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We consider radially symmetric solutions of the degenerate Keller–Segel system∂tu = ∇ · (um−1∇u− u∇v),

0 = ∆v − µ+ u, µ = 1
|Ω|

∫
Ω u,

in balls Ω ⊂ Rn, n ≥ 1, where m > 1 is arbitrary. Our main result states that the
initial evolution of the positivity set of u is essentially determined by the shape of
the (nonnegative, radially symmetric, Hölder continuous) initial data u0 near the

boundary of its support Br1 (0) ( Ω: It shrinks for sufficiently flat and expands for
sufficiently steep u0. More precisely, there exists an explicit constant Acrit ∈ (0,∞)

(depending only on m,n,R, r1 and
∫
Ω u0) such that if u0(x) ≤ A(r1 − |x|)

1
m−1 for all

|x| ∈ (r0, r1) and some r0 ∈ (0, r1) and A < Acrit then there are T > 0 and ζ > 0 such
that sup{ |x| | x ∈ suppu(·, t) } ≤ r1 − ζt for all t ∈ (0, T ), while if

u0(x) ≥ A(r1 − |x|)
1

m−1 for all |x| ∈ (r0, r1) and some r0 ∈ (0, r1) and A > Acrit

then we can find T > 0 and ζ > 0 such that sup{ |x| | x ∈ suppu(·, t) } ≥ r1 + ζt for
all t ∈ (0, T ).

Keywords: degenerate diffusion; support shrinking; finite speed of propagation;
critical parameters; chemotaxis
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1. Introduction

The present paper studies the evolution of the positivity set of solutions to a model
problem with degenerate diffusion and attractive taxis, namely
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2 M. Fuest and F. Heihoff
∂tu = ∇ · (um−1∇u− u∇v) in Ω× (0, T ),

0 = ∆v − µ+ u, µ = 1
|Ω|
∫
Ω
u0, in Ω× (0, T ),

∂νu = ∂νv = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω,

(1.1)

where m > 1 is a given parameter and Ω ⊂ Rn is a ball. The system (1.1) is a
parabolic–elliptic simplification of the celebrated Keller–Segel model ([22]), which
models the spatio-temporal evolution of an organism (with density u) that is par-
tially attracted by a chemical (with concentration v) produced by itself. This
chemotactic effect is modelled by the term −∇· (u∇v) and the non-directed mobil-
ity is supposed to be density-dependent and to take the form ∇ · (um−1∇u); see,
e.g., [15, 17, 28] for modelling considerations.

With respect to blow-up in (1.1), the exponent mc := 2− 2
n is critical: If m > mc,

then for all sufficiently regular, nonnegative initial data, there exist global, bounded
solutions ([31], see also [19, 24]), while if m ∈ (1,mc), then for all M > 0 one can
find nonnegative u0 with

∫
Ω
u0 = M and a solution of (1.1) blowing up in finite time

([12, 31], see also [16, 20]). Moreover, in the fully parabolic full-space setting with
m = mc > 1, there is a critical mass distinguishing between global boundedness
and the possibility of finite-time blow-up ([6, 27]). Regarding the fully parabolic
nondegenerate setting with potential nonlinear taxis sensitivity, we refer to [18, 19,
33] for global boundedness, to [35] for blow-up in either finite or infinite time, and
to [8] (as well as to the precedents [9–11]) for finite-time blow-up. For an overview
of further dichotomies between boundedness and blow-up for chemotaxis systems,
see the surveys [2, 25].

Much less studied are support propagation properties of (1.1) – in contrast to
those of its taxis-free relative

∂tu = ∇ · (um−1∇u), (1.2)

the porous medium equation (PME) (where again m > 1 is a given parameter),
for which finite speed of propagation and the existence of waiting times constitute
celebrated phenomena. The former states that the positivity set of solutions to
nonnegative, nontrivial initial u0 with compact support does not grow infinitely
fast ([34, Theorem 14.6]). This contrasts the nondegenerate heat equation, (1.2)
with m =1, whose solutions to such initial data become immediately positive by
the strict maximum principle.

While solutions to the PME eventually propagate to all compact subsets of
the domain in finite time ([34, Theorem 14.3]), the question whether the sup-
port already needs to grow near t =0 is more delicate. As it turns out, the
answer is completely determined by the flatness of u0 near a point x0 ∈ suppu0:

If lim supr↘0 r
− 2

m−1−n
∫
Br(x0)

u0(x) dx = ∞, the support near x 0 immediately

expands, while, if this quantity is finite, then there is a so-called waiting time upon
which the support near x 0 stays constant before it starts to grow, see [1, propsi-
tion 4.2]. In particular, if the initial data are of the form u0(x) = C(|x| − r1)

α
+ for

|x| close to r1, a waiting time phenomenon near x 0 occurs if and only if α ≥ 2
m−1 .

Similar results have been obtained for other degenerate equations as well, see for
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Support dynamics in degenerate Keller–Segel systems 3

instance [13] both for doubly nonlinear and for higher order equations and [26] for
a repulsive–repulsive fully cross-diffusive system.

On the other hand, degenerate diffusion as in (1.2) alone cannot cause a retraction
of the free boundary; the size of the support can never strictly decrease ([34, propo-
sition 14.1]). This raises the question whether an additional mechanism added to the
PME can lead to initial support shrinking. A natural such candidate is attractive
taxis: As discussed above, the thereby introduced tendency towards aggregation is
in some situations sufficiently strong to completely overcome the stabilizing effect
of diffusion in the sense that it causes (finite-time) blow-up, so it is conceivable
that it may also reverse the direction of movement of the free boundary, at least
for some time.

This is indeed the case: Initial support shrinking has been detected in [14] for a
chemotaxis system with prevention of overcrowding introduced in [7], and in [36]
for a fully parabolic chemotaxis–consumption model (where one then also needs to
impose certain conditions on v(·, 0)). On the other hand, [4] shows that solutions
to degenerate chemotaxis systems may not form dead-cores in finite time, i.e., that
they stay positive for positive initial data.

As to (1.1), it is known that the support propagates with (at most) finite speed
if either Ω = R ([32]) or Ω = Rn ([23]), that the positivity set may be contained in
some proper subset of the domain ([23, 30]) and that initial support shrinking is
possible if Ω = Rn and m > 2− 2

n ([14]).

Main result. Our main result goes beyond these findings and identifies a critical
condition distinguishing (for a wide class of initial data) between initial inward and
outward motion of the free boundary for radially symmetric solutions of (1.1).

Theorem 1.1. Let n ∈ N, R> 0, Ω = BR(0) ⊂ Rn, m> 1 and r1 ∈ (0, R).
Moreover, let u0 ∈ L∞(Ω) be radially symmetric and nonnegative a.e. with
sup(ess suppu0) = r1 and set

Acrit :=

∫Ω u0

(
1− rn1

Rn

)
(m− 1)

ωnr
n−1
1


1

m−1

. (1.3)

Then there exist T0 ∈ (0,∞] and a nonnegative, radially symmetric weak solution
(u, v) of (1.1) in Ω× [0, T0) in the sense of Definition 2.1 below (which is moreover
Hölder continuous if u0 is) such that if

∃A < Acrit, ∃r0 ∈ (0, r1), ∀r ∈ (r0, r1) : u0(r) ≤ A(r1 − r)
1

m−1 , (1.4)

then the spatial support initially shrinks in the sense that there are T ∈ (0, T0) and
ζ > 0 with

sup(ess suppu(·, t)) ≤ r1 − ζt for a.e. t ∈ (0, T ), (1.5)

while if

∃A > Acrit, ∃r0 ∈ (0, r1), ∀r ∈ (r0, r1) : u0(r) ≥ A(r1 − r)
1

m−1 , (1.6)
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4 M. Fuest and F. Heihoff

then the spatial support initially expands in the sense that there are T ∈ (0, T0) and
ζ > 0 with

sup(ess suppu(·, t)) ≥ r1 + ζt for a.e. t ∈ (0, T ). (1.7)

(Here and throughout the article, we write ϕ(|x|) for ϕ(x) whenever ϕ is radially
symmetric.)

