
Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10239

Leveraging large language models for enabling
design by analogy: a computational framework

Rohin Joshi1, Ruhi Mitra1, Vijayalaxmi Sahadevan1, Kane Borg2, Vishal Singh1,
Bilal Muhammed3, Soban Babu Beemaraj3 and Amol Joshi3

1 Indian Institute of Science Bangalore, India, 2 Aalto University, Finland, 3 TCS Research & Innovation,
Tata Consultancy Services, Pune, Maharashtra, India

svijaya16@gmail.com

ABSTRACT: Design by Analogy (DbA) is a powerful method for fostering innovation by transferring knowledge
from a source domain to solve problems in a target domain. However, traditional DbA approaches face significant
challenges, including resource-intensive database management, linguistic and representational differences across
domains, and the complexity of access and mapping processes. These limitations hinder scalability and efficiency,
particularly for cross-domain analogies. Recent advancements in Artificial Intelligence (AI), especially Large
Language Models (LLMs), offer promising solutions by facilitating efficient knowledge retrieval, bridging
linguistic gaps, and enhancing semantic reasoning. This paper explores the potential of AI technologies to address
these challenges, proposing a framework for analogical reasoning.

KEYWORDS: Design by Analogy, Artificial intelligence, Knowledge management

1. Introduction
Analogy is a powerful strategy for creative problem-solving, enabling designers to draw insights from
similar or cross-domain contexts (Holyoak & Thagard, 1996; Singh, Casakin, et al., 2015) Effective
Design by Analogy (DbA) requires representing source and target knowledge in a unified framework,
typically stored in databases for systematic retrieval and mapping. However, maintaining these databases
is resource-intensive, especially for cross-domain analogies, which face linguistic and representational
challenges.
DbA relies on access (retrieving relevant analogies) andmapping (aligning source and target elements),
both of which are cognitively and computationally demanding. Recent advances in Artificial Intelligence
(AI), particularly Large Language Models (LLMs), enhance these processes by efficiently storing,
retrieving, and reasoning about knowledge across domains.
This paper proposes a systematic DbA pipeline integrating LLMs with graph algorithms to automate and
scale analogy-driven design. The framework follows five stages: Retrieval, Mapping, Transfer,
Evaluation, and Storage (Ball & Christensen, 2022), leveraging LLMs for semantic understanding and
graph algorithms for structural organization. This approach enhances efficiency, scalability, and cross-
domain applicability, addressing limitations in traditional DbA methods.

2. Literature review
Given its importance in creative problem-solving, numerous DbA approaches have emerged, including
biomimetic design and analogical reasoning in engineering and design. These methods can be
categorized based on their methodological principles and focus areas.
Natural language processing (NLP) and text mining techniques are often used to bridge terminological
gaps between biological and engineering domains. For instance, (Chiu & Shu, 2007) proposed a bridging

