wide class of payoff functions.
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1. Introduction

The purpose of this paper is to study a sequential stopping problem where the stopping
decisions are partly reversible. The stopping payoffs are contingent on a stochastic process X.
Upon the first stopping decision, the decision maker has to pay a fixed cost Kj. In return, an
exponentially distributed time variable, independent of X, is initiated such that the payoff is
realized when this time has elapsed. However, during the running time of this time variable,
the decision maker can make another stopping decision which stops the time variable from
running and restarts the stopping problem. In return, the decision maker receives a fixed sum
K> < K. If, on the other hand, the time variable runs until the end, the decision maker gets the
payoff g evaluated at the value of X at the time. The objective is then to maximize the expected
present value of the total payoff.

The first key aspect of our research problem is costly reversibility, a topic addressed by a
number of research papers. One of the early papers is that of Abel and Eberley [1], who stud-
ied capacity expansion of a firm under price uncertainty, fixed capital costs, and Cobb—Douglas
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2 J. LEMPA ET AL

production function. The firm has the option to expand production capacity by capital acqui-
sition. Moreover, when the market deteriorates, the firm has the option to reduce the capacity
by selling the capital. Two related papers by Alvarez [4] and Hartman and Hendricksson [15]
reconsider the problem of [1] in a more general setting. In [4] more general price dynamics and
production functions are considered, whereas in [15] the capital costs are subject to stochastic
fluctuations. Adkins and Paxson [2] studied a problem where the investment can be abandoned
before the investment event. Similarly to [15], Adkins and Paxson considered a model with
three stochastic factors for project present value, investment cost, and abandonment value. In
this vein, we also mention Shibata and Wong [27], who considered abandonment options with
endogenously determined reversibility costs. On the more mathematical end of the spectrum,
we refer to Federico and Pham [13] and Lgkka and Zervos [20] for more general analyses of,
respectively, singular stochastic control, and stochastic impulse control models in this context.

Another key aspect of our model is the implementation delay (or time-to-build), which has
also been extensively studied over recent decades. Aid et al. [3] considered a singular stochas-
tic control model for capacity expansion with time-to-build, whereas @ ksendal and Sulem
[23] were concerned with stochastic impulse control with implementation delay. Alvarez and
Keppo [5] studied a model where the time-to-build depends on the value of the state variable
at the time of the investment. Armerin and Song [6] were concerned with the case where the
cash flows, resulting from the investment subject to time-to-build, are distributed over time.
Liang and Yang [19] studied the optimal exercise boundary of an American put option with
fixed delivery lag. Chen and Song [8] considered a delayed optimal stopping model, similar to
[21], for investment timing when part of the investment is paid at the time of the investment
and the rest at the time of completion. Delayed optimal stopping subject ambiguity (Knightian
uncertainty) is the topic of the paper by Delaney [11]. The so-called Parisian implementation
delay was considered by Costeniuc et al. [10]; here, the option to invest is not exercised imme-
diately at the boundary of a favourable region but rather when the state process has remained
constantly in a favourable region for a sufficiently long period. Haejun [14] and Lempa [17, 18]
are concerned with optimal stopping when the implementation delay is stochastic and exoge-
nous. A general approximation approach for optimal stopping with random exercise delay has
been developed by Chen and Song [9].

The model of our study can be seen as an extension of the model studied in [17]. In this
paper, the exercise payoff is subject to an exponential delay, independent of X. As was men-
tioned above, we extend the model of [17] by introducing the costly reversibility to the stopping
problem. Thus the admissible decision rules in the problem are sequential. Further contribu-
tions of our study are twofold. First, we characterize the value function by means of a Bellman
principle for a wide class of payoff functions and time-homogeneous strong Markov dynam-
ics; the dynamics are allowed to be multidimensional. Moreover, we analyse the case of linear
diffusion dynamics and characterize the value function and the optimal decision rule for a wide
class of payoff functions.

The remainder of the paper is organized as follows. In Section 2 we set up the model for
the investment timing problem. The problem is then solved in Section 3. The main results are
illustrated with explicit examples in Section 4.

2. The problem

2.1. The dynamics

Let (2, F, F, P) be a complete filtered probability space satisfying the usual conditions,
where F = {F;};>0; see [7, p. 2]. We assume that the underlying X is a strong Markov process
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defined on (€2, F, F, IP) and taking values in E C R4 for some d > 1 with the initial state x € E.
We further assume that F is generated by X. We take E = (ay, by) X - - - X (aq, bg), where
—oo<ag;<b;<ooforalli=1,...,d. Asusual, we augment the state space E with a topolog-
ically isolated element A if the process X is non-conservative. Then the process X can be made
conservative on the augmented state space E® := E U {A}; see [25]. In what follows, we drop
the superscript A from the notation. By convention, we augment the definition of functions g
on E with g(A) = 0. Define the life-time of the process X as ¢ =inf{r > 0: X, = A}.

Let PP, denote the probability measure [P conditioned on the initial state x and let E, denote
the expectation with respect to P,.. The process X is assumed to evolve under P, and the sample
paths are assumed to be right-continuous and left-continuous over stopping times, meaning the
following: if the sequence of stopping times 7,, 1 7, then X;, — X; Py-almost surely as n — oo.
There is a well-established theory of optimal stopping for this class of processes; see [24].

For r > 0, we let L] denote the class of real-valued measurable functions f on E satisfying
the integrability condition

¢
]Ex|:/ e "F X dt} <oo forallxeE.
0

For a function f € L, the resolvent R,f : E — R is defined as

¢
Ref)(x) = By [ fo X, ds]

for all x € R;. It is well known that the family (R; )0 is a strongly continuous contraction
resolvent and that it has the following connection to exponentially distributed random times:
if U ~ Exp()) and independent of X, then A(R,4,g)(x) =E,[e™ Ug(X v)] whenever g € L'; see
[25]. Finally, the function 4 is said to be r-harmonic for X if h(x) = E,[e " h(X;)] for all
F-stopping times .

2.2, The timing problem

We define the timing problem inductively and start by considering the case where the
stopping decision cannot be reversed. Let U ~ Exp(A) be independent of X, and define

Vo) = Eile "V g(Xp)] = A(Rr+28)(x),

V2(x) = sup, Erle ™" (MR,41.8)(Xz) — K1)].

Here the function g is the payoff function; we assume that this function satisfies the following.

@2.1)

(Al) The payoff g: E—~ R is in L!, is lower-bounded, satisfies the condition S*:=
{x: g(x) > 0} # ¢, and the process X reaches the set ST with positive probability for
all initial states x,

(A2) There exists an r-harmonic function 4: E — R such that the function x — g(x)/h(x) is
bounded.

In (2.1), the function Vg is the value of an active investment (i.e. the investment is initiated)
when there is no possibility of calling the investment off. Note that the value function V? is
(essentially) that of [17]. This corresponds to the case where the investment opportunity is
inactive (i.e. the investment is not initiated), the investment decision cannot be called off, and
initiation of the investment incurs a cost of K.
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Proceeding inductively, for the case where a stopping decision can be reversed k times, we
write

VE) = sup, Bole™Vg(Xp) (U < 1) + (V™ (Xo) + K)1(U > 7)),
(2.2)
VE@) = sup, Exle™" (VA(X:) — K]

An alternative expression for the function V, above can be found. To find it, we first note that
the following holds for any measurable function f:

Ex[e™ " f(X)L(U > 1)] = Ex[E[e™"f(X0)L(U > 7)| 7 1]

=Exle™ " f(X0)EL[1(U > )| F]]
=E.[e"f(Xr)e 7]

=E,[e""TFX)].
Hence
VE(x) = sup, Eile"Ve(Xp)1(U < 7) + e *(VE1(X,) + Ko)1(U > 7)]

= sup, Ex[e "Ve(Xp)) +e " (VET (Xy) — e Vg(Xp) + K)1(U > 7))
= sup, Exle "Ve(Xp)) +e " (VET (Xy) — A(Rr12.8)(Xz) + K2)L(U > 7))
= MRy13.8)(x) + sup, Ey[e "IV (X)) — MRr428)(Xo) + K2)].