Remark 1.2. Since (r1 − r0)
α− 1

m−1 converges to 0 (respectively, ∞) as r0 ↗ r1 if
α > 1

m−1 (respectively, α < 1
m−1 ), we see that

∃α >
1

m− 1
, ∃A > 0, ∃r′0 ∈ (0, r1), ∀r ∈ (r′0, r1) : u0(r) ≤ A(r1 − r)α (1.8)

and

∃α <
1

m− 1
, ∃A > 0, ∃r′0 ∈ (0, r1), ∀r ∈ (r′0, r1) : u0(r) ≥ A(r1 − r)α (1.9)

imply (1.4) and (1.6), respectively, and hence initial shrinking and initial expanding,
respectively.

Remark 1.3. Our strategy of proof, to be outlined below, necessitates that we
limit our attention to radially symmetric settings. Moreover, we note that we can
only treat the most outward boundary points of the support; Theorem 1.1 requires
u0(x) = 0 for all |x| ≥ r1.

Remark 1.4. Let us compare Theorem 1.1 to results regarding the PME (1.2)
beyond the fact that the latter are not limited to radially symmetric settings and
specific boundary points of the initial positivity set.

(i) The critical exponent 1
m−1 in Theorem 1.1 is smaller than the critical

waiting time exponent 2
m−1 for the PME.

(ii) While the condition (1.9) with 1
m−1 replaced by 2

m−1 implies initial expand-
ing of the support for solutions to the PME, the analogue of (1.8) does
not imply initial support shrinking but instead that the support remains
constant for some time. That is, the critical exponent for the PME distin-
guishes between the existence of waiting times and immediate expanding,
the critical exponent for (1.1) between shrinking and expanding.

(iii) The behaviour at the critical exponent is also different. While for (1.1),
Theorem 1.1 shows the existence of a critical parameter Acrit and hence
in particular that the support of solutions to initial data u0 with u0(r) ∼
(r1 − r)

1
m−1

+ may shrink or expand depending on the implied constant, all

solutions to the PME with initial data u0(r) ≤ A(r1 − r)
2

m−1

+ exhibit a
waiting time phenomenon, regardless of how large A is ([1, propsition 4.2]).

Remark 1.5. For the variant of (1.1) posed in the full space and with the second
equation replaced by −∆v = u, it has been claimed (without detailed proof) in [14,
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corollary on p. 1613] that (1.8) implies initial shrinking, provided that m > 2− 2
n .

We again note a few difference to the situation in Theorem 1.1.

(i) The results in [14] also hold in nonradial settings, while we only consider
the radially symmetric case. As noted there, the geometric conditions on
a point x0 ∈ ∂ suppu0 required by [14] are in particular fulfilled whenever
x 0 belongs to the boundary of the convex hull of suppu0. If u0 is radially
symmetric, the latter assumption is equivalent to requiring u0(x) = 0 for
all |x| ≥ |x0|, as we do in Theorem 1.1.

(ii) Since [14] exclusively studies under which conditions shrinking occurs – and
not also when expansion happens –, optimality of the exponent 1

m−1 is not
obtained there.

(iii) In [14], shrinking is not claimed for the critical exponent (cf. (43) in [14]).
However, although Theorem 1.1 only covers balls with finite radius, we
note that the value Acrit in (1.3) converges to a positive, finite number as
R → ∞. This indicates that also in the full space setting shrinking should

be possible for initial data fulfilling u0(r) ∼ (r1 − r)
1

m−1

+ near r1, and that
hence the criterion (43) in [14] may not be optimal.

(iv) Finally, we emphasize that, unlike [14], Theorem 1.1 does not pose any
assumption on m beyond the degeneracy condition m > 1; our main result
in particular holds in cases where bounded weak solutions cease to exist
after finite time (which may be the case if m < 2− 2

n , see [12, 16]).

Strategy of our proof. The radial symmetry assumption implies that the trans-

formed quantity w(s, t) := n
∫ s

1
n

0
ρn−1u(ρ, t) dρ, first introduced in [21], solves the

scalar equation

∂tw − n2s2−
2
n (∂sw)

m−1∂ssw − w∂sw + µs∂sw = 0 in (0, Rn)× (0, T0) (1.10)

with w(0, t) = 0 and w(Rn, t) = µRn for all t ∈ (0, T ). Since(
sup{ r ∈ (0, R) | u(r, t) > 0 }

)n
= inf{ s ∈ (0, Rn) | w(s, t) = µRn } =: Iw(t) for all t ∈ (0, T0), (1.11)

the evolution of the most outwards boundary point of the spatial support of u
corresponds to monotonicity properties of the infimum Iw(t) in (1.11). (Potential
more inward interface points cannot be characterized in such a way, which is the
reason that Theorem 1.1 does not cover them.)

In order to derive suitable estimates for Iw(t), we shall make use of a comparison
principle (cf. Lemma 4.1). For possible sub- and supersolutions, we take the ansatz

w(s, t) :=

µRn − C(rn1 + θt− s)
m

m−1 if s ≤ rn1 + θt,

µRn if s > rn1 + θt,
(1.12)
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6 M. Fuest and F. Heihoff

where θ is negative in the shrinking and positive in the expanding case. (We note
that [30] utilizes such comparison functions with θ=0 to prove persistent localiza-
tion.) A direct computation reveals that, for s < rn1 +θt, the left-hand side in (1.10)
equals

∂sw

[
−θ + n2s2−

2
n
(Cm)m−1

(m− 1)m
− w + µs

]
. (1.13)

Setting θ=0 and s = rn1 , the second factor becomes

n2r2n−2
1

(Cm)m−1

(m− 1)m
− µ(Rn − rn1 ), (1.14)

whose sign is determined by the size of C. As long as C is not critical, continuity
arguments show that the signs of the quantities in (1.13) and (1.14) are the same as
long as |θ|, t and rn1 −s are sufficiently small (and ∂sw ≥ 0), implying that there are
parameters such that the function w in (1.12) is a sub- or supersolution of (1.10)
in (rn0 , r

n
1 )× (0, T ) for r0 close to r1 and small T > 0. Since the growth conditions

for u0 in Theorem 1.1 translate to suitable conditions for w(·, 0) (cf. Lemma 3.1)
and as the solution w and the comparison function in (1.12) are correctly ordered
at rn0 (and hence on the whole parabolic boundary) in a small time interval (0, T ′)
if they are initially, the comparison principle yields the desired properties of Iw(t).

As neither the solution w nor the comparison functions above are (known to be)
sufficiently regular to allow for rigorous applications of the comparison principle
(Lemma 4.1), we instead perform these arguments for solutions (uε, vε) to approx-
imate, nondegenerate systems. However, this approach introduces some additional
challenges; for instance, we need to adjust the comparison functions to account for
the fact that the strict maximum principle forces uɛ to become positive immediately.

Plan of the paper. We recall local existence and approximation theory for (1.1)
in § 2 and introduce the mass accumulation function in § 3. Section 4 not only
contains the key ingredient of our proof, namely the definition of w and w and
the verification of the sub- and supersolution properties, respectively, but also the
comparison theorem and the applications to wɛ. Finally, Theorem 1.1 is proven in
§ 5.