ICED25 2251

https://doi.org/10.1017/pds.2025.10239
mailto:svijaya16@gmail.com


method using NLP to uncover less-obvious connections between engineering and biological
terminology. Similarly, (Verhaegen et al., 2011) applied word co-occurrence and principal component
analysis (PCA) to analyze patent data for identifying DbA candidates.(Vandevenne et al., 2016)
developed SEABIRD, which maps technical systems described in patents to biological systems
referenced in academic literature.
Function-based methodologies represent another key category, focusing on the functional characteristics
of designs. (Stone & Wood, 1999) introduced a functional basis framework for representing design. (Fu
et al., 2015) proposed a patent-based analogy search using functional vector approaches, while (Briana
et al., 2015) presented tools such as D-APPS and DRACULA, which integrate functional models with
resources like WordNet and the AskNature repository. (Sanaei et al., 2017) devised a text-based system
leveraging engineering ontologies and hierarchical function representations to retrieve design analogies.
In addition, computational models have been developed to facilitate biomimetic design and analogical
reasoning. For example, (Grace et al., 2015) introduced Idiom, a computational model for analogical
mapping that reinterprets object representations. (Oriakhi et al., 2011) created the WordTree method and
its associated tool, WordTree Express (WTE), which visually represent word relationships based on
functional design principles. Tools like (Vattam et al., 2011) and VISION (Song et al., 2020) provide
innovative approaches to structure-behavior-function modeling and visual interaction for analogical
inspiration, respectively.
Model-based analogy approaches offer deeper insights by capturing structural and functional similarities.
(Goel & Bhatta, 2004) explored model-based analogy (MBA), which transfers generic teleological
mechanisms (GTMs) between contexts. Other notable contributions include (Goel et al., 1997), which
uses functional basis models for design modification and verification, and IDEAL (Bhatta &Goel, 1996),
which extracts generic teleological mechanisms for analogical mapping.
Case-based reasoning (CBR), rooted in analogical reasoning, is another influential method (Hybs and
Gero, 1992). CBR relies on previously encountered cases, using similarity measures to retrieve relevant
instances that inform new problem-solving scenarios (Perner, 2014). The CBR process includes four
stages—retrieve, reuse, revise, and retain (Aamodt and Plaza, 1994)—to emulate human reasoning.
Applications of CBR span various design domains, including architectural design (Mubarak, 2004) and
mechanical device development (Qin and Regli, 2003).
Overall, most DbA-inspired approaches focus on ideation and solution recommendation within
predefined problem contexts. Earlier, DbA approaches faced significant challenges in managing cross-
domain analogies due to linguistic and representational differences, requiring extensive manual effort or
rigid databases for analogy retrieval and mapping. These methods often struggled with scalability and
flexibility, limiting their applicability in diverse contexts. In contrast, using LLMs enables seamless
integration of linguistic, contextual, and semantic reasoning, offering enhanced adaptability and
efficiency in retrieving and mapping analogies across varied domains.

3. Methodology

3.1. Overall architecture
The proposed framework implements a systematic pipeline for automating and scaling DbA through the
integration of LLMs and graph-theoretic algorithms. The framework employs the Function-Behavior-
Structure (FBS) (Gero & Kannengiesser, 2004) ontological framework as its foundational
representational paradigm (Goel and Bhatta, 2004, Vandevenne et al., 2016), operating through five
distinct computational phases: Retrieval, Mapping, Transfer, Evaluation, and Storage, as illustrated in
figure 1.
During the Retrieval phase, LLMs perform systematic extraction of structural and relational information
from the design problem specification, encoding it within the FBS ontological framework as a directed
dependency graph G(V,E). The vertices V represent functional, behavioral, and structural entities, while
edges E encode their interdependencies. Graph-theoretic algorithms, specifically union-find operations,
facilitate the identification of functional clusters within G(V,E), enabling the abstraction of these clusters
into higher-order functional representations optimized for analogical retrieval.
The Mapping phase implements established analogical reasoning principles (Bhatta and Goel, 1996),
wherein LLMs execute cross-domain structural mapping operations through the lens of FBS
relationships. This approach ensures preservation of functional isomorphisms despite potential structural

2252 ICED25



variations between domains. The resultant mappings undergo bidirectional projection while maintaining
topological consistency with the source design’s dependency structure.
The framework employs iterative solution refinement during the Evaluation phase, utilizing quantitative
FBS-based metrics to assess functional coherence and problem relevance. The Storage phase culminates
in the systematic archival of validated solutions in a normalized FBS representation format, facilitating
the development of a comprehensive design analogy repository with robust cross-domain applicability.

3.2. Retrieval phase
The retrieval phase involves leveraging LLMs to extract structural and relational information from the
input design problem. This process is divided into two sub-steps:

1. Identification of Structures and Relationships: The LLM analyzes the input design
context to identify key structural components S � s1; s2; . . . ; snf g and the relationships or
behaviors R � r1; r2; . . . ; rmf g between these structures. Each relationship rij 2 R is modeled
as a dependency between structures si and sj.
2. Graph Construction: The extracted structures and relationships are represented as a
directed graph G � V ;E� �, where:
• V is the set of vertices, corresponding to the identified structures S,
• E is the set of directed edges, representing relationships R.

Formally, an edge eij 2 E is defined as:

eij � si; sj; rij
� �

;

where si; sj 2 V and rij encodes the nature of the dependency.
This structured graphG serves as the foundation for downstream reasoning and analogy generation tasks.
Figure 2 shows an example graph generated for the components of a motorcycle.