Our main problem can then be written as the limiting case

Vo) =VE@ = lim Vi), Vi) =V = lim Vi(x). (2.3)

The corresponding decision variables are then increasing sequences of stopping times denoted
as T = (17,)n>1. The following proposition provides us with sufficient conditions for the main
problem (2.3) to be well-defined.

Proposition 2.1. The problem (2.3) is well-defined, i.e. the limiting functions limg_, o ij and
limg_, o0 Vl-k exist.

Proof. We prove the result for V;; the function V, is handled similarly. For the purpose of
the argument, we write the value function Vik = Vl-k(~, K1, K»); here, K; are the cost param-
eters in the definition of the problem. Then it is straightforward to show by induction that
VE(, K1, K2) < VE(-, 0, 0).

Our task is to show that the function V{‘(-, 0, 0) can be represented as the value of an optimal
stopping problem. To this end, we first note that by [24, Theorem 1 and Corollary, p. 124],
the optimal stopping problem V(x) = sup, .7 E,[e™"" g(X;)], where T is the set of F-stopping
times, has a finite solution under assumptions (A1) and (A2). Now let N be a Poisson process,
independent of X, with rate A. Furthermore, let F be the filtration generated by N and (X;)
and let 7y be the set of Fy-stopping times. Let Vy(x) = SUp ey E [e " g(X;)]. Since X is
Fy-adapted and the payoff is independent of N, we find that V = V.

Let ((t;, 0,-))5.‘:1 be a vector of pairs of F-stopping times such that t; < o; < 7541 < 0j41 for
alli=1, ..., k— 1 with o = 00. For such a vector, let 7 be the first arrival of N such that its
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arrival time T € (t;, 0;) for some i =1, . . ., k; if this does not occur, set T = co. Then 7 € Ty;
denote the set of such t as S;. Moreover, since T > 71, we find that

Ex[e™"" g(Xr)] =Eile” " Ex, [e” " g(Xo)]]
=Ei[e” " Ex, [e7"¢(X)1(r <0o1) + e " g(X)I(r > o1)]]
=Ede " Ex, [e"VeXp)L(U < 01) + ¢ ""'Ex, [e”"gX)IL(U > o1)]],

where U ~ Exp(A) is independent of X. In the last equality, we used the memoryless property
of the exponential distribution. Now we can proceed with the term IEXU1 [e7""g(X;)] in the same
way and eventually recover the objective functional in (2.2) with costs equal to zero. Finally,
since the stopping times t are indexed by the vectors ((z;, ai))f: 1» we find that Vl.k(x, 0,0)=
sup;cs, Exle™""g(X7)]. Thus

VE@) = VE(x, K1, K2) < VE(x, 0,0) < Vy(x) = V(x)  for allk,

since S, C Ty.

To conclude, we observe that the sequence (Vb is increasing; indeed, we can augment any
k-vector ((t;, al-))f?: | to a (k+ 1)-vector with 74| = op41 = 00, which yields the same payoff
as the original k-vector. Consequently the limit V; = limy_, o V{‘ exists and is finite. U

Remark 2.1. The limiting case K» — —oo corresponds to the case where abandonment of
the project becomes prohibitively expensive. In this case the problem is reduced to VZ-O(X) =
sup; Ex[e ™" (MR 28)(X7) — K1)].

The limiting case 1 — oo corresponds to the case where the implementation delay vanishes
and the payoff is realized immediately at the exercise. In this case the problem is reduced to
the standard optimal stopping problem V(x) = sup, E,[e™"" (g(X;) — K1)].

3. Bellman principle

The purpose of this section is prove the Bellman principle of optimality for the problem
(2.3). More precisely, we define the Bellman operator on an appropriate function space and
prove that the value function is the unique fixed point of this operator. We study the problem
(2.3) under the following assumption.

Assumption 3.1. The process X is time-homogeneous.

Since the process X is time-homogeneous, it is reasonable to expect that after a single
‘inactive—active’ cycle has been completed, the problem starts afresh with the same remaining
value. Thus we will look for a Bellman operator over a single ‘inactive—active’ cycle.

Next we set up the function space on which we define our Bellman operator. Let B be the
set of functions f: E — R satisfying the conditions

(B1) f is continuous,
(B2) the function f/h is bounded, where & is the harmonic function in assumption (A2).

Define the norm

I flls = H%

u

on B; under the metric induced by this norm, the space B is a complete metric space.
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We elaborate the definition of the function space by setting up auxiliary stopping problems.
For f € B, define the first auxiliary stopping problem

Wa(x:f) = sup, Ele”Ve(Xp)I(U < o) + ¢ (f(X5) + K)I(U = 0)]
(3.1)
= MRr12.8)) + sup, Exle "7 (F(Xo) + K2 — M(Rr12.8)(Xo )]

Assumption 3.2. The function W,(-, f) is continuous for all f € B.

Under this assumption, we know from the general theory of optimal stopping (see [24,
Corollary 1.2.9]) that there is an optimal stopping time of’-" in (3.1) which can be identified as
the first hitting time for the closed set

i = (x| Wa(x; /) =f(x) + K2 — MRr12.8)(0)}.
For f € B, the second auxiliary stopping problem is defined as
Wi(x; ) = sup, Ex[e™"" (Wa(x; f) — K1)]. (3.2)

Assumption 3.3. The function W;(-, f) is continuous for all f € B.

Under this assumption, we find (again by [24, Corollary 1.2.9]) that there is an optimal
stopping time rji“ in (3.2) which can be identified as the first hitting time for the closed set

Sp={x | Wite, f) = Wa(xsf) — K ).

Assumption 3.4. The resolvent (R, g)(x) is continuous.
Assumption 3.4 is required to show that the value function is sufficiently well-behaved.

Remark 3.1. Assumptions 3.1-3.4 are satisfied for linear diffusion dynamics for payoffs sat-
isfying assumptions (Al) and (A2), if the payoff is also continuous. See Section 4.1 for
details.

To work in the space B, using Doob’s excessive transform (see [7]), we rewrite the optimal
stopping problems (3.1) and (3.2) as

Xox) + K
Wa(x,f)zh(x)Eill:g(XU)l(U < 0';) 4 <M)1(U> ijk)i|’

h(XU) h Xo;.‘)
(3.3)
Wi f) = h( )Eh[Wa(X’f;f) - Kl}
(s f) = h(x —_—
l L h(xy)
Using these formulations, we define the Bellman operator
(Af) = Wi(-, /), (3.4)

forall f € B.
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We narrow down the considered function space by the two additional conditions

B3) (Af) =f,
(B4) Af is continuous.

The function space satisfying assumptions (B1)-(B4) is denoted by B; we point out that
B # ), since the function f =0 is in B. Intuitively, assumption (B3) describes the fact that
increased flexibility has to yield additional value.

Lemma 3.1. The function space B is a complete metric space under the metric induced by the
norm || - ||g and A is a mapping from B to B.

Proof. Since B is a complete metric space, it is enough to show that B is closed. For stopping
times T < o, function f, and point x, let us define the J operator

K

gXy) fXs)+ K>
WU <o)+ 20T 722 o

h(Xv) h(X5)

J(x; 7, 0, f) = h(x)E} []E’;(T [ 1(U > a)] — ] (3.5)

Suppose there is a sequence of functions f;, € B such that fu — f with respect to the
norm || - ||g. We need to prove that (Af)(x) > f(x). To do that, we first show that (Af)(x) =
limy,— o0 (Afn)(X).