Notation. We henceforth fix n ∈ N, R> 0, Ω = BR(0) ⊂ Rn and m > 1.

2. Local existence and convergence to weak solutions

To not unduly duplicate effort, we will largely rely on the weak solution theory for
(1.1) presented in [30] for the construction of the solutions discussed in Theorem 1.1.
Naturally, this means we will use the same standard notion of weak solution to (1.1)
as in the mentioned reference.
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Support dynamics in degenerate Keller–Segel systems 7

Definition 2.1. Let T0 > 0 and let u0 ∈ L∞(Ω) be nonnegative and radially
symmetric with 1

|Ω|
∫
Ω
u0 = µ. We call a pair of radially symmetric functions

(u, v) ∈ L∞
loc(Ω× [0, T0))× L∞

loc([0, T0);W
1,2(Ω)) with um ∈ L2

loc([0, T0);W
1,2(Ω))

being such that u ≥ 0 a.e. in Ω× (0, T0) a radial weak solution of (1.1) if

−
∫ T

0

∫
Ω

uϕt −
∫
Ω

u0ϕ(·, 0) = − 1

m

∫ T

0

∫
Ω

∇um · ∇ϕ+

∫ T

0

∫
Ω

u∇v · ∇ϕ (2.1)

and ∫ T

0

∫
Ω

∇v · ∇ϕ = −µ

∫ T

0

∫
Ω

ϕ+

∫ T

0

∫
Ω

uϕ

hold for all ϕ ∈ C∞
c (Ω× [0, T0)).

Remark 2.2. Let T0 > 0, let u0 ∈ L∞(Ω) be nonnegative and radially symmetric
and let (u, v) be a radial weak solution of (1.1) in the sense of Definition 2.1.

(1) As also noted in [30, remark after Definition 2.1], the weak formulation (2.1)
implies that ut ∈ L2

loc([0, T0); (W
1,2(Ω))?) and hence (after redefining u on

a null set of times) u ∈ C0([0, T0);L
2(Ω)).

(2) It has recently been shown in [5, corollary 1.9] that u is locally (space-time)
Hölder continuous in Ω × (0, T0) and that Hölder continuity of u0 implies
that u is Hölder continuous up to t =0. (For m ≤ 3, the same conclusion
can be obtained from the classical work [29].)

As they will play a crucial role in our coming arguments, let uns now briefly review
some of the more intricate details presented in [30] as part of the derivation of such
weak solutions. As a matter of fact, the key ingredient used in their construction
that we want to utilize is a family of approximate solutions to slightly regularized
versions of the system in (1.1), which approach it as the approximation parameter
tends to zero and consequently yield our desired solution as their limit. In particular,
the central and only change to the system involves mitigation of the nonlinear
degeneracy present in the diffusion operator of the first equation in (1.1). This not
only enables the following straightforward global classical existence theory in the
aforementioned reference but will also provide us with systems and corresponding
classical solutions much more amenable to the comparison arguments at the core
of our reasoning here.

Lemma 2.3. Let u0 ∈ L∞(Ω) be nonnegative and radially symmetric. Then we can
find T0 > 0 such that for all ε ∈ (0, 1), a classical solution (uε, vε) of

uεt = ∇ · ((uε + ε)m−1∇uε − uε∇vε) in Ω× (0, T0),

0 = ∆vε − µ+ uε, µ = 1
|Ω|
∫
Ω
u0, in Ω× (0, T0),

∂νuε = ∂νvε = 0 on ∂Ω× (0, T0),

uε(·, 0) = u0 in Ω

(2.2)
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8 M. Fuest and F. Heihoff

satisfying

uε ∈ C2,1(Ω× (0, T0)) ∩ C0([0, T0);L
1(Ω)), vε ∈ C2,0(Ω× (0, T0)) and

∫
Ω

vε = 0

exists, which is moreover such that uε(·, t) and vε(·, t) are radially symmetric for
all t ∈ (0, T0) and that

0 < uε ≤ ‖u0‖L∞(Ω) + 1 in Ω× (0, T0). (2.3)

for all ε ∈ (0, 1).

Proof. See [30, Lemma 2.1]. �

Using a series of testing procedures, sufficient convergence properties are then
derived in [30] for the family of approximate solutions constructed in Lemma 2.3
to ensure that the weak solution properties they enjoy (due to them being classical
solutions) survive the limit process in an appropriate fashion.

Lemma 2.4. Let u0 ∈ L∞(Ω) be nonnegative and radially symmetric and let T0 and
(uε, vε)ε∈(0,1) be as given by Lemma 2.3. Then there exist a null sequence (εj)j∈N ⊂
(0, 1) and a radial weak solution (u, v) of (1.1) in the sense of Definition 2.1 such
that

uε → u a.e. in Ω× (0, T0)as ε = εj ↘ 0. (2.4)

Proof. This has been shown in [30, Lemma 2.3]. �

Lastly, we prove a uniform continuity result in t =0 to complement the other
solution properties already laid out above by another testing procedure. This will
later help us to localize our central comparison arguments around the boundary of
the support of the initial data.

Lemma 2.5. Let u0 ∈ L∞(Ω) be nonnegative and radially symmetric and let T0

and (uε, vε)ε∈(0,1) be as given by Lemma 2.3. Then for every r ∈ (0, R) and δ > 0,
there exists t0 ∈ (0, T0) such that∣∣∣∣∣

∫
Br(0)

u0 −
∫
Br(0)

uε(·, t)

∣∣∣∣∣ ≤ δ

for all t ∈ (0, t0) and ε ∈ (0, 1).

Proof. Using a similar testing-based approach to [30, Lemma 2.3] combined with
the fundamental theorem of calculus, we can immediately see that∣∣∣∣∫

Ω

u0ϕ−
∫
Ω

uε(·, t)ϕ
∣∣∣∣ = ∣∣∣∣∫ t

0

∫
Ω

uεtϕ

∣∣∣∣
≤
∫ t

0

(
|Ω|
m ‖uε + 1‖mL∞(Ω)‖∆ϕ‖L∞(Ω) + ‖uε‖L∞(Ω)‖∇vε‖L1(Ω)‖∇ϕ‖L∞(Ω)

)
for all ϕ ∈ C∞

c (Ω), t ∈ (0, T0) and ε ∈ (0, 1). By for instance testing the second
equation in (2.2) with vɛ to gain a uniform-in-time gradient bound for vɛ combined
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Support dynamics in degenerate Keller–Segel systems 9

with the uniform bound for uɛ found in (2.3), we gain C ≡ C(‖u0‖L∞(Ω)) > 0 such
that ∣∣∣∣∫

Ω

u0ϕ−
∫
Ω

uε(·, t)ϕ
∣∣∣∣ ≤ C(‖∇ϕ‖L∞(Ω) + ‖∆ϕ‖L∞(Ω))t (2.5)

for all ϕ ∈ C∞
c (Ω), t ∈ (0, T0) and ε ∈ (0, 1).