Figure 1. Sequence of operations

ICED25 2253



3.3. Component formation using union-find
After constructing the dependency graph G � V ;E� �, we perform a union-find operation to partition the
graph into connected components. Each connected component represents a unique function within the
design problem.

3.3.1. Union-Find algorithm
The union-find algorithm is applied to efficiently group nodes into disjoint sets based on their
connectivity in G. This process consists of two primary operations:
• Find: Determines the representative element (or root) of the set to which a node v 2 V belongs.
Formally:

Find v� � � Root v� �:

• Union: Merges two sets containing nodes vi and vj if there exists an edge eij 2 E between them. This
operation is defined as:

Union vi; vj
� � ) Root vi� � � Root vj

� �
:

3.3.2. Component formation
Using the union-find operations, the nodes V are grouped into disjoint sets C � C1;C2; . . . ;Ckf g, where
each set Ci corresponds to a connected component. Formally, a connected component Ci is defined as:

Ci � fv 2 V jFind v� � � Root�v�g:

Each component Ci represents a unique function, encapsulating the structural elements and their
relationships that contribute to that specific functionality. This step mirrors methods for function-based
clustering Fu et al., 2015.

3.4. Abstract function creation
After grouping the nodes into connected components C � C1;C2; . . . ;Ckf g using the union-find
operation, we assign an abstract function to each component. These abstract functions encapsulate the
collective behavior and structural dependencies of the nodes within their respective groups while
preserving the original graph topology.

3.4.1. Abstract function representation
Each connected component Ci is mapped to an abstract function Fi, where:

Fi � AbstractFunction Ci� �;

and Ci represents the set of nodes v1; v2; . . . ; vnf g and their internal dependencies. The abstract function
Fi is designed to generalize the behavior of the component while hiding low-level implementation
details. Figure 3 shows the identified abstract functions for each connected component from figure 2.

Figure 2. Directed graph depicting the structures and relationships for motorcycle design example

2254 ICED25



3.4.2. Graph transformation
The dependency graph G � V ;E� � is transformed into a higher-level abstract graph
G’ � V ’;E’� �, where:
• V ’ � F1;F2; . . . ;Fkf g represents the set of abstract functions,
• E’ represents the dependencies between abstract functions, derived from the original graph G.
An edge e’ij 2 E’ is created between Fi and Fj if there exists at least one edge exy 2 E, where vx 2 Ci and
vy 2 Cj. Formally:

e’ij � Fi;Fj

� �
if 9 exy 2 E; vx 2 Ci; vy 2 Cj:

3.4.3. Preserving topology
The abstract graph G’ retains the original graph’s topology, ensuring that the hierarchical structure of
functions and their dependencies remains consistent. This abstraction facilitates the application of
reasoning and design analogy in subsequent phases.

3.5. Retrieval of analogical structures
With the abstract functions F � F1;F2; . . . ;Fkf g defined for each component, the next step involves
leveraging a Large Language Model (LLM) to retrieve analogical structures from various domains that
exhibit similar functionality.

3.5.1. Analogical retrieval framework
For each abstract function Fi, the LLM is queried to identify structures Ai � a1; a2; . . . ; amf g from
diverse domains that are analogous to Fi in terms of functionality. The retrieval process can be formalized
as:

Ai � LLM � Retrieve Fi;D� �;
where D represents the set of available domains, and LLM � Retrieve is the retrieval mechanism
powered by the LLM. The retrieved structures Ai are ranked based on their functional similarity to Fi.

3.5.2. Functional similarity metric
To ensure the retrieved structures are relevant, a functional similarity metric Sim Fi; aj

� �
is computed for

each candidate aj 2 Ai. The similarity score is derived from the LLM’s embeddings and is defined as:

Sim Fi; aj
� � � cos Embed Fi� �;Embed aj

� �� �
;

where Embed �� � denotes the LLM-generated embedding of the input, and cos �; �� � is the cosine similarity
function. This is reminiscent of techniques such as those used by Chiu and Shu, 2007.

3.5.3. Selection of analogical structures
Based on the similarity scores, the top p structures Atop

i � Ai are selected for each abstract function Fi:

Atop
i � faj 2 AijSim Fi; aj

� � � τg;

Figure 3. Functions graph preserving the topology of the structure graph - motorcycle design
example

ICED25 2255



where τ is the similarity threshold. These selected structures represent the most relevant analogies for Fi
across domains, similar to PCA-based methods in Verhaegen et al. (2011).

