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Abstract
Large language models have shown promise for automating data extraction (DE) in systematic reviews (SRs),
but most existing approaches require manual interaction. We developed an open-source system using GPT-4o to
automatically extract data with no human intervention during the extraction process. We developed the system on
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a dataset of 290 randomized controlled trials (RCTs) from a published SR about cognitive behavioral therapy for
insomnia. We evaluated the system on two other datasets: 5 RCTs from an updated search for the same review and
10 RCTs used in a separate published study that had also evaluated automated DE. We developed the best approach
across all variables in the development dataset using GPT-4o. The performance in the updated-search dataset using
o3 was 74.9% sensitivity, 76.7% specificity, 75.7 precision, 93.5% variable detection comprehensiveness, and
75.3% accuracy. In both datasets, accuracy was higher for string variables (e.g., country, study design, drug names,
and outcome definitions) compared with numeric variables. In the third external validation dataset, GPT-4o showed
a lower performance with a mean accuracy of 84.4% compared with the previous study. However, by adjusting
our DE method, while maintaining the same prompting technique, we achieved a mean accuracy of 96.3%, which
was comparable to the previous manual extraction study. Our system shows potential for assisting the DE of string
variables alongside a human reviewer. However, it cannot yet replace humans for numeric DE. Further evaluation
across diverse review contexts is needed to establish broader applicability.

Highlights
What is already known?

• Large language models have shown promise for automating data extraction (DE) in systematic reviews
(SRs), but existing approaches often require manual interaction, lack open-source accessibility, and are not
extensively tested on independent large-scale datasets.

What is new?

• An open-source systems using GPT-4o and o3 were developed for automated DE in SRs. The system
using GPT-4o achieved 74.4% sensitivity, 68.8% specificity, 69.1% precision, 97.1% variable detection
comprehensiveness, and 72.6% accuracy across all variables in the development dataset.

• In a temporal validation dataset, the system using o3 achieved 74.9% sensitivity, 76.7% specificity, 75.7%
precision, 93.5% variable detection comprehensiveness, and 75.3% accuracy.

• In an external validation dataset, the system using GPT-4o achieved 96.3%, which was comparable to the
previous manual extraction study.

Potential impact for RSM readers

• The system showed potential for assisting in the extraction of string data in combination with human input,
but the performance for numeric DE was still inadequate due to limited accuracy.

1. Introduction

Systematic reviews (SRs) play a critical role in evidence-based medicine. They provide comprehensive
summaries of existing research on specific clinical questions, which are essential for advancing science.
However, they rely on time-consuming systematic processes, often leading to outdated results, thus
requiring efficient process improvement.1,2

Hence, the SR project requires improvements in workflow efficiencies. While satisfactory results
have been reported for the use of machine learning (ML) in updating SR searches,3,4 data extraction
(DE) tasks remain challenging, even with traditional ML approaches.5 Since the advent of ChatGPT
in 2022, expectations that large language models (LLMs) will lead to advances in this field have been
growing.6–8

To date, reported attempts to automate DE using LLMs have several limitations in terms of their
reliable implementation in SRs. First, some models do not target specific SR questions.9–12 Instead, they
extract data on what the original authors regarded as the study-specific “primary outcome,” rather than
relying on a specific review question, as typically done in SRs. Other models limit their focus to specific
fields like oncology, where DE can sometimes be relatively straightforward due to lower heterogeneity
in core outcome sets.13 Second, previous models extracted only a small number of variables,9–11 and
whether the reported performance can be extended to the full set of data commonly extracted in an
SR is unclear. Third, methods reported so far in the literature often rely on iterative human-to-computer
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interactions with the LLM models, a process that can be highly time-consuming for large-scale reviews.
For instance, extracting 50 variables from 20 randomized controlled trials (RCTs) would require up to
1,000 manual interactions.10,11 Assuming 30 seconds per interaction, it takes over 80 hours. Finally,
the lack of open-source code and data for many of these systems hinders widespread adoption and
improvement.13

The primary objective of this study was to develop and evaluate an open-source system that can
automatically perform DE tasks within the context of SRs. “Automatically” refers to the absence of
manual interaction from data input to output. We used the protocol and DE manual of a published
SR and component network meta-analysis (NMA) on cognitive behavioral therapy for insomnia14 to
generate a set of meta-prompts via GPT-4o, including explanations for each variable. We then evaluated
the performance of several DE methods using these prompts in the dataset for this NMA by GPT-4o.
Finally, we assessed the external validity of our system using an updated search dataset of the NMA
and another dataset from a published automated DE study.10

2. Methods

2.1. Study process

Figure 1 illustrates the entire study process. A prospectively registered protocol was not prepared
because the study followed an iterative ML development cycle that required ongoing system refinement.