We now fix r ∈ (0, R) and δ > 0. We then choose a cutoff function ϕ ∈ C∞
c (Ω)

with ϕ ≡ 1 on Br(0) and
∫
Ω\Br(0)

ϕ ≤ δ
2(2‖u0‖L∞(Ω)+1) . Using (2.5), we then fix

t0 ∈ (0, T ) such that

∣∣∣∣∫
Ω

u0ϕ−
∫
Ω

uε(·, t)ϕ
∣∣∣∣ ≤ δ

2

for all t ∈ (0, t0) and ε ∈ (0, 1). Combining these choices for ϕ and t0 with (2.3),
we then gain∣∣∣∣∣
∫
Br(0)

u0 −
∫
Br(0)

uε(·, t)

∣∣∣∣∣ =
∣∣∣∣∣
∫
Br(0)

u0ϕ−
∫
Br(0)

uε(·, t)ϕ

∣∣∣∣∣
≤
∣∣∣∣∫

Ω

u0ϕ−
∫
Ω

uε(·, t)ϕ
∣∣∣∣+ ∫

Ω\Br(0)

|u0 − uε(·, t)|ϕ

≤ δ

2
+ (2‖u0‖L∞(Ω) + 1)

∫
Ω\Br(0)

ϕ ≤ δ

for all t ∈ (0, t0) and ε ∈ (0, 1). This completes the proof. �

For the remainder of the paper, we now fix a nonnegative, radially symmetric u0 ∈
L∞(Ω) and set µ := 1

|Ω|
∫
Ω
u0. Moreover, we fix the family of approximate solutions

(uε, vε)ε∈(0,1) with uniform existence time T0 > 0 constructed in Lemma 2.3 as well
as the limit solution (u, v) found in Lemma 2.4.

3. Mass accumulation functions

As pioneered in [21] for systems simplified in a similar fashion to (1.1) and also
considered in radial settings, we will from now on mostly focus on an derived
quantity instead of the functions uɛ and vɛ themselves. Namely, we consider the
mass accumulation functions

wε(s, t) := n

∫ s
1
n

0

ρn−1uε(ρ, t) dρ and similarly w(s, t) := n

∫ s
1
n

0

ρn−1u(ρ, t) dρ

for all (s, t) ∈ [0, Rn] × [0, T0] and ε ∈ (0, 1). Making use of radial symmetry, a
straightforward computation then yields that wɛ solves the parabolic differential
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equation

0 = Pεwε = ∂twε − n2s2−
2
n (∂swε + ε)m−1∂sswε − wε∂swε + µs∂swε (3.1)

on [0, Rn]× [0, T0] with initial data w0(s) := n
∫ s

1
n

0
ρn−1u0(ρ) dρ. Additionally, it is

immediately obvious from the nonnegativity of uɛ as well as the mass conservation
properties of (2.2) that wε(·, t) is monotonically increasing and wε(0, t) = 0 as well
as wε(R

n, t) = µRn for all t ∈ [0, T0].
Let us now further note that the a.e. pointwise convergence properties of the

family (uε)ε∈(0,1) toward u in (2.4) translate in a sensible way to these newly intro-
duced quantities. In fact along the null sequence (εj)j∈N constructed in Lemma 2.4,
we gain that

wε(s, t) → w(s, t) as ε = εj ↘ 0 (3.2)

for all s ∈ [0, Rn] and a.e. t ∈ [0, T0] by an application of Lebesgue’s theorem, which
is possible due to the uniform bound seen in (2.3). Notably, this directly implies
that

w(s, t) ≤ µRn and w(Rn, t) = µRn (3.3)

for all s ∈ [0, Rn] and a.e. t ∈ [0, T0] due to these property uniformly holding for
the approximate functions wɛ.

Next, we investigate how our central initial data conditions (1.4) and (1.6) in
Theorem 1.1 translate from u0 to its mass accumulation counterpart w0.

Lemma 3.1. Let u0 ∈ L∞(Ω) be nonnegative and radially symmetric with

ess suppu0 ⊆ Br1(0) for some r1 ∈ (0, R). If (1.4) holds for some A> 0 and
r0 ∈ (0, r1), then

w0(s) ≥ µRn − An− 1
m−1 r

− (n−1)m
m−1

0 rn−1
1 (m− 1)

m
(rn1 − s)

m
m−1 (3.4)

for all s ∈ (rn0 , r
n
1 ).

Similarly, if (1.6) holds for some A> 0 and r0 ∈ (0, r1), then

w0(s) ≤ µRn − An− 1
m−1 r

− (n−1)m
m−1

1 rn−1
0 (m− 1)

m
(rn1 − s)

m
m−1 (3.5)

for all s ∈ (rn0 , r
n
1 ).
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Proof. Assuming that (1.4) holds for some A> 0 and r0 ∈ (0, r1), a direct
computation yields

w0(s) = n

∫ s
1
n

0

ρn−1u0(ρ) dρ = n

∫ R

0

ρn−1u0(ρ) dρ− n

∫ r1

s
1
n

ρn−1u0(ρ) dρ

≥ µRn −Anrn−1
1

∫ r1

s
1
n

(r1 − ρ)
1

m−1 dρ

= µRn − Anrn−1
1 (m− 1)

m
((rn1 )

1
n − s

1
n )

m
m−1

≥ µRn − An− 1
m−1 r

− (n−1)m
m−1

0 rn−1
1 (m− 1)

m
(rn1 − s)

m
m−1 for all s ∈ (rn0 , r

n
1 ),

where in the last step we applied the mean value theorem, which for all 0 < a < b

asserts the existence of ξ ∈ (a, b) with b
1
n − a

1
n = 1

nξ
1−n
n (b− a).

If on the other hand (1.6) holds for some A> 0 and r0 ∈ (0, r1), (3.5) is obtained
by an analogous argument. �

Remark 3.2. We observe that the coefficients of (rn1 − s)
m

m−1 in (3.4) and (3.5)
coincide in the limit r0 ↗ r1 for any fixed A> 0. Thus if sufficiently localized to
r1, (3.4) and (3.5) are still essentially as complimentary as the original conditions
on u0.

4. Comparison argument

Our aim now is to find a (potentially short) time T ∈ (0, T0) and constants C, θ > 0
such that w stays above or below functions of the general prototype

(s, t) 7→

µRn − C(rn1 ± θt− s)
m

m−1 if s < rn1 ± θt,

µRn if s ≥ rn1 ± θt
(4.1)

on (rn0 , R
n) under the assumption that such an ordering already holds true at t =0

for a constant C > 0 either larger or smaller (depending on the case) than the
critical constant

Ccrit(r1) :=
m− 1

m

(
µ(Rn − rn1 )(m− 1)

r2n−2
1 n2

) 1
m−1

. (4.2)

This shall be achieved by comparing the approximate solutions wɛ to suitably
adapted versions of (4.1), which, however, are nonsmooth, so that we need to ensure
the applicability of a suitable comparison principle. To this end, we will utilize the
following Lemma which is built on the more general comparison result seen in [3,
Lemma 5.1]. (We note that the comparison theorem presented in [30, Lemma 2.2] is
also based on [3, Lemma 5.1], but requires the comparison functions to be strictly
increasing and is hence not suitable for all of our purposes.)
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Lemma 4.1. Let ε ∈ (0, 1), a, b ∈ R with a< b and T> 0, and suppose that w, w ∈
C0([a, b]× [0, T )) ∩ C1((a, b)× (0, T )) with ∂sw, ∂sw ∈ L∞

loc([a, b]× [0, T )) satisfy

∂sw ≥ 0 and ∂sw ≥ 0 in (a, b)× (0, T ) (4.3)

and

w(·, t), w(·, t) ∈ W 2,∞
loc ((a, b)) for all t ∈ (0, T ). (4.4)

If

(Pεw)(s, t) ≤ 0 for a.e. s ∈ (a, b) and all t ∈ (0, T ), (4.5)

(Pεw)(s, t) ≥ 0 for a.e. s ∈ (a, b) and all t ∈ (0, T ), (4.6)

w(s, 0)− w(s, 0) ≤ 0 for all s ∈ (a, b), (4.7)

w(s, t)− w(s, t) ≤ 0 for all s ∈ {a, b} and t ∈ (0, T ), (4.8)

then

w(s, t)− w(s, t) ≤ 0 for all s ∈ (a, b) and t ∈ (0, T ). (4.9)