3.5.4. Preservation of abstract graph topology
The retrieved analogical structures Atop � Atop

1 ;Atop
2 ; . . . ;Atop

k

� �
are integrated back into the abstract

graph G’ while preserving its topology. Each node Fi in G’ is replaced by its corresponding analogical
structure Atop

i , maintaining the edge connections E’ between abstract functions. Figure 4 shows an
example for the analogous structures for each abstract function identified in figure 3.

3.6. Mapping and transfer
In the mapping and transfer phase, we proceed in topological order to transfer the function, behavior, and
structure from the retrieved analogical structures to the source design problem. The goal is to ensure that
the subsequent nodes in the analogy graph remain compatible with each other by respecting the
topological dependencies.

3.6.1. Topological ordering
Given the abstract graph G’ � V ’;E’� � of the source design problem, we first compute a topological
order of the abstract functions F � F1;F2; . . . ;Fkf g. The topological order π is defined as a sequence of
functions such that for every directed edge e’ij � Fi;Fj

� � 2 E’, Fi appears before Fj in π. Formally:

π � TopologicalOrder G’� �;
where π � Fπ 1� �;Fπ 2� �; . . . ;Fπ k� �

� �
is a valid topological order.

3.6.2. Function, behavior, and structure mapping
For each function Fi in the topologically ordered sequence π, we map the function Fi, its associated
behavior bi, and its structure si to the corresponding components Atop

i of the retrieved analogical structure.
The mapping process is formally defined as:

Map Fi� � ! Atop
i ; bi; s

� �
:

This ensures that the function Fi from the source design is transferred to the analogous structure,
preserving both its behavior and structure.

3.6.3. Ensuring compatibility
By following the topological order, we ensure that each node Fi is mapped before its dependent nodes Fj
(where Fi ! Fj in E’). This guarantees that the behavior and structure of Fi are compatible with those of
Fj, ensuring that the subsequent mappings do not violate any functional dependencies within the
analogy graph.

3.6.4. Transfer process
The transfer is performed iteratively as follows:
• For each function Fi in the topological order π, retrieve its corresponding analogical structure A

top
i from

the analogy graph.

Figure 4. Graph with analogous structures for motorcycle design example

2256 ICED25



• Transfer the structure si, behavior bi, and function Fi from Atop
i to the source design problem, ensuring

that the analogical structure aligns with the source.
• This process continues until all functions, behaviors, and structures are mapped and transferred to the
source.

3.7. Solution storage and future retrieval
The mapping and transfer phase yields a set of design solutions by analogy, each of which encapsulates a
functional, behavioral, and structural mapping from the analogical structures to the source design
problem. These solutions are then stored in a vector database for efficient future retrieval.

3.7.1. Solution representation
Each solution Si is represented as a vector in a high-dimensional embedding space. The vector Si encodes
the combined function, behavior, and structure of the analogical solution:

Si � Embed Fi; bi; si� �;

where Fi is the function, bi is the behavior, and si is the structure of the mapped solution. The embedding
function Embed �� � generates a vector representation for each solution that captures its key characteristics
in the design space.

3.7.2. Vector database storage
All solutions S � S1; S2; . . . ; Snf g are stored in a vector database, such as FAISS or Pinecone, which
supports efficient similarity search operations. The vector database allows for fast retrieval of solutions
based on their functional similarity to new design problems. Formally, for a new query vector Q
representing a new design problem, the closest solutions Si can be retrieved using a similarity metric:

Sibest � Retrieve Q; S� �;

where Sibest represents the solution most similar to the query vector Q, and Retrieve �� � is the retrieval
function based on cosine similarity or another distance metric.

3.7.3. Future retrieval
By storing the solutions in a vector database, future design problems can be efficiently matched with the
most relevant analogical solutions. This retrieval process enables quick adaptation of previous analogical
designs to new contexts, facilitating faster design iterations and improving design efficiency over time.