Let 7, o be any stopping times such that T < o. For a given x, there exists n, for each ¢ > 0
such that for each n > ng, the functions satisfy

f)  fG)
h(x)  h(x)

€
<—.
h(x)

Hence

T, 0, /) —Jxs T, 0,f)

Eﬁ[Eél(r |:g(XU)1(U<(T)+ (fn(XU)+K2)1(UZU)] _ K i|

= h(x)

HXo) "Xo) X
wlwn | €Xv) f(Xs)+ K> K
_EX[EXf[h<xU>1‘U<”)+( HXo) )“Uz(’)} h(xo]'

= h(x)

o[t (“52) o]

|23 o]

= HOR h[ Xf[hogf )H

<é&

’

which implies that
|Afu(x) — Af ()| = [ sup, , J(x; T, 0, fu) —sup, , J(x; 7, 0, f) < €.

Then Af(x) =1lim,— o0 Afy(x) > lim,— o fn(x) =f(x), and thus Bisa complete metric space.
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Next we show that Af € B. We start by proving that the function Af/h is bounded. First,
by definition of A, we have Af > 0. Moreover, since & is r-harmonic, it is strictly positive
inside the state space. Now, since rf* < af* and K, < K1, we find by monotonicity and Jensen’s
inequality that

Af(x) (Af(x))+
h(x) — \ h(x)

Y Y 0. ¢7)) . f(Xaf*)Jer . K T
_E*[E"ff[h<xu>1w<“f)+< h(X7) )I(UZ"f)]_ }

< (ugnB +11flp +E! [E?f,; [h(l;?)] N h(f(i*)DJr

! !

+
<+ 1"+ (s (Komfe™] — KB 77))

=llglls + 11118

for all x. Thus ||Af||B < oo. We also find that

(A*f)(0)
= sup, E.[e 7" (sup, E[e"YeXt)1(U < 0) + (A Xo) + K2)L(U > 0)] — K1)]
> sup, Ex[e™"" (sup, Ec[e "Ve(X)I(U < 0) + (F(Xs) + KD)I(U > 0)] — K1) ]
= (ANHX).

The function Af is continuous by Assumption 3.2. Finally, since Af € B, the function A’f is
also continuous by Assumption 3.2. Thus A is a function from B to B. (|

Lemma 3.2. The mapping A : B — B is a contraction.

Proof. Let f1, f> € B. Then the distance

[(Af1)@) = (AR@] = (AfDE) — (ARE)LAM)E) > (AfH)(X))
+ (AR — (ADEL(AL)E) > (Af)K))
= (&1, o7, fi) = I (6 T 0, ) LA > (Af2)(X))
+ (I (st o, 2) = (6 77, 0f, 1)) HAAR)@) > (Af)(X))
(67t o fi) = I (6 T, of, o) A > (Af2)(X))

+ (T, o, o) = (6 T30 0, 1)) HAAR)@) > (Af)(X).

<(J
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By the definition of J, we find that

J(x; T, O’ﬁ,fl) —J(x; T, Uff,fz)

- ot Gy~ oy i)

1

<1~ Y B [1(U > )]
1
Define

y = sup, (max{IE;/” [Eg’* [1(U > off’l‘)]], EYr [IE;?’
i ’ j

X
f2

1w =o3)]]})

Since (Af) > f, we must have SJ‘} N Sj’; =@ forallf e B and consequently y < 1.
These yield the desired result:

IAfi = Afalls = vIlfiL — f2llB,
where y < 1. O
Using the operator A, we can rewrite the value functions Vl-k as follows.

Lemma 3.3. The value functions Vl{‘ in the problem (2.2) can be written as
Vi) = A (M(Ry4.8)() — K2).
Proof. First we study the function VlQ . We find that
VP (x) = sup, Exle ™ Ex, [e”"V g(Xu)]]

=sup, E;[e”" AR 1128)(X?)]
= sup, Ex[e”"" (A(R+18)(X¢) + sup, Ex, [e” M7 . 0]))]
= sup, Ex[e”" (A(R42.8)(X:)
+ sup, Ex, [e” "™ (MRr12.8)(Xo) — K2 — MRr42.8)(Xo) + K2)D)]

= AARr42.8)(x) — K2).
The claim then follows inductively from the fact that Vl."Jrl = AV}, U

Now we can write a similar expression for the value function of the problem with infinitely
many reversals as

Vit = lim V() = lim AHOUR12)8(x) — K2) = AP (M(R42.2)(x) — Ka).

Next we show that A(R,4,g)(x) — K> € B. The first condition is true by Assumption 3.4;
next we will prove a lemma to guarantee the second one.

Lemma 3.4. If f /h is a bounded function, for some function f and some r-harmonic function
h, and then R,1,f /h is bounded for all A\ > Q.
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Proof. Let M be a constant such that f(x)/h(x) < M, and let r, A > 0. Now, for all x, we find
that

Repn ) B[ [0° e TPV di
h(x) h(x)

B[ f5° e M n(X,) di]
- h(x)
ME,[[5° e M h(X,) di]
h(x)
MRy 45h)()
h(x)
h(x)

=

and thus (R,4,f)(x)/h(x) is bounded by definition. O

To show that the value function V; is the unique fixed point in B, we still have to show
that V; € B. First we see that since the resolvent M(R;4,.8)(x) is continuous, and by Lemma 3.4
the ratio A(R,4+18)(x)/h(x) is bounded, and those conditions apply for constants and sums of
functions fulfilling the conditions, it follows that A(R,+,g) — K2 € B.

By recalling that VZQ = AA(Rr+18) — K2), we see that Vi0 is continuous by Assumptions 3.2
and 3.3, and the boundedness of Vi0 /h is inherited from A(R,4, g) — K> since the operator A is
a contraction with respect to the norm || - ||p by Lemma 3.2. Then, since AV? = Vil, it follows
by the monotonous order of Vf‘ that AV,Q > VlQ. Finally, by Assumptions 3.2 and 3.3, it follows
that Af is continuous, and hence VIQ eB.

Since the operator A is closed in space B, it follows inductively that Vl-k € B forall k. Finally,
since B is a complete metric space, it follows that V; = limy_, o V{‘ cB.

Using that expression and the previous lemma, we can prove the main result of this section.

Theorem 3.1. (Bellman principle.) The value function V; is the unique fixed point of the
operator A in B.

Proof. Since by Lemma 3.2 the operator A is a contraction, for every ¢ > 0, there exists n;
such that

Vix) — V)| = [(A®E)(x) — (A"E)()|
< [(A"™ig)(x) — (A"E)()| + g
<y"(AE)(x) — Q)| + g

< PII(A®E) ) — ()| +§

<s+a
-2 2
=¢
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for all i and all n > n,, where £(x) = A(R;+,8)(x) — K>. Consequently we have
[Vi— AVi| < |Vi— AV 4+ |AV! — AV
<IVi= Vi +y IV = Vi
-0

when n — oo. Thus the value function V; is a fixed point of A. By Banach’s fixed point
theorem, the fixed point is unique. O

4. A class of solvable problems: Linear diffusion dynamics

4.1. The problem specification

We assume that the process X follows a regular linear diffusion on the positive real line R .
Furthermore, we assume that the boundaries of the state space are natural. Now, the evolution
of X is completely determined by its scale function S and speed measure m inside R™; see [7,
pp. 13-14]. Furthermore, we assume that the function S and the measure m are both absolutely
continuous with respect to the Lebesgue measure, have smooth derivatives, and that S is twice
continuously differentiable. Under these assumptions, we know that the infinitesimal generator
A: D(A) — Cp(R4) of X can be expressed as

1, d& d
A= 50 (x)@ + M(X)a,
where the functions ¢ and u are related to S and m via the formula

N
m(x)——az(x)

PO and S =eBY forallxeRy,

where

)
B(x) .= / 01;83 dy,

see [7, p. 17]. From these definitions we find that

2 S//
o’x)=———— and pk) = ) for all xe RT.

S’ (x)m’ (x) B S’ z(x)m’ (x)