Proof. To put our case into the framework of the more general comparison principle
presented in [3, Lemma 5.1], we let

W (s, t) := w
(
b−a
b s+ a, t

)
+ ε b−a

b s and W (s, t) := w
(
b−a
b s+ a, t

)
+ ε b−a

b s

for all (s, t) ∈ [0, L] × [0, T ) with L := b. As we have only modified the original
functions w, w in a linear fashion, the new functions W , W naturally retain all of
our assumed regularity properties as well as the proper ordering at the parabolic
boundary of [0, L]× [0, T ) due to (4.7) as well as (4.8). Due to (4.3) and a < b, it is
further directly evident that ∂sW > 0 and ∂sW > 0 in (0, L)× (0, T ). Finally due
to (4.5) and (4.6), it follows by direct computation that

∂tW ≤ Φ(s, t,W , ∂sW,∂ssW ) and ∂tW ≥ Φ(s, t,W , ∂sW,∂ssW )

for a.e. s ∈ (0, L) and all t ∈ (0, T ) with

Φ(s, t, y0, y1, y2) := n2
(
b−a
b s+ a

)2− 2
n

(
b

b−a

)m+1

ym−1
1 y2

+
(
y0 − ε b−a

b s− µ( b−a
b s+ a)

)
( b
b−ay1 − ε)

for all (s, t, y0, y1, y2) ∈ G := (0, L)× (0, T )×R× (0,∞)×R. Moreover, we see that

∂Φ

∂y2
(s, t, y0, y1, y2) ≥ 0 and

∣∣∣∣ ∂Φ∂y0 (s, t, y0, y1, y2)
∣∣∣∣ ≤ b

b− a
y1 + 1
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for all (s, t, y0, y1, y2) ∈ G as well as that ∂Φ
∂y1

(·, t, ·, ·, ·) is bounded on every compact

set in (0, L)×R×(0,∞)×R for all t ∈ (0, T ). Thus, our desired ordering property for
W and W on (0, L)× (0, T ) and therefore (4.9) follow from [3, proof of Lemma 5.1]
which, as already observed in [30, directly before Lemma 2.2], implies the conclusion
of [3, Lemma 5.1] also for the slightly weaker regularity conditions on w and w
imposed here. �

4.1. Case of support shrinking

Having now established the comparison principle at the center of this section, we
start treating the support shrinking case by showing that w lies above a function
of the type seen in (4.1) with a negative coefficient for θ under an appropriate

assumption at t =0. This will then imply w(s, t) = µRn and hence u(s
1
n , t) = 0

for a.e. sufficiently small time t and s ≥ rn1 − θt; that is, that the support indeed
initially shrinks.

As already mentioned previously, our first step in this endeavour is to construct
a family of subsolutions for the approximate functions wɛ by modifying the proto-
typical function in (4.1) to make it compatible with the regularized equation (3.1).
We first note that due to the diffusion operator in our regularized system (2.2) no
longer being degenerate, our approximate solutions uɛ become immediately posi-
tive. This in turn means that wε(·, t) is strictly monotonically increasing. As further
wε(R

n, t) = µRn for all t ∈ [0, T0), we will thus need to replace the constant exten-
sion in (4.1) by something increasing in a similar fashion to have any chance for the
resulting function to be a subsolution. In fact for our approximate subsolutions, we
will extend the left part of (4.1) by a linearly increasing function by moving the
extension point slightly to the left of rn1 −θt where the first derivate is still positive.
We then move the resulting function slightly down to ensure that the right bound-
ary value is still sufficiently close to µRn on small time scales. Conveniently, this
modification also allows us to work around the potential singularity present in the
second derivative of (4.1) at rn1 − θt. The remaining modifications and parameter
choices are mostly in service of allowing us to use the optimal value for Ccrit.

Lemma 4.2. Let r1 ∈ (0, R) and C? ∈ (0, Ccrit(r1)) with Ccrit(r1) as in (4.2). Then
there exist rmin ∈ (0, r1), θmax > 0, κ> 0 and ε0 ∈ (0, 1) with 2κε0 < µ such that

δ := δ(ε) :=

(
εκ(m− 1)

C?m

)m−1

and η := η(ε) := −C?δ
m

m−1 + εκ(Rn − rn1 + δ)

(4.10)

are such that η(ε) ≥ 0 for all ε ∈ (0, ε0), and that moreover the following holds for
all ε ∈ (0, ε0), r0 ∈ [rmin, r1) and θ ∈ [0, θmax]:

Let

w(s, t) :=

µRn − η − C?(ρ(t)− s)
m

m−1 =: wmid(s, t) if s < ρ(t)− δ

µRn − εκ(Rn − θt− s) =: wout(s, t) if s ≥ ρ(t)− δ
(4.11)
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for all (s, t) ∈ [rn0 , R
n] × [0,∞), where ρ(t) := rn1 − θt for t ∈ [0,∞). Then w ∈

C1([rn0 , R
n] × [0,∞)) with ∂sw ≥ εκ > 0 and w(·, t) ∈ W 2,∞

loc ((rn0 , R
n)) for all

t ∈ [0,∞). If further

θ ≤ (µ− 2ε0κ)(R
n − rn2 ) (4.12)

for some r2 ∈ (r1, R], then

Pεw(s, t) ≤ −εκ(Rn − rn2 )∂sw(s, t) ≤ 0

for all s ∈ [rn0 , r
n
2 ] \ {ρ(t)− δ} and t ∈ [0,∞).

Proof. Due to C? < Ccrit(r1), we may fix large κ> 0 as well as small λ ∈ (0, 1)
such that

C? ≤ (m− 1)κ

m(κ+ 1)

(
(1− λ)

µ(Rn − rn1 )(m− 1)

r2n−2
1 n2

) 1
m−1

. (4.13)

We then fix small ε0 ∈ (0, 1) and θmax > 0 as well as rmin ∈ (0, r1) close to r1 such
that

2ε0κ < λµ < µ (4.14)

such that

rn1 − rn0 ≤
([

λµ

2
(Rn − rn1 )− θmax − ε0κ(R

n − rn1 )

]
1

C?

)m−1
m

, (4.15)

for all r0 ∈ [rmin, r1), and such that the quantities η and δ defined in (4.10) fulfil

η ≤ λµ

2
(Rn − rn1 ) and η = ε

(
−C?

(
κ(m− 1)

C?m

)m

εm−1 + κ(Rn − rn1 + δ)

)
≥ 0

(4.16)

for all ε ∈ (0, ε0), which is possible as δ and thus η converge to 0 as ε ↘ 0.
Henceforth, we fix ε ∈ (0, ε0), r0 ∈ [rmin, r1), r2 ∈ (r1, R] and θ ∈ [0, θmax].

By straightforward calculations, we immediately see that

∂swmid(s, t) =
C?m(ρ(t)− s)

1
m−1

m− 1
> 0, (4.17)

∂sswmid(s, t) = −C?m(ρ(t)− s)
1

m−1−1

(m− 1)2
< 0, (4.18)

∂twmid(s, t) = −ρ′(t)C?m(ρ(t)− s)
1

m−1

m− 1
= θ∂swmid(s, t) (4.19)
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for all s ∈ [rn0 , ρ(t)− δ] and t ∈ [0,∞) as well as

∂swout(s, t) = εκ,

∂sswout(s, t) = 0,

∂twout(s, t) = εκθ

for all s ∈ [ρ(t)− δ,Rn] and t ∈ [0,∞). Combined with (4.10), this yields

wmid(ρ(t)− δ, t) = µRn − η − C?δ
m

m−1 = µRn − εκ(Rn − rn1 + δ) = wout(ρ(t)− δ, t)

and

∂swmid(ρ(t)− δ, t) =
C?m

m− 1
δ

1
m−1 = εκ = ∂swout(ρ(t)− δ, t)

for all t ∈ [0,∞). Moreover, ∂sswmid is continuous on the compact set [rn0 , ρ(t)− δ]
for all t ∈ [0,∞), so that all our desired regularity properties for w are evidently
fulfilled.