4. Results

4.1. Case study - motorcycle design
The result obtained from the proposed framework for ’Motorcycle Design’ is presented in Table 1 (edited
to tabular format for clarity)
The results of the proposed framework present a structured, systematic, and modular approach to
motorcycle design. By breaking down the vehicle into distinct subsystems and then solving by analogy, it
ensures that every aspect of the motorcycle’s functionality—energy generation, conversion, translator,
shock absorber, etc.—is optimized individually. It integrates advanced engineering concepts such as
piezoelectric energy harvesting, thermophotonic devices, shape-memory alloys, and graphene-based
systems. This method ensures a high level of technical precision and modularity, making it well-suited
for real-world engineering applications where individual subsystems can be optimized independently.

ICED25 2257



Table 1. Motorcycle System Overview

Step Description Function Behavior Structure

Step 1: Resource
Provision

The motorcycle is equipped with a bio-
inspired, piezoelectric material-
based system integrated into the
frame, harnessing vibrational energy
from the engine and converting it into
electrical energy. This system
supplements the primary power
source, increasing overall efficiency.

Resource provision Energy harvesting and
conversion

Piezoelectric material-
based system

Step 2: Energy
Generation

The motorcycle utilizes a novel,
thermophotonic device that converts
heat into energy, harnessing waste
heat and converting it into electrical
energy. This device supplements the
primary power source, increasing
overall efficiency.

Energy generation Heat-to-energy
conversion

Thermophotonic device

Step 3: Energy
Conversion

The motorcycle employs a shape-
memory alloy-based system that
adjusts gear ratios in response to
changes in temperature, providing
seamless and efficient gear shifting.

Energy conversion Temperature-responsive
gear shifting

Shape-memory alloy-
based system

Step 4: Energy
Absorption

The motorcycle is equipped with a
regenerative braking system inspired
by piezoelectric materials, harnessing
kinetic energy generated during
braking and converting it into
electrical energy.

Energy absorption Kinetic energy harvesting
and conversion

Regenerative braking
system

Step 5: Energy
Distribution

The motorcycle utilizes a graphene-
based power distribution system
that optimizes energy flow and
reduces energy loss, providing
efficient and reliable power
distribution.

Energy distribution Optimized energy flow Graphene-based power
distribution system

Step 6: Motion
Translation

The motorcycle employs a novel,
omnidirectional wheel system
inspired by spherical robots,
providing unparalleled
maneuverability and stability.

Motion translation Omnidirectional
movement

Omnidirectional wheel
system

Step 7:
Structural
Integration

The motorcycle is designed with a 3D-
printed, lattice-structured frame
inspired by bone tissue, providing
exceptional strength, lightness, and
flexibility.

Structural
integration

Load-bearing and
flexibility

3D-printed, lattice-
structured frame

Step 8:
Component
Integration

The motorcycle utilizes a modular,
adaptive chassis system inspired by
swarm robotics, providing
exceptional flexibility and
adaptability.

Component
integration

Modular and adaptive
configuration

Modular, adaptive chassis
system

Step 9: Interface
Adaptation

The motorcycle is designed with a
biometric sensor-based interface
inspired by human-machine
interfaces, providing real-time
feedback and adapting to the rider’s
physical and emotional state.

Interface
adaptation

Real-time feedback and
adaptation

Biometric sensor-based
interface

Step 10: Surface
Provision

The motorcycle is designed with a self-
healing, adaptive skin inspired by
living tissues, providing exceptional
durability, aerodynamics, and
aesthetics.

Surface provision Self-healing and
adaptation

Self-healing, adaptive
skin

Step 11: Flow
Optimization

The motorcycle is designed with a bio-
inspired, adaptive aerodynamic
system inspired by whale fins,
providing exceptional aerodynamic
efficiency.

Flow optimization Aerodynamic efficiency Bio-inspired, adaptive
aerodynamic system

Step 12: Shock
Absorption

The motorcycle utilizes a
magnetorheological fluid-based
suspension system inspired by shape-
memory alloys, providing exceptional
shock absorption, stability, and
adaptability.