We used a meta-prompt strategy to enhance the LLM.15 A prompt is input text given to the LLMs by
users. For instance, “What is the weather like today?” In contrast, a meta-prompt is a prompt that tells

Figure 1. Study process overview. The flowchart depicted in this figure illustrates the overall process
of development and external validation of our automated data extraction system. Meta-prompt: a set
of instructions given to the large language model (LLM) to instruct it to perform a specific task.
Prompting: the process of providing a meta-prompt and input to an LLM to retrieve a desired output.
For detailed explanations of individual methods and techniques, please refer to the corresponding
sections in Section 2.
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Figure 2. Schematic representation of GPT-4o-based data extraction (DE) process for systematic
reviews. This figure illustrates the input provided to GPT-4o and the corresponding response in the
context of RCT DE. The input section shows a meta-prompt containing instructions for GPT-4o, along
with specifications for the output style, including variable names accompanied by their descriptions,
as well as sample RCT data encompassing text, tables, and figures. The response section demonstrates
the structured output format that GPT-4o uses to present the extracted data.

the LLMs how to perform a specific task. For instance, a meta-prompt might be: “Extract the sample
size from this article. Ensure that you extract the total number of participants recruited at the start,
rather than the number in each arm, or the number that appeared in the analysis:{article}.”

The meta-prompt approach can improve model performance without requiring changes to the
LLM itself. First, the implementation of meta-prompts is more cost-effective than alternative ways
of improving LLM performance, which may require re-training (or “fine-tuning”) the model itself.
Second, meta-prompts can be easily adapted to new, superior LLMs as they emerge. Figure 2 illustrates
the schema of the DE task.

We first prepared the three datasets for the study (Section 2.2). Then, we used GPT-4o to create
and optimize DE meta-prompts using Dataset 1. To optimize our meta-prompts, including the variable
descriptions to be used in the automated DE, we compared three prompting techniques (Figure 3).
We applied a 10-fold cross-validation to obtain realistic performance measures (Section 2.3). Once
the best-performing meta-prompts were selected, we further improved them by correcting the apparent
discrepancies between the GPT-4o-obtained data and the human-extracted data. Then, we compared
four DE methods using these improved meta-prompts (Section 2.4).

Lastly, we evaluated the external validity of our system on Datasets 2 and 3 (Section 2.5).

2.2. Dataset preparation

We used three datasets for this study. Dataset 1 included all 290 RCTs included in the NMA.14 Dataset 2
included five RCTs from the updated search for the NMA from which Dataset 1 was drawn. Dataset 3
included 10 RCTs from an SR of targeted immune modulators of psoriasis, which have also been used
in a previous study to automate DE.10
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Figure 3. Three prompting techniques to optimize meta-prompts. This figure illustrates three different
methods for optimizing meta-prompts, including variable descriptions using GPT-4o. Each method
starts with the first variable descriptions as input and processes RCT data differently to generate opti-
mized meta-prompts. The contextual chat and one-by-one methods iterate through RCTs individually,
whereas the conventional method processes all RCT data at once.

In addition to the RCTs, Dataset 1 included the study protocol for the NMA, a DE manual, and a
spreadsheet containing all the extracted data from the primary publications of the RCTs. In addition,
Dataset 1 included PDF files and web links for the trial registry of each RCT. We downloaded the
content of the study registry for each trial. Multiple publications related to the same trial were retrieved
and linked.

Dataset 2 comprises five studies identified as a result of an updated search for the review in Dataset 1.
Dataset 2 utilized the same study protocol, DE manual, and DE methodology as Dataset 1. We prepared
Dataset 2 by replicating the original search on PubMed on June 17, 2024. We found 240 abstracts
indexed since the date of the previous search. After the title and abstract screening was completed by
two independent reviewers, 73 abstracts moved to the full-text screening phase. We randomly sampled
articles with available results from candidate full-text articles. Two independent reviewers assessed
each sampled article sequentially. We continued this process until we identified five eligible RCTs. We
selected five RCTs for validation, matching the number used in Dataset 1. Two reviewers conducted
DE independently, using the same DE schema as the original review. Any disagreements were resolved
through discussion.

Dataset 3 consisted of the PDFs of all 10 RCTs and the corresponding answers included in the
previous semi-automatic DE study.10,11 We used exactly the same dataset as in this previous study of
automated DE to ensure comparability.

We used the Adobe PDF Extract application programming interface (API) 16 to divide the PDF files
into main text, tables, and figures. Due to the large number of pages, the Adobe API could not extract
the appropriate text for eight RCTs in Dataset 1. In the ensuing analyses, we used the information for
these RCTs, excluding the text, because the data sources, such as the corresponding human-extracted
data, were already available for them.
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2.3. Development of meta-prompts

To develop meta-prompts that extract data for the NMA, we input both an initial meta-prompt (the
instruction) and the RCT data to be processed into GPT-4o. These data included main texts, tables
converted to Excel files, and figures converted to a common raster image extension (i.e., PNG) from
the RCT articles in Dataset 1. Additionally, we input results extracted by GPT-4o from the RCT articles
using the pre-developed meta-prompt and the corresponding human-extracted data as the reference
standard. For coding consistency, we developed meta-prompts using all available information, even if
the manuscript data were not processed as text files or human references were missing.

2.3.1. Choosing and improving the meta-prompt
We used a 10-fold cross-validation approach to internally validate our results. For each