We will now start the argument proper by plugging wmid into the functional Pε

to gain

Pεwmid = ∂swmid

[
θ − n2s2−

2
n (∂swmid + ε)m−1 ∂sswmid

∂swmid

− wmid + µs

]
for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0,∞).

We first estimate the terms originating from taxis to yield

−wmid + µs = µ(s−Rn) + η + C?(ρ(t)− s)
m

m−1

≤ −µ(Rn − rn1 ) + η + C?(rn1 − rn0 )
m

m−1

for all s ∈ [rn0 , ρ(t) − δ) and t ∈ [0,∞). Applying (4.15) as well as (4.16) to this
then results in

−wmid + µs ≤ −θmax − ε0κ(R
n − rn1 )− (1− λ)µ(Rn − rn1 ) (4.20)

for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0,∞).
Regarding the diffusive term, we see that (4.17), (4.18), the fact that ∂swmid ≥ εκ

and (4.13) entail that

−n2s2−
2
n (∂swmid + ε)m−1 ∂sswmid

∂swmid
≤ n2s2−

2
n

m− 1

(
κ+ 1

κ
∂swmid

)m−1

(ρ(t)− s)−1

≤
n2r2n−2

1

m− 1

(
m(κ+ 1)

(m− 1)κ
C?

)m−1

≤ (1− λ)µ(Rn − rn1 )

for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0,∞). In combination with (4.20), this yields

Pεwmid ≤ ∂swmid

[
θ + (1− λ)µ(Rn − rn1 )− θmax − ε0κ(R

n − rn1 )− (1− λ)µ(Rn − rn1 )
]

= ∂swmid

[
θ − θmax − ε0κ(R

n − rn1 )
]
≤ −εκ(Rn − rn2 )∂swmid

for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0,∞).
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We now turn our attention to the linear extension wout. As its second spatial
derivative is always zero, plugging it into the functional Pε allows us to estimate
as follows for all s ∈ (ρ(t)− δ, rn2 ] and t ∈ [0,∞) by using (4.14) as well as (4.12):

Pεwout = ∂swout [θ − wout + µs]

= ∂swout [θ − µ(Rn − s) + εκ(Rn − θt− s)]

= ∂swout [θ − (µ− εκ)(Rn − s)− εκθt]

≤ ∂swout [θ − (µ− ε0κ)(R
n − rn2 )]

≤ −ε0κ∂swout(R
n − rn2 ) ≤ −εκ∂swout(R

n − rn2 )

This completes the proof. �

To now prove the central result of this subsection, we will use the above family
of functions for two consecutive comparison arguments on the approximate level.
We begin by comparing with a stationary function w with θ=0 on the full interval
(rn0 , R

n) to make use of the uniform boundary value of our approximate solutions
at s = Rn. This allows us to show that the support of w at the very least does
not expand. We then use this result to establish a similar boundary condition at
some point rn2 < Rn in the interior of the domain to facilitate a second comparison
argument on (rn0 , r

n
2 ) with a nonstationary function w with θ > 0, which will be key

to showing that the support of w in fact actually shrinks. The reason we cannot
immediately compare with a nonstationary function in our construction is due to
the condition (4.12) on θ, which makes this two-step approach necessary.

Lemma 4.3. Let r1 ∈ (0, R) and C ∈ (0, Ccrit(r1)) with Ccrit(r1) as in (4.2). Then
there exist rmin ∈ (0, r1), θ > 0 and λ> 1 such that the following holds for all
r0 ∈ [rmin, r1):

If

w0(s) ≥ µRn − C(rn1 − s)
m

m−1 (4.21)

for all s ∈ [rn0 , r
n
1 ], then there exists T ∈ (0, T0) such that

w(s, t) ≥

µRn − λC(rn1 − θt− s)
m

m−1 if s < rn1 − θt

µRn if s ≥ rn1 − θt
(4.22)

for all s ∈ [rn0 , r
n
1 ] and a.e. t ∈ [0, T ].

Proof. We begin by fixing λ> 1 such that

C? := λC < Ccrit(r1).

We now fix rmin ∈ (0, r1), θmax > 0, κ> 0 and ε0 ∈ (0, 1) according to Lemma 4.2
and then θ ∈ (0, θmax) such that (4.12) holds for

r2 :=

(
rn1 +Rn

2

) 1
n

∈ (r1, R). (4.23)
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As (4.21) ensures that

w0(r
n
0 ) ≥ µRn − C(rn1 − rn0 )

m
m−1 > µRn − λ+ 1

2
C(rn1 − rn0 )

m
m−1 ,

due to λ+1
2 > 1, there exist T ∈ (0, T0) and ε1 ∈ (0, ε0] such that

wε(r
n
0 , t) ≥ µRn − λ+ 1

2
C(rn1 − rn0 )

m
m−1 (4.24)

for all t ∈ [0, T ] and ε ∈ (0, ε1) by Lemma 2.5 as well as

δ =

(
εκ(m− 1)

C?m

)m−1

<
rn1 − rn0

2
(4.25)

for all ε ∈ (0, ε1) and

T < max

{
rn1 − rn0
θmax

(
1−

(
2λ

λ+ 1

)−m−1
m

)
,
rn1 − rn0
2θmax

,
Rn − rn1
2θmax

}
. (4.26)

For our first comparison function, let now wε,stat be as in (4.11) for all ε ∈ (0, ε1)
with the parameters as fixed above but θ replaced by 0. Then we gain

wε,stat(r
n
0 , t) = µRn − η − λC(rn1 − rn0 )

m
m−1 ≤ µRn − λ+ 1

2
C(rn1 − rn0 )

m
m−1 ≤ wε(r

n
0 , t)

for all t ∈ [0, T ] and ε ∈ (0, ε1) due to (4.24), η ≥ 0, λ+1
2 < λ and (4.25) ensuring

that rn0 ≤ rn1 − δ = ρ(t)− δ. We further directly gain that

wε,stat(R
n, t) = µRn = wε(R

n, t)

for all t ∈ [0, T ] and ε ∈ (0, ε1).

Again due to η ≥ 0, λ> 1 as well as that w0(s) ≥ µRn − C(rn1 − s)
m

m−1

+ =: z0(s)
for s ∈ [rn0 , R

n] by (4.21), we see that w0(s) ≥ wε,stat(s, 0) for all s ∈ [rn0 , r
n
1 −

δ] ∪ [rn1 , R
n]. Moreover, since w0 ≥ z0 and z0(r

n
1 ) ≥ wε,stat(r

n
1 , 0), the ordering

w0(s) ≥ wε,stat(s, 0) in [rn1 − δ, rn1 ] and hence on the full interval [rn0 , R
n] follows if

wε,stat(·, 0)− z0 is increasing in the former interval. Indeed,

∂s(wε,stat(s, 0)− z0(s)) = ∂s

[
−εκ(Rn − s) + C(rn1 − s)

m
m−1

]
= εκ− Cm

m−1 (r
n
1 − s)

1
m−1

≥ εκ− Cm
m−1δ

1
m−1 = εκ(1− 1

λ ) ≥ 0

for s ∈ [rn1 − δ, rn1 ] by definition of δ in (4.25).
Notably when θ=0, the condition (4.12) is always trivially fulfilled. Thus