In what follows, we assume that the functions u and o2 are continuous. The assumption that
the state space is R™ is done for convenience. In fact we could assume that the state space is
any interval Z in R and the subsequent analysis would hold with obvious modifications.
Denote the hitting time for set S as g and the hitting time for point y as 7y. Then we
call a state in E =R" regular if P(t(0,x) = 0) = P(t(x,00) = 0) = 1. Under our assumptions, the
process X is a regular linear diffusion and the speed measure m is absolutely continuous with
respect to the Lebesgue measure. Thus we see that by [7, p. 13], all states in R are regular.
Then we let v, and ¢,, respectively, denote the increasing and the decreasing solution of the
second-order linear ordinary differential equation .Au = ru, where r > 0, defined on the domain
of the characteristic operator of X. The functions v, and ¢, can be identified as the minimal
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r-excessive functions ¥, and ¢, of X; see [7, pp. 18-20]. Finally, it is well known (see [7, p.
19]) that for a given f € L] the resolvent R,f can be expressed as

(Rf)(x) = B, L 9:(x) /0 Y fO)m' (v) dy + B, 1, (x) / orf m' (y) dy (4.1)

for all x € R, where

¥, (x) @(%)
= /r ©r(x) — :

S (x) S'(x)
denotes the Wronskian determinant.

Next, we propose the class of payoff functions for which we study the problem (2.3). In

what follows, we use the notation

B, e

r4+A

for brevity.

Assumption 4.1. For /=1, 2,

(1) the payoff g; € L is bounded from below and continuous,

(2) there exists a unique 0 < x? < 00 such that g;(x) % 0, when x % x?,

(3) there is a unique state x; which maximizes the function

gi(x)
H
¥ (x)

and that this function is non-decreasing on (0, x;‘) and non-increasing on (x}k, 00).
Further, the limiting conditions

gi(x) <0< lim gi(x)

im <0< < 00
x—0+ Y (x) x—>00 Y (X)
hold,
(4) the function
81(x)
H
or(x)

is non-decreasing.

Assumption 4.1 is fairly weak and easy to verify; similar assumptions appear frequently
in optimal stopping. Roughly speaking, the assumption means that the payoff g should be
continuous and non-decreasing, and satisfy suitable limiting conditions at the boundaries.
Furthermore, the payoff can be unbounded but the rate of growth is constrained by item (3).
The assumptions are similar to the irreversible problem with exercise lag studied in [17].

We show that that the problem specification of this section satisfies Assumptions 3.2 and
3.3; Assumption 3.1 is assumed to hold. To this end, we recall the definition of the fine topol-
ogy. A set A is finely open with respect to a process X if for each x € A there exists a nearly
Borel set B C A such that P,(tpc > 0) = 1. We prove the following lemma.
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Lemma 4.1. Let X be a strong Markov process in RT with almost surely continuous paths,
such that each x € E =1 is a regular state. Then a set A is finely open if and only if it is open.

Proof. First, let A be an open set. Thus, for each x € A, there exists a ball B(x, §) C A for
some § > (. Now, since the paths of X are almost surely continuous, it follows that for each
w € 2, barring a zero-measured set of exceptions, there exists #5(w) such that X;(w) € B(x, §/2)
for all 0 <7 < ts(w). Consequently, T(x,s)c (@) > TBx,s/2)c(w) > ts(w) > 0, yielding

Px(‘rb(x,(s)zr > 0) =1.

Since this is true for all x € A, the set A is finely open by definition.

Next, assume that A is not open. Then there exists a sequence x; of points in A° that con-
verges to some x € A. Either an infinite number of those points are on the left side of x, or an
infinite number of them are on the right side of x. By symmetry, let us assume the left side of
x has infinite number of points x;. Then those points form a subsequence that also converges
to x.

Now, since x is a regular point, the stopping time (g, x) = 0 almost surely. Thus, if # > 0, for
each w, barring a zero-measured set of exceptions, there exists a time index u(w) < ¢ such that
Xu(w)(®) < x. There exists a member of x; such that X, (@) < Xj) < X, implying that

TBCSTACETxi§u<t

for chosen w, where the inequality 7y, < u follows from the path of X; being almost surely
continuous (the exceptions to this can also be disregarded as a null set). Since the claim is
true for any nearly Borel B C A and for any ¢ > 0, it follows that tgc = 0 almost surely for any
nearly Borel B C A, implying that A is not finely open, and completing the proof. t

As an immediate consequence we get the following.

Corollary 4.1. Let the process X satisfy the assumptions of Lemma 4.1. Then a function
f: R— R is continuous if and only if it is finely continuous with respect to X.

We have shown that fine continuity and continuity are equivalent in one-dimensional
Markov processes satisfying the assumptions of Lemma 4.1. Thus the next result follows by
[28, Theorem 5, p. 135].

Corollary 4.2. Let the process X satisfy the assumptions of Lemma 4.1 and let g be a
continuous function. Then Assumptions 3.2 and 3.3 hold.

The process X does satisfy the assumptions of Lemma 4.1, so we only need to show that
Assumption 3.4 holds. By [22, Lemma 8.1.4, p. 143] the function u(¢, x) = E,[f(X})] is contin-
uous for all bounded and continuous functions f. Then, if ¢ > 0 and M is an upper bound for
|g(x)|, there exists a number 7 > 0 such that

© 1 £
/ e MTdr=-—eT < —.
T r 4M

https://doi.org/10.1017/jpr.2025.10033 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2025.10033

14 J. LEMPA ET AL

Then, if § > 0 is such that for all y € B(x, §) we have |g(x) — g(y)| < re/2, we get

T
|(R-&)(x) — (Rrg)(¥)| = /0 e "u(t, x) — u(t, y)| dt

E, |:/°° e "g(Xy) df] —Ey |:/°° e "g(Xy) df:|
T T

T re 00
5/ e_”—dt+2f Me " dr
0 2 T

e(l—e T
_sld-em) &
2 2

_I_

<E€.

Thus the resolvent (R,g)(x) is also continuous when g is bounded, as also claimed by [22,
Lemma 8.1.3, p. 143]. Now, if g is continuous and the ratio g /A is bounded for some r-harmonic
function h, we get

o T X))
(Rr2)(0) = /0 Eide™ g X0) dtzfo = [e WZ_X;] dt:Rg(i)(x)

in other words, the resolvent can be represented in terms of another resolvent in the h-
transformed space, where the argument is g/h and the rate is A. That resolvent is continuous,
since its argument is bounded and continuous. Thus we have shown the following proposition.

Proposition 4.1. Assumption 3.4 holds for the process X and the gain function g satisfying
Assumption 4.1.

To close the subsection, we present the following lemma without a proof, as it follows from
the representation (4.1) and [16, Lemma 2.1] by means of differentiation.

Lemma 4.2. Let f € L{. Then
Y (O@r 1 (x) — Yr(0)@) 5 () = AS ()(PY,)(x),
MR 1) (@ 12.(X) = MRy 1))@ 45, (X) = 1S ()(PF)(),

228 (x)

By

ARr3) QO (X) = AR )XY (x) = (@A Yr)(x) = (EHE)(PY)(X)),

where

X

(®f)(x) = / raaMf M () dy, (¥ = /o Ve ) )m' (v) dy.

4.2. The solution

We start by first deriving a candidate solution to our main problem, then show that this
function is in the function space B (for the r-harmonic function ¥,), and finally show that it
satisfies the Bellman principle of Proposition 3.1.

4.2.1. Deriving the candidate. Since we are dealing with a time-homogeneous problem, we
start with the working assumption that the optimal policy is of the following type: consider
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thresholds y; > y> and the rule that

e an inactive investor should engage the investment once the state variable X is above the
threshold y1,

e an active investor should disengage the investment once the state variable X is below the
threshold y,.