Shock absorption Adaptive shock
absorption

Magnetorheological fluid-
based suspension
system

2258 ICED25



5. Discussion
This work presents a theoretical framework integrating LLMs and graph algorithms within the FBS
ontology for DbA. The framework systematically addresses analogical mapping while maintaining
functional consistency through structured graph representations. The utilization of FBS ontology as a
common semantic framework enables cross-domain translation, addressing a fundamental challenge in
analogical reasoning.
The incorporation of LLMs represents a methodological shift from conventional approaches dependent
on curated databases or domain-specific knowledge bases. This enables exploration of a broader solution
space without extensive data collection requirements. However, this approach necessitates careful
consideration of prompt engineering methodologies, potential memorization artifacts in LLM outputs,
and development of quantitative metrics for evaluating analogical relevance.
The implementation of graph algorithms, specifically union-find operations and topological ordering,
provides a formal mechanism for preserving structural consistency in compound analogical structures.
While this approach establishes mathematical rigor in maintaining functional relationships, further
investigation is required regarding optimal graph representations for diverse design problems and
computational scalability for complex dependency structures.
Several theoretical and methodological considerations emerge from this conceptual framework:

1. Computational complexity: The scalability of graph operations and LLM query
optimization requires systematic evaluation, particularly for extensive dependency networks.
2. Ontological framework: The efficacy of FBS as a universal translation mechanism
across heterogeneous domains demands rigorous investigation.
3. Current development: Ongoing research focuses on optimizing LLM query formulation
and graph transformation operations, including the development of quantitative metrics for
analogical relevance and implementation of vector-based solution storage systems.

As a conceptual framework, this research contributes to the DbA domain through a theoretical foundation
for automated analogical reasoning. The synthesis of FBS ontology, LLMs, and graph algorithms
establishes a systematic methodology for cross-domain analogical mapping while maintaining functional
consistency. However, substantial research remains in empirical validation, metric development, and
addressing technical constraints in LLM reliability and graph representations.
Future research directions include systematic framework evaluation and theoretical refinement.
Additionally, investigation of framework behavior across diverse design domains will provide insights
into generalizability constraints.

6. Conclusion
This paper presents a theoretical framework for DbA that combines LLMs with graph algorithms. The
framework employs the FBS ontology as a basis for cross-domain translation, supported by a
mathematical formulation for maintaining structural dependencies. By representing design problems as
dependency graphs and utilizing union-find operations for functional clustering, the framework provides
a systematic approach to handling compound analogical structures.
The integration of LLMs with graph-theoretic operations offers a mechanism for exploring cross-domain
analogies while preserving functional relationships. The framework’s formalization of the retrieval,
mapping, and transfer processes establishes a theoretical foundation for systematically generating and
evaluating design analogies.
While the framework demonstrates potential in automating DbA, certain limitations should be
acknowledged. The quality of analogical retrieval depends significantly on the LLM’s training and its
ability to understand domain-specific technical concepts. Additionally, the framework’s current
formulation assumes that functional relationships can be effectively captured through graph structures,
which may not hold true for all design scenarios.
Future research directions include the development of robust evaluation metrics for assessing the quality
of retrieved analogies, investigation of methods to incorporate domain-specific constraints into the
mapping process, and exploration of techniques to handle temporal and dynamic aspects of design
problems. The framework could also benefit from integration with existing design tools and
methodologies to enhance its practical applicability in real-world design scenarios.

ICED25 2259



References
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system

approaches. AI Communications, 7(1), 39–59.
Ball, L. J., & Christensen, B. T. (2022). Analogical reasoning and mental simulation in design: Two strategies

linked to uncertainty resolution. In About designing (pp. 137–152). CRC Press.
Bhatta, S. R., & Goel, A. K. (1996). From design experiences to generic mechanisms: Model-based learning in

analogical design. AI EDAM, 10(2), 131–136.
Briana, L., Julie, L., Turner, C., et al. (2015). Design repository&analogy computation via unit-language analysis

(dracula) matching algorithm development.
Chiu, I., & Shu, L. (2007). Biomimetic design through natural language analysis to facilitate crossdomain

information retrieval. Ai Edam, 21(1), 45–59.
Fu, K., Murphy, J., Yang, M., Otto, K., Jensen, D., & Wood, K. (2015). Design-by-analogy: Experimental

evaluation of a functional analogy search methodology for concept generation improvement. Research in
Engineering Design, 26, 77–95.

Gero, J. S., & Kannengiesser, U. (2004). The situated function–behaviour–structure framework. Design studies,
25(4), 373–391.