Lemma 4.2 ensures that we can apply the comparison result in Lemma 4.1 to
wɛ and wε,stat and thus gain wε ≥ wε,stat on [rn0 , R

n] × [0, T ]. This then directly
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yields

wε(r
n
2 , t) ≥ wε,stat(r

n
2 , t) = µRn − εκ

(
Rn − rn1

2

)
(4.27)

for all t ∈ [0, T ] and ε ∈ (0, ε1).
For our second comparison argument, we now let

wε,shrink := wε − εκ(Rn − rn2 )

for all ε ∈ (0, ε1) with wε as in (4.11) with the parameters exactly as chosen at the
beginning of this proof (including our choice of θ). We now first observe that

wε,shrink(r
n
0 , t) = µRn − η − εκ(Rn − rn2 )− λC(rn1 − rn0 − θt)

m
m−1

≤ µRn − λ+ 1

2
C(rn1 − rn0 )

m
m−1

≤ wε(r
n
0 , t)

for all t ∈ [0, T ] and ε ∈ (0, ε1) due to (4.24), (4.26) and η ≥ 0, where we have
made use of the fact that the conditions on δ and T in (4.25) and (4.26) entail that
rn0 ≤ rn1 − θT − δ ≤ ρ(t)− δ. Further,

wε,shrink(r
n
2 , t) = µRn − εκ(Rn − rn2 )− εκ (Rn − rn2 − θt)

= µRn − εκ (Rn − rn1 − θt)

≤ µRn − εκ

(
Rn − rn1

2

)
≤ wε(r

n
2 , t)

for all t ∈ [0, T ] and ε ∈ (0, ε1) due to (4.23), (4.27) and again (4.26). Plugging this
second comparison function into Pε, we then see that

Pεwε,shrink = Pεwε + εκ(Rn − rn2 )∂swε ≤ 0

a.e. on [rn0 , r
n
2 ] × [0, T ] due to Lemma 4.2 and our previous parameter choices. As

initial data ordering follows by the same argument as before, this again allows us
to apply Lemma 4.1 to gain that

wε ≥ wε,shrink

on [rn0 , r
n
1 ]× [0, T ]. As wε,shrink converges pointwise to

(s, t) 7→

µRn − λC(rn1 − θt− s)
m

m−1 if s < rn1 − θt

µRn if s ≥ rn1 − θt

as ε ↘ 0, we then gain our desired result due to the pointwise convergence property
in (3.2). �

https://doi.org/10.1017/prm.2025.10078 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10078


Support dynamics in degenerate Keller–Segel systems 19

4.2. Case of support expansion

We now treat the support expansion case by showing that w lies above a function
of the type seen in (4.1) with a positive coefficient for θ under an appropriate
assumption at t =0.

In this case, we again move the extension point in our approximate comparison
functions slightly to the left of rn1 +θt when compared to (4.1) but also modify said
functions in such a fashion as to still allow for a constant extension. This allows
us to similarly work around the potential singularity of the second derivative at
rn1 + θt as before while ensuring that the extension part is still a supersolution.

Lemma 4.4. Let r1 ∈ (0, R) and C? > Ccrit(r1) with Ccrit(r1) as in (4.2). Then
there exists rmin ∈ (0, r1), θ > 0 as well as ε0 ∈ (0, 1) such that the following holds
for all r0 ∈ [rmin, r1) and ε ∈ (0, ε0):

Let

w(s, t) :=

µRn − C?(ρ(t)− s)
m

m−1 + ε(ρ(t)− s) =: wmid(s, t) if s < ρ(t)− δ

µRn + δε
m =: wout(s, t) if s ≥ ρ(t)− δ

(4.28)

for all (s, t) ∈ [rn0 , R
n] × [0, T ?] with δ := ( ε(m−1)

C?m )m−1, ρ(t) := rn1 + θt and T ? :=
Rn−rn1

θ .

Then w ∈ C1([rn0 , R
n] × [0, T ?]) with ∂sw ≥ 0 and w(·, t) ∈ W 2,∞

loc ((rn0 , R
n)) for

all t ∈ [0, T ?]. Further,

Pεw(s, t) ≥ 0 (4.29)

for all s ∈ [rn0 , R
n] \ {ρ(t)− δ} and t ∈ [0, T ?].

Proof. We first fix rmin ∈ (0, r1) as well as small θ > 0 such that

C? ≥ m− 1

m

(
(µRn − µrn0 + 2θ)(m− 1)

r2n−2
0 n2

) 1
m−1

(4.30)

for all r0 ∈ [rmin, r1). We then further note that the definition of T ? entails that

rn1 ≤ ρ(t) ≤ Rn for all t ∈ [0, T ?).

Finally, we let ε0 := min( 12 ,
θ
Rn ) and fix ε ∈ (0, ε0) as well as r0 ∈ [rmin, r1).

By straightforward calculations, we immediately see that

∂swmid(s, t) =
C?m(ρ(t)− s)

1
m−1

m− 1
− ε,

∂sswmid(s, t) = −C?m(ρ(t)− s)
1

m−1−1

(m− 1)2
,

∂twmid(s, t) = −C?mρ′(t)(ρ(t)− s)
1

m−1

m− 1
+ ερ′(t) = −θ∂swmid(s, t)
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for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0, T ?]. As the definition of δ warrants that

wmid(ρ(t)− δ, t) = µRn − C?δ
m

m−1 + εδ = µRn + (ε− C?δ
1

m−1 )δ = µRn +
δε

m
= wout(ρ(t)− δ, t)

and

∂swmid(ρ(t)− δ, t) =
C?m

m− 1
δ

1
m−1 − ε = 0 = ∂swout(ρ(t)− δ, t),

for all t ∈ [0, T ?], and as ∂sswmid is continuous on the compact set [rn0 , ρ(t) − δ]
for all t ∈ [0, T ?], our desired regularity properties for w are immediately evident.
Moreover, since ∂sswmid(s, t) < 0, we can directly see that ∂swmid(s, t) > 0 for all
s ∈ [rn0 , ρ(t)− δ) and t ∈ [0, T ?].

Plugging the above into the parabolic operator Pε, we then see that

Pεwmid = ∂swmid

[
−θ − n2s2−

2
n (∂swmid + ε)m−1 ∂sswmid

∂swmid
− wmid + µs

]
for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0, T ?]. We now begin by deriving that

−wmid + µs = µ(s−Rn) + C?(ρ(t)− s)
m

m−1 − ε(ρ(t)− s)

≥ −µ(Rn − rn0 )− ερ(t)

≥ −µ(Rn − rn0 )− ε0R
n ≥ −µ(Rn − rn0 )− θ (4.31)

for all s ∈ [rn0 , ρ(t) − δ) and t ∈ [0, T ?] by our choice of ɛ0. Now considering the
diffusion term, we further gather that

−n2s2−
2
n (∂swmid + ε)m−1 ∂sswmid

∂swmid
=

n2s2−
2
n

m− 1

(
C?m

m− 1

)m
(ρ(t)− s)

1
m−1

C?m
m−1 (ρ(t)− s)

1
m−1 − ε

≥ n2r2n−2
0

m− 1

(
C?m

m− 1

)m−1

≥ µ(Rn − rn0 ) + 2θ

for all s ∈ [rn0 , ρ(t)− δ) and t ∈ [0, T ?] due to (4.30) and thus that

Pεwmid ≥ ∂swmid [−θ + µ(Rn − rn0 ) + 2θ − µ(Rn − rn0 )− θ] = 0

by combining this with (4.31). Since wout is constant and hence fulfils Pεwout = 0,
we obtain (4.29). �

Using the above family of comparison functions, our desired result then follows
from Lemma 4.1, which importantly does not require w to be strictly increasing.