Denote the candidate solution for the inactive investor as G;. Then the rule described above
can be expressed as

Gi Xa + K
Gi(x) = Y, (OEY [(Eg [ sXv) Xoy,) + K2

V2 . Ki
S T R s 1a]>”””] wmxgn>}‘

4.3)

This condition is expressed in terms of the 1,-transform; we have already used this way of
writing in the previous section. The reason for this is the same as above: it lends itself well
to fixed point arguments. The following lemma tells us that it is reasonable to work with the
condition (4.3) in the first place.

Lemma 4.3. There is a unique continuous function G; satisfying the condition (4.3) such that
G/ Y, is bounded.

Proof. Recall the function space B. For y; > y;, define the operator ®: B — B as (B®f) =
J( -1y, 0y,, f); see the definition of the operator A in (3.5). Take fi, f> € B. Then

BV [E;pl, [(fl(m) _ hO2) >I(U - O'yz)ﬂ ‘

Ofi — Ofills =
1©f1 — ©f21lp = sup, Vr(y2)  ¥r(2)

=nllfi = f2lls,
where
n=sup, BV [EY[1(U > 0y,)]] < 1.
Thus there is a unique fixed point G; to the operator ®. O

By reversing the i,-transform, we rewrite the condition (4.3) as
Gi(x) = B [e™"™1(Gu(Xy, ) — K1), (4.4)

where
Gu(x) = Ex[e_rug(xU)l(U < ayz) +e (Gi(Xoyz) + K)1(U > Oy, )]
Let x < y; and stopping time 7 < Ty, . Then the condition (4.4) and the strong Markov property
yield
Gi(x) = Ex[e7"" Gi(X7)].

In other words, the function G; is r-harmonic for x < y;, so we can write G;(x) = Ay (x) +
A’@,(x), where A and A’ are constants, for x < yj. Since G;/v, is bounded, the constant A’ = 0.
Moreover, since G; is continuous, we can write

Gux) =K1, x>y,

Gitv) =
{Amum x<yi.
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Let x > y;. Then
Galx) = Eo[e "V eX)L(U < 0y,) + 7" 2(GilXoy, ) + K)I(U > 33,)]

= MR 13.8)®) + Ec[e ™2 (Gi(y2) + K2 — MRr428)(72)]

@r2(X)

= MRr1,.8)(x) + (AYr(y2) + K2 — MRr128)(y2)) —— .
0r+.(02)

By continuity, this yields

Or+.01) _

Ay (y1) = MRr12.8)01) + (AYr(v2) + K2 — A(Rr15.8)(02))
©r2(2)

K.

Solving for A, we find that

(K2 = AMRr43.8)32)@r+2.(1) — (K1 = MRr428) 1) @r+2.(32)
VrGD)@r2(2) — ¥r(72)@r 2. (1) ’

A=AQ1,y2)=

Summarizing, we can write the candidate solutions as

Gitx) = AR 128)(xX) + CO1, y2)@reax) — K1, x=y1, @.5)
A(ylv YZ)wr(x)’ X>}’1,
and
Gu(r) = MR 2.8)(X) + COy1, y2)@r4i(x), x>y2, 4.6)
A1, YU (x) + Kz, X>y2,
where
1
COy1, y2) = ———AG1, Y)Y -(02) + Ko — AMR42.8)(12))
©r3.(2)

_ (K2 — MRy 13,002 ¥r(y1) — (K1 — ARy 13,0 1))V (y2)
YrD@r+2.(2) — ¥r(2)@r+2 (1) .

To find optimal thresholds, we impose the smooth-pasting condition: we assume that the
candidate functions are continuously differentiable over their respective boundaries. This leads
to the conditions

AMRr43.8) 1) + Cy1, y2)9, 15,01 =A01, y2)¥, (1),

4.7)
A(Ry12.8) (2) + CO1, ¥2)9r15,(72) = A1, Y)Y (32)-

A simple computation yields

MRy 12.8)(x) — Ki = A(Ry15.8D)(%);

recall expression (4.2). Using this notation, we readily verify that the necessary conditions
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(4.7) can be rewritten as

MRr12.82)2)GO1) + F2(yD@r+a(v2) = F1 DV (32),

(4.8)
AMRr2.8D0DI02) + L2(02)@r2.(v1) = 12V (1),
where
F1(x) = ARy +281) ()@, 3 () — MRy13.81) ()@r4+1 (),
F2(x) = MRy 1581 ()Y, (x) = A(Rr42.81) () ¥r(%),
G() = —1() = Y} () Pr3.() — V(D)5 (),
J1(0) = A(Rr45.82) (09r15.(X) — MR 1282)(X)¢; 15, (),
J2(x) = MRy43.82) ()Y (x) = A(Rr+41.82)) Y, (x).
We observe that the conditions (4.8) can be further expressed as
F>(y1) _ Fin)
AMRr4:.8)(v2) + GO ———¢r202) = GO ———¥r02) + Ko,
J
MR + 12(@2)) PriaOn) — 1(”)) ey
By coupling these with expressions (4.5) and (4.6), we obtain the conditions
00 _ L202)
Gon 1)’
Py _ N1102)
Go 1)
Using Lemma 4.2, these can be further expressed as
Hi(y1) = Ha(y2),
4.9)
R1(y1) = R2(y2),
where
o]
Hir) = (28001
(C6D)
(W) (vr)
R =(d — — (¥ s
1(x) = (Pg(1) VO (W)
forl=1, 2.

To analyse the solvability of the pair (4.9), we prove some auxiliary results. The next lemma
shows that the fractions

(@en®) 4 (We)®)
(@Yr)(x) (Wrr)(x)
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have properties very similar to those of

8i(x) g1(x)
and
@r(x) ¥ (x)
in Assumption 4.1.
Lemma 4.4. There exist unique states X < x;' and X; > x| such that

Pgi } . { Ve }
and X; = argmax
QY Vi,

X = argmax{

and the functions
(Pgn(x) (Wgn(x)
> — > —
(DY) (x) (Wr)(x)
are non-decreasing on (0,%;) and (0, X;), and non-increasing on (x;, 00) and (X, Q).
Furthermore, X, < X1 and X < X1.

and

Proof. The main claim is [17, Lemma 3.4]. Thus we show that X, < X1, and then X; < X;
follows similarly.
Let x; be the unique maximum of the function (Pg;)/(Py,), so that it satisfies the
equation
VrGD(@g1(1) = g1 GNP, )(X1).
Then, because g» = g1 + 2, where Q2 = (K1 — K7)(r + 1)/A, we find that
VUr(X1)(Pg2)(x1) — g2(X1 ) (P (X1)
< YrGD(Pg1)GE1) — g1GN(PY)(1) + QYRR 1)) — (PP (R1))
<0,

where the last inequality follows because v, is increasing. Hence the point X; is on the part

where
(Pg2)(x)
s ~ 0=/
(Y)(x)

is decreasing, which implies that X, < X;. O
The following lemma summarizes the needed properties of the functions H; and R, [ =1, 2.

Lemma 4.5. Let x| and X, be as in Lemma 4.4. Then

1) = _ Prn () _

1 Hj(x)= DU (Wr()(PgD(x) — (PY)(X)g1(x)),
/() = Brea¥r@m' () _

(2) R0 = MDY (Yr()(PgN(x) — (PYr)(x)g1(x)),

(3) Ha(x2) < Hi(xy),
(4) Ra(%2) < Ri(x1),
(5) limy_,0 Ha(x) > 0 and lim,_, o Rr(x) <O.
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Proof. Parts (1) and (2) follow by straightforward differentiation and the formula (4.1).
For parts (3) and (4), since g1 (x) < g2(x) we find that H>(x) < H(x) for all x. By Lemma 4.4
we have X < X1 and thus H>(X2) < H»(x1). We find that

H>(x0) < Ha(x1) < H1(%1).