Goel, A. K., & Bhatta, S. R. (2004). Use of design patterns in analogy-based design. Advanced Engineering
Informatics, 18(2), 85–94.

Goel, A. K., de Silva Garza, A. G., Grue, N., Murdock, J. W., & Recker, M. M. (1997). Functional explanations in
design. W980420122, 221.

Grace, K., Gero, J., & Saunders, R. (2015). Interpretation-driven mapping: A framework for conducting search and
rerepresentation in parallel for computational analogy in design. AI EDAM, 29(2), 185–201.

Holyoak, K. J., & Thagard, P. (1996). Mental leaps: Analogy in creative thought. MIT press.
Hybs, I., & Gero, J. S. (1992). An evolutionary process model of design. Design Studies, 13(3), 273–290.
Mubarak, K. (2004). Case based reasoning for design composition in architecture. Pittsburgh, Carnegie Melon

University.
Oriakhi, E., Linsey, J., & Peng, X. (2011). Design-by-analogy using the wordtree method and an automated

wordtree generating tool. DS 68-7: Proceedings of the 18th International Conference on Engineering Design
(ICED 11), Impacting Society through Engineering Design, Vol. 7: Human Behaviour in Design, Lyngby/
Copenhagen, Denmark, 15.-19.08. 2011.

Perner, P. (2014). Mining sparse and big data by case-based reasoning. Procedia Computer Science, 35, 19–33.
Qin, X., & Regli, W. C. (2003). A study in applying case-based reasoning to engineering design: Mechanical

bearing design. AI EDAM, 17(3), 235–252.
Sanaei, R., Lu,W., Blessing, L. T., Otto, K. N., &Wood, K. L. (2017). Analogy retrieval through textual inference.

International Design Engineering Technical Conferences and Computers and Information in Engineering
Conference, 58127, V02AT03A007.

Singh, V., Casakin, H., et al. (2015). Developing a computational framework to study the effects of use of analogy
in design on team cohesion and team collaboration. DS 80-11 Proceedings of the 20th International Conference
on Engineering Design (ICED 15) Vol 11: Human Behaviour in Design, Design Education; Milan, Italy, 27-
30.07. 15, 101–110.

Song, H., Evans, J., & Fu, K. (2020). An exploration-based approach to computationally supported design-by-
analogy using d3. AI EDAM, 34(4), 444–457.

Stone, R. B., & Wood, K. L. (1999). Development of a functional basis for design. International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, 19739,
261–275.

Vandevenne, D., Verhaegen, P.-A., Dewulf, S., & Duflou, J. R. (2016). Seabird: Scalable search for systematic
biologically inspired design. Ai Edam, 30(1), 78–95.

Vattam, S., Wiltgen, B., Helms, M., Goel, A. K., & Yen, J. (2011). Dane: Fostering creativity in and through
biologically inspired design. Design creativity 2010, 115–122.

Verhaegen, P.-A., Peeters, J., Vandevenne, D., Dewulf, S., & Duflou, J. R. (2011). Effectiveness of the panda
ideation tool. Procedia engineering, 9, 63–76.

2260 ICED25


	Leveraging large language models for enabling design by analogy: a computational framework
	1.. Introduction
	2.. Literature review
	3.. Methodology
	3.1.. Overall architecture
	3.2.. Retrieval phase
	3.3.. Component formation using union-find
	3.3.1.. Union-Find algorithm
	3.3.2.. Component formation

	3.4.. Abstract function creation
	3.4.1.. Abstract function representation
	3.4.2.. Graph transformation
	3.4.3.. Preserving topology

	3.5.. Retrieval of analogical structures
	3.5.1.. Analogical retrieval framework
	3.5.2.. Functional similarity metric
	3.5.3.. Selection of analogical structures
	3.5.4.. Preservation of abstract graph topology

	3.6.. Mapping and transfer
	3.6.1.. Topological ordering
	3.6.2.. Function, behavior, and structure mapping
	3.6.3.. Ensuring compatibility
	3.6.4.. Transfer process

	3.7.. Solution storage and future retrieval
	3.7.1.. Solution representation
	3.7.2.. Vector database storage
	3.7.3.. Future retrieval


	4.. Results
	4.1.. Case study - motorcycle design

	5.. Discussion
	6.. Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