Lemma 4.5. Let r1 ∈ (0, R) and C > Ccrit(r1) with Ccrit(r1) as in (4.2). Then
there exist rmin ∈ (0, r1), θ > 0 as well as λ> 1, such that the following holds for
all r0 ∈ [rmin, r1):
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If

w0(s) ≤ µRn − C(rn1 − s)
m

m−1 (4.32)

for all s ∈ [rn0 , r
n
1 ], then there exists T ∈ (0, T0) such that

w(s, t) ≤

µRn − C
λ (r

n
1 + θt− s)

m
m−1 if s < rn1 + θt,

µRn if s ≥ rn1 + θt
(4.33)

for all s ∈ [rn0 , R
n] and a.e. t ∈ [0, T ].

Proof. We begin by fixing λ> 1 such that

C? :=
C

λ
> Ccrit(r1).

We now let T ? :=
Rn−rn1

θ > 0 and fix rmin ∈ (0, r1), θ > 0 as well as ε0 ∈ (0, 1)
according to Lemma 4.4. As (4.32) ensures that

w0(r
n
0 ) ≤ µRn − C(rn1 − rn0 )

m
m−1 < µRn − 2C

λ+ 1
(rn1 − rn0 )

m
m−1

due to λ+1
2 > 1, Lemma 2.5 allows us to fix T ∈ (0,min(T0, T

?)) and ε1 ∈ (0, ε0]
such that

wε(r
n
0 , t) ≤ µRn − 2C

λ+ 1
(rn1 − rn0 )

m
m−1 (4.34)

for all t ∈ [0, T ] and ε ∈ (0, ε1) as well as

δ =

(
ε(m− 1)

C?m

)m−1

< rn1 − rn0 (4.35)

for all ε ∈ (0, ε1) and

T ≤ rn1 − rn0
θ

[(
2λ

λ+ 1

)m−1
m

− 1

]
. (4.36)

Let now wε with Pεwε ≥ 0 be as in (4.28) for all ε ∈ (0, ε1) with the parameters as
chosen above. We then check the necessary ordering at the left boundary as follows:

wε(r
n
0 , t) = µRn − C

λ
(rn1 − rn0 + θt)

m
m−1 + ε(rn1 − rn0 + θt)

≥ µRn − 2C

λ+ 1
(rn1 − rn0 )

m
m−1 ≥ wε(r

n
0 , t)

for all t ∈ [0, T ] and ε ∈ (0, ε1) due to (4.34) and (4.36) as well as (4.35) ensuring
that rn0 < rn1 − δ ≤ ρ(t)− δ. Regarding the right boundary point, we observe that

wε(R
n, t) = µRn +

δε

m
≥ µRn
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for all t ∈ [0, T ] and ε ∈ (0, ε1), where T ≤ T ? =
Rn−rn1

θ ensures that Rn ≥ ρ(t) >
ρ(t)− δ. Moreover, we can conclude that

wε(s, 0) = µRn − C

λ
(rn1 − s)

m
m−1 + ε(rn1 − s) ≥ µRn − C(rn1 − s)

m
m−1 ≥ w0(s)

for all s ∈ [rn0 , r
n
1 − δ) due to λ> 1 and (4.32) as well as

wε(s, 0) = µRn +
δε

m
≥ µRn ≥ w0(s)

for all s ∈ [rn1 − δ,Rn] since by construction w0 ≤ µRn. Thus, we can now employ
Lemma 4.1 to gain that

wε(s, t) ≤ wε(s, t)

for all (s, t) ∈ [rn0 , R
n]× [0, T ]. Using that wε converges pointwise to

(s, t) 7→

µRn − C
λ (r

n
1 + θt− s)

m
m−1 if s < θt+ rn1 ,

µRn if s ≥ θt+ rn1

as ε ↘ 0, we then gain our desired result due to the pointwise convergence property
in (3.2). �

5. Proof of Theorem 1.1

Having now established all necessary prerequisites, we can start putting the puzzle
pieces together to prove our main theorem.

Proof of Theorem 1.1. We begin by treating the support shrinking case. We thus
now assume that (1.4) holds for some positive A < Acrit and r0 ∈ (0, r1). The
definitions of Acrit and Ccrit in (1.3) and (4.2) entail
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Acrit
n− 1

m−1 r
− (n−1)m

m−1

1 rn−1
1 (m− 1)

m
= Ccrit(r1),

so that by replacing r0 with an r0 sufficiently close to r1, if necessary, we may
assume

C :=
An− 1

m−1 r
− (n−1)m

m−1

0 rn−1
1 (m− 1)

m
< Ccrit(r1).

Let now rmin ∈ (0, r1) be as provided by Lemma 4.3 for the constant C fixed above.
Let then further r? := max(rmin, r0). Lemma 3.1 then yields that

w0(s) ≥ µRn − C(rn1 − s)
m

m−1

for all s ∈ (rn? , r
n
1 ), which in turn allows us to apply Lemma 4.3 to further fix

T ∈ (0, T0), λ> 0 and θ > 0 such that (4.22) holds for all s ∈ [rn? , r
n
1 ] and a.e.

t ∈ [0, T ]. If we complement this lower bound with the fact that w(s, t) ≤ µRn for
all s ∈ [rn? , R

n] and a.e. t ∈ [0, T ] due to (3.3), we gain that

w(s, t) = µRn

for all s ∈ [rn1 − θt, Rn] and a.e. t ∈ [0, T ]. This implies that

0 = w(Rn, t)− w(rn1 − θt, t) = n

∫ R

(rn1 −θt)
1
n

ρn−1u(ρ, t) dρ

for a.e. t ∈ [0, T ]. Given the a.e. nonnegativity of u and positivity of ρ, it thus
follows that

u(s, t) = 0

for a.e. s ∈ [(rn1 − θt)
1
n , R] and a.e. t ∈ [0, T ] and hence

sup(ess suppu(·, t)) ≤ (rn1 − θt)
1
n for a.e. t ∈ (0, T ).

As here (rn1 − θt)
1
n − r1 ≤ − 1

nr
1−n
1 θt =: −ζt for all t ∈ (0, T ) by the mean value

theorem, this implies (1.5).
By combining Lemma 3.1 and Lemma 4.5 while assuming (1.6), in a very similar

fashion to the argument above, we can gain another set of C > 0, r? ∈ (0, r1),
T ∈ (0, T0), λ> 0 and θ > 0 such that (4.33) holds for all s ∈ [rn? , R

n] and a.e.
t ∈ [0, T ]. This implies that

w(Rn, t)− w(s, t) ≥ µRn − µRn +
C

λ
(rn1 + θt− s)

m
m−1 > 0

and thus

n

∫ R

s
1
n

ρn−1u(ρ, t) dρ > 0
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for all s ∈ (rn? , r
n
1 + θt) and a.e. t ∈ [0, T ]. Therefore, for all s ∈ (rn? , r

n
1 + θt) and

a.e. t ∈ [0, T ], there must exist a set M(s, t) ⊆ (s
1
n , R) of positive measure such

that u(·, t) > 0 on M(s, t). This directly implies sup(ess suppu(·, t)) ≥ s
1
n for all

s ∈ (rn? , r
n
1 + θt) and a.e. t ∈ [0, T ] and hence

sup(ess suppu(·, t)) ≥ (rn1 + θt)
1
n for a.e. t ∈ (0, T ).

By a final application of the mean value theorem, we conclude that (1.7) holds for

ζ := 1
n (r

n
1 + θT )

1
n−1θ. �
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