The proof of part (4) is analogous.
For part (5), let x < x9. Then we find that

X0 %)
(Pg)(x) = / 82(@r2(2)m' (2) dz + / . 82()¢r.(2)m' (2) dz.

The last integral is finite since g2 € L7, and for the first we find by the mean value theorem that

(,0,/,+A (x0) _ <P;+)L () )

X0 X0
/X 22@)@r12.(2m' () dz = g2(§) /x @ra(Dm' (2) dz = g2 (& )( S'xo) S0

where £ € [x, xp]. As g2(§) <0 and

B @42 _
—0 S
(the lower boundary is natural), we find that lim,_, o ($g2)(x) = —00. As ¥, is increasing, we

find by similar calculations that lim,_, o (®-)(x) = co. Thus L’Hopital’s rule with part (4) of
Assumption 4.1 yields

/
lim Ha(x) = lim _gz(x)fprﬂ(x)m/(X) i 829 > 0.
x>0 =0 Y DG @M () x>0 Y, (x)
The proof for the limit of R;(x) is analogous. U

We are now in a position to prove that the pair (4.9) has a unique solution under our
assumptions. With the next result, we can continue our analysis with a unique candidate
function G;.

Proposition 4.2. Let Assumption 4.1 hold. Then there exists a unique solution to the pair of
equations given by (4.9).

Proof. Let * and ~ denote the restrictions to the domains (0, x;) and (X1, 00) respectively.
Define the function K : (0, x2) — (0, X») as
Kx)= (ﬁ]{l o H, oIv?f] okz)(x).

We notice that y, is the fixed point of K if and only if the pair (y2, y1), where y; = (Rl_l o

kz)(x), solves the pair of equations (4.9). By Lemma 4.5 the function K is well-defined. A
direct differentiation and parts (1) and (2) of Lemma 4.5 yield

K@= (Hy" o Hi o Ry o R2) ) - () o Ry 0 H2) () - (RTY 0 Ro)(x) - Ro(x) > 0,

showing that K is increasing. Thus K is a monotonic mapping from an interval to its open
subset and must have a fixed point. We denote this fixed point by y,. Consequently, the pair
(2, y1), where y; = (Rl_1 o Ry)(x), gives a solution to the pair of equations (4.9).
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To prove uniqueness we use the fixed point property of y> and find by Lemma 4.5 parts (1)

and (2) that
H R,
K= /1(y1) %(yz) _ ¥r(2) ¢ra01) -
R\ Hy(y2)  ¥r (1) @r42.02)
Thus, whenever K intersects the diagonal of R, the intersection must be from above. O

4.2.2. Candidate belongs to B. To use Proposition 3.1 to show that the candidate value is the
actual value of our main problem, we need to show that G; € B. To this end, we first prove the
following lemma.

Now we are ready to prove the following proposition.

Proposition 4.3. The candidate function G; belongs to the space B.
Proof. To complete the proof, we have to show that the following claims are true:
(1) G; is continuous,
(2) Gi/h is bounded,
3) AG;>G;.

Claim (1) is true since G; is readily known to be continuous. Claim (3) is also trivially true,
since it is known that AG; = G;. It is left to show that claim (2) holds.
First, let x > y;. Then, for some constants a and b, we have

Gi(x) _ AR42.81)(X) + Cpy1.(x)
h(x) ayr(x) + by, (x)
< MR8 | Cpren(¥)
ayrr(x) ayr(x)
_ AR4281)x)  Coria(y1)
ayry(x) ayr(y1) .

Now, since A(R+,g1)/(a,) is bounded by Lemma 3.4, the rightmost function is also bounded.
Thus G;(x)/h(x) is bounded for x > y.
Then let x < y;. Now

Gy AW _AY) A

h(x) — ay(x) + ber(x) ~ ay,(x)  a

and thus G;(x)/h(x) is also bounded for x < y;. This completes the proof. U

4.2.3. Candidate satisfies the Bellman principle. Knowing that G; € B, we show next that it
satisfies the Bellman principle. We start by proving a series of lemmas.

Lemma 4.6. Define the functions fy : Ry — Randf,: Ry — Ras

MRr4281)X) — C(y1, y2)@r42(x) £ = Hi(x) — CO1, y2)@r42(x)
Yr(x) ' v @r(x) .

fu) =
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Then the following claims are true:

(i) fy is non-increasing at x > y1,
(i) fy is non-decreasing at x for y, <x <y,
(iii) f, is non-decreasing at x for x > y1.
Proof. Define the function

AR3.81) ()Y (x) — ARr4281) )Y (x)

Clx) =
© @y COVr(X) — @ria (DY (x)

Then, differentiating and rearranging the terms, we find that the inequality f&/(x) >0 is
equivalent to . .
Cx) = COH). (4.10)

This inequality holds if the function Cis increasing on the interval [x, y;]. In addition, if Cx)
is also increasing in [y, 00), the converse of (4.10) holds for x > y;, which wouAld complete
the proof of claim (i). Proceeding as in the derivation of (4.9), we can re-express C(x) as

Cx) = —BA R (x). 4.11)

r+Ai
Thus, by Lemma 4.5 (2), we find that

g1(0) _ (Pg1))
Yr(X) T (PY)()

Since by the lemma (4.4) it holds that X; < y;, we find that inequality (4.12) holds when
X € [X1, 00). The same calculation also shows that C‘(x) is decreasing when x € [y, X1]. This
implies that (i) is proved, and for (ii) it remains to be shown that (4.10) is true at x = y.

Using the expression (4.11) for é‘(yz) and the second equation in (4.9), we find that we need
to show that

C'(x)>0 if and only if

(4.12)

(Pg)G2)WY)(2) (Wg2)(y2)(PY,)(y2)
v — v —
(Wg1)(2) @U02) = (Vg2)(y2) @Yn0m)
Since the boundaries of the state space are natural, we have
V) (02) @5 (2)
vl =—2"" (¥I =——"2"
(WD(2) ) (PD(y2) S02)

which implies, together with the application of Lemma 4.2 to function G defined in (4.8), that

(Pg1)2)V ) (y2) (Pg2)¥2) (YY) (y2)
v - — (W
(Wg1)(2) @Un00) (Wg2)(y2) + D00
(YY) (2)
=—Q(V1 IR (@]
(WD(y2) + @Un02) (PDH(2)
_ L 3 Ura 0DV (02) — ¥, L, 02D (2) >
B S’(yz)< Vra02) 011, 0DV (32) — or . 2DV (72) #ren02) )
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where
r+A
Q= T(Kl + K2) = ga(x) — g1(x).

Because (p;+)\(y2)1pr(y2) — @r2 ()Y (y2) <0, 8" and 2 are always positive, we find that the
above expression is negative if and only if

= ¥ 020 02V (32) = @42 (2)¥(72)]
— O OV 02DV, (72) — ¥, 02)¥ (72)] > 0.

Finally, cancelling the terms, we get the equivalent condition

V). 002 0DV (02) — @5 02DV 12 (02, (v2) = Bria ¥ (v2) > 0,

which holds since v, is increasing. This completes the proof for (ii).
By [26, Lemma 3.6], the mapping

©ri2(X)
r(x)

X =

is decreasing, which implies that

(pr+k(x)> <0

Pr2. (D9 (X) = @y (D), (x) = (prZ(X)( @r(x)

To show that f,(x) is non-decreasing at x > yq, we first find by differentiation that

(H ()¢pr(x) — Hi ()@(X) — C(y1, y2)(@) 15 ()9 (X) = @r4. ()9, (x)))
P2 (x) '

£ =
Thus the claim is equivalent to
(H (0)@r(x) — Hi (0)¢,(x) — C(y1, y2)(@) 15 ()9(X) — @r43.(0)@(x))) > 0.

Noting that C(y1, y2) = C (v1), we find after rearrangement that the above is equivalent to

¢ OH (x) — @r()H (x) - Y 0DHI (1) — e DH | 01)
@1 @r02.00 = 9, () T 9L ODEra 1) — e VD, 1)

Similar to (4.11), we can re-express the inequality as

(Por)(x) Yo
2 — (¥ Al
(<I><ﬂr)(X)( £1)0m) = ( gl)(x)z(@/fr)(m)

We now show that (4.13) holds at x =y; and that the left-hand side is non-decreasing with
respect to x. At x =y it suffices to show that

e _ (Yo
(@e 1) ~ (@YD)

(@g)(y1) — (Wg(1)- (4.13)
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Now, since ¢, is strictly decreasing and v, strictly increasing, we have

»(2) 1> ¥ (2)
1) T YO

whenever z <y and

»(@) <1< ¥r(2)
1) T T YO

when z > y;. Thus

o)D) _ fo' er@¥ra@m' @) dz
(@) [ @r(@¢ra(@m'(2) dz

0 ED ey, (' (2) dz

fyolo f((yz,)) Ora(2m/ (2) dz

K e @) e
- /;TO z/,r((yzl)) Ora(2)m'(z) dz
_ WG

(DY)

Denote the left-hand side of equation (4.13) by u, that is,

_ W)W
(@p))

u(x) (Pg) — (Wg)(x).

The derivative of u can be expressed as

_ (P21 W) ®)(Pe) ) + (PgNIWer) (X)(Per)(x)
(Per(x))?
(@)W D) (1) + (Wg1) ()(Pe)* (x)
(Pg,(x))?

u'(x)

m'(x)

= —— (012 (Y)(X) + Vrp2 ()(Per) ()] [0 ()(PE1(x) — g1(X)( Py, (x))(x)].
(Per)~(x)

Since the first two factors are positive, it now suffices to prove

(PgD™) _ 810
(P (X)) ~ @r(x)
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Now, since g1(x)/¢,(x) is non-decreasing (by item (4) of Assumption 4.1),

(Pg)) = f (81(D¢r+2(2)m'(2) dz)

= f (gl_(Z)(pr(Z)(PrJrA(Z)m/(Z) dz)
X ©r(2)

> / (f; lgmz)gormom’(z) dz)
_ gix) [
§0r(x) X

(@r(D)@r.(2)m' (2) dz)

_8 1(x)
©r(x)

(P (x))(x),

which concludes the proof. O
The following lemma gives a useful ordering of the candidate functions G; and G,.

Lemma 4.7. The candidate value functions G; and G, satisfy
Ga(x) — K2 = Gi(x) = Ga(x) — K

forallx e R,.

Proof. For x € (y1, 00) and for x € (0, y2), the claim holds by construction. Thus we assume
that x € [y2, y1] for the rest of this proof.
By a direct calculation we find for x € [y, y1] that
Yr(x)
1;//r(yl)

— MRr43.81)(0) + CO1, y2)@r12(%).

Gi(x) — Ga(x) + K1 =

ARr+2.81)01) — CO1, y2)@r+1(01))

Reorganizing the terms above, we find that the proposed inequality is equivalent to

fo () <fyOn),

where
_ MRr81)(X) — COyt, y2)@r45.(x)
Ty )= .
Y (x)
The claim then follows from part (ii) of Lemma 4.6. O

Next, we show that G; is r-excessive and G, — A(R,+,g2) is (r + A)-excessive, in order to
use the inequalities
Gi(x) > Ex[e™"" Gi(X1)]

and
Ga(x) = MRy43.82)(x) = Eo[e T (Gu(Xy) — MRy4.82)(X0))]

for all stopping times .

Lemma 4.8. The function G; is r-excessive.
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Proof. Since lim,_, o fy (x) > 0, we find that that G;(x) > 0 for all x € R;. We now show
that /
Exle™"" Gi(X:)] < Gi(w),

where 7/ =inf{t > 0| X; € [c, d]}, from which the r-excessivity follows by [7, p. 32]. When
x € [c, d], this condition trivially holds, so we consider the remaining cases (1) x < ¢ and (2)
x > d. We split these cases further depending on where y; is located. Let x < ¢. Then for ¢ < y;
we find by Lemma 4.6 that

Yrr(x)
vr(c)

e
W’C) YOy (1)

= 1pr(x)fi,//(yl)
= Gi(x),

Ex[e_rrt Gi(Xr(,)] = Gi(o)

and for y; <c,

Exle ™™ Gi(Xy,)] = ¥l 6 i(c)

vr(c)

i Ex; Y (O)fyy (max{yy, c})

= Yr(0fy(c)
< ¥r(x)fy (max{x, y1})
= Gi(x).
The case x > d is proved similarly by using part (iii) of Lemma 4.6. O
Lemma 4.9. The function G, — M(Ry4,.8) is (r + L)-excessive.
Proof. Recall that G, is defined as

Ga(x) = MRr428)X) + CO1, y2)@reax),  ifx >y,
AYr(x) + K3, otherwise.

Then differentiation and rearranging yields

if x >y,

0,
(A= (r+))(Ga(x) — AR 118(x)) = { —MAY(x) + 22ga(x),  else.

Thus we need to prove that —AAY,(x) + Azgz(x) <0 for all x <y,.
First, by Lemma 4.4 and the pair of equations (4.9), we have
8200 _ (Pg)®) _ (Pg2)(y2) _ (Pg1)(1)
V@)  (PY)x)  (PY)02)  (PY)(K)

Then, similarly to the derivation of (4.9), we can rewrite the above as

82( X)
Wr

<fyOn).
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Multiplying by v(x) yields

38209 < (1 (1) = €O YDBra 1)
1pr(yl)
Consequently,
2 _ ¥ (x) 2
—AAYr(x) + A7g2(x) = —Am(m 1) = CO1, y2)r2 (1)) + A7g2(x) <0,
which concludes the proof. (]

Having the auxiliary results at our disposal, we can now show that G; satisfies the
Bellman principle of Proposition 3.1. First, since the function G; satisfies the condition (4.3),
we have

Gi(x) =Ey[e™"™ (Ga(Xe,) — Ky )],

Ga(x) = M(Rr12.0)(x) + Ee[e” " M2(Gi(X,)) — MRr12.8) Koy, ) + K2)]-
On the other hand, by Lemmas 4.7-4.9 we find that
Gi(x) > Ex[e 7" Gi(X:)] > Exle " (Ga(Xz) — K1)] (4.14)
and
Ga(x) = MRr428)(x) > Ey[e "™ (Go(X7) — MRy43.8) (X1 )]
> E,[e”"™M(Gi(Xr) — MRr12.8)(X7) + K2),
which implies
Ga(x) = MRr138)x) + Ele "™ (Go(Xr) — MRy 12.8)(X0))]. (4.15)
Since inequalities (4.14) and (4.15) are true for all stopping times 7, it follows that
Gi(x) > sup, E,[e " (Ga(X;) — K1),
Ga(x) = sup, (AR,438(x0) + Exle ™7 (Go(Xs ) — MRy41.8)(Xo))]).
Then, since for stopping times t* = 7y, and 0* = 0,, we have
Gi(x) = Eyle ™" (Gu(Xr+) — K1),
Ga(x) = Ry 13.8)@) + Exle " (Go(Xor) — A(Rr418)Xo))]),
it follows that
Gi(x) = sup, E,[e " (Ga(Xc) — K1), (4.16)
Ga(x) = supy (ARr42.8)(x) + Ei[e ™ (Go(X ) — MRy12.8)Xo))]). (4.17)

Using these, we obtain that (i) for all pairs of stopping times (t, o), we can use equations
(4.16) and (4.17) to conclude that

Gi(x) = Ex[e”"" (Ga(X7) — K1)]

> Eile™" (Ex, [e”"Ve(Xu)L(U < 0) + e (Gi(Xs) + K)I(U > 0)] — K))].
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(ii) For the pair (t*, 0*), we have
Gi(x) = Ex[e™ ™1 (Ga(Xr,,) — K1)]
=Eile”"™ By, [e”VsXu)1(U <oy,)
+e (Gi(XUyz) + K)1(U > 0y,)] — K1)].

Thus G; is the solution to the problem (2.3). Summarizing, we have proved the following result.

Theorem 4.1. Let Assumption 4.1 hold. Then

Ve — {A(Rrﬂg)(x) + CO1L y)Pra®) — Ki, x>y,
i(x) =

Ay, y2)¥r(x), x> V1,
and
Vax) = :/\(Rrﬂg)(x) + CO1, y2)@r2(x),  x=y2,
A1, y2)¥r(x) + Ka, x>y,
where
A1 y2) = (K2 = M(Rr43.8)(y2)¢r+2.(01) — (K1 — A(R,Hg)(yl))wm(yz)’
UrD@r4.(02) = ¥r(y2)@ra (1)
Cly _ (K2 = MR 02)¥r(y1) — (K1 = MRr28) 1)) Yr(2)
1, y2) = .

YrD@r2(2) — ¥r(2)@r1.(01)

Here, the thresholds are uniquely given by the conditions

Hi(y1) = Ha(y2),
R1(y1) = R2(y2),

where
)
G0
(@Y
(Y
Ri(x)=(® —— (¥
1(x) = (Pg)(1) @YD (WeDn)
forl=1,2.

We have shown that in the diffusion case the optimal rule is to activate the investment once
revenue process X is above the threshold y; and abandon an active investment if the revenue
process reaches the level y> before the project is completed. Figure 1 shows an example of a
realization of using this kind of stopping strategy. The agent starts as inactive (the path for the
inactive agent is plotted in black), and when the process hits the threshold y; the agent invests
and his/her status changes to active (the path for the active agent is plotted in grey). When
the status is changed to active a Poisson process with intensity A is immediately started. This
starting time is plotted as a dashed vertical line and marked as T9. In this realization of the path
the process hits the threshold y, before the first jump of the Poisson process (dashed vertical
line 77). Thus the agent abandons the project and goes back to inactive at y, so that she can
wait for a better opportunity. Then the agent again invests and activates when the process hits
y1, but this time the Poisson process jumps before the process hits y;, so the agent receives the
payoff g(Xr,).
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Xt
— Inactive — Active

y2

Ty L2 . . T3 Ty . '

FIGURE 1. An illustration of a possible realization of the underlying process and the usage of the optimal
policy given by Theorem 4.1.

4.3. An illustration
Let X be the diffusion with initial state Xo = x and the infinitesimal generator
d 1 ,,d

A=pegtio v gs

where u € R and ¢ > 0. This diffusion process is called a geometric Brownian motion. The
state space of the process is Ry and the endpoints of the state space are natural. We further
assume that y < r and that p — %02 > 0, so that X; — oo almost surely as t — co. The scale
density and the density of the speed measure read as

P 7y PN DY
Sx)=x , m(x)—gzx .

We fix the constants r, A > 0 and denote

1 1w\ 2042
- - - = =M,
pi 2 02+\/<2 02> + o2

1 n 1w\ 20042
=—-—=_ /(=== = o
TR 52 \/(2 02)+ o2

Then the minimal r-excessive functions for X are

Vrx) =xP, @ (x) = x%0.
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Further, we consider the linear payoff g(x) = x? — n, where # € (0, 1]and n > K>(r 4+ 1)/A. We
notice now that our assumptions are satisfied.
By straightforward integration we find that

2 AP 2 x P 2 Ko 2 xT
(‘Dg)(x):;ﬁk—_e—ﬁpﬁv (‘I’g)(x)=pm 77; a0
xﬁ()_ﬁ)» 2 xﬁ()_ak
(PP )(x) = ;m, Wyr)x) = ; Bo — .

Using the above calculations, we find using the representation (4.1) that

T . -
R0 = S o) —a) 40

We note that analogous calculations also hold for g1 and g, instead of g. Using these calcu-
lations, we first find that the solutions to the classical stopping problem (V,(x), x*) and the
problem with exercise lag but without reversibility (16) (V,(x), y*) are given by

X —n—Ki, x> X",
V.(x) = 0 _p_
e(x) x* n leﬁ07 X <x*
x*ﬁo
21 ? (n+ K o
— —_— x ,
Vo= B0 —a) A =’
’ A (1 + Kpry 7o
— — P x <y,
o (B — )6 —ax) Ft+A
where x* and y* are given by
o <(7’l +K1),30)1/0
Bo—0 ’
o ((n +K1)Bo(By. — 0)( —ou)>1/9 =x*<<9 A —le))l/e
o Br(6 — Bo) B '

Similar calculations show that the solution to the reversible problem studied in previous
sections is characterized by the value functions

2 x? nA o
Vi =1 o2 Br =)@ —ay)  ra T OB KLz @.18)
A1, y2)xPo, x<yi,
and
2X x? ni o,
Vu) = a2 (Br 000 —a) 7 aa OO w= (4.19)
Ay, y2)xP — K, x <y,
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4
’ ¢ 6 8 10
A
FIGURE 2. Optimal thresholds when the rate A changes.
where
0
Brra=a) ~ (A Bo
CO1, y2) = ((ﬂx —0)(0—a;) r+x Kl))’z ((,3,\ 0 0—a) A Kz)yl ’

WONP: — b0

y nA o y: nA o

A _ o (G — o~ K — (Gan — o — KT

()’IsYZ)—O__z Bo_a, o, fo .
AT i R )

Further, the thresholds y; and y, in (4.18) and (4.19) are given as the unique solution to the
pair of equations

y—ﬂo( y? _77+K1#>:y—ﬂ0< yg _ +K2r+/\>
P \g—0 B 2\ B0 Bs.
y—ax[ﬂx—/%( " 77+K1’“>_ " n+K1r“}
Vol Bo—an \ B —0 B, 0 —ay ay
:y—ah[ﬂx—ﬂo< % n+Kzr“)_ » n+K2’+’\}
2 | Bo—ay \Br—0 B 0 —ay ay

Since it seems that it is not possible to solve the pair of equations explicitly, we illustrate
the results numerically. We select the parameters © =0.2, 0 =0.5, r=0.25, A =1.0,60 = 1.0,
n=1.0, K; =0.05, and K = 0.04. Using these parameters we find that y, &~ 4.46 and y; ~
6.25. If we let A vary but keep the other parameters fixed, we find that the solution approaches
a classical stopping problem, in the sense that y; — x*, as A — oo; see Figure 2. This result
is intuitive since in the limit A — oo there are no changes to reverse the investment and thus
the payoff is immediately realized. Similarly, when K, — —oo (so that it is never optimal to
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-0.04 -0.02 0.00
K,

0.02 0.04

FIGURE 3. Optimal thresholds when the payoff/cost K, changes.

Exercise lag

reversibility

Classical

stopping

FIGURE 4. Limiting relations between the problems.

reverse the investment because the cost is too high), we find that y, — 0 and y; — y*, and
hence the problem reduces to the stopping problem with time-to-build considered in [17]; see

Figure 3. These observations are also collected in Figure 4.

Lastly, in Figure 3 we also notice that y — y, when K> — K. Interestingly, in this case it is
reasonable to assume that the decision maker effectively follows a Poisson process and at each
jump time makes the decision to either continue or stop and receive the payoff. Consequently,
we conjecture that in this limiting case our considered problem could be represented as a
Poisson stopping problem, as in [12, 16], for example. Unfortunately, the proper treatment
of these considerations is beyond the scope of the present study and therefore left for future

research.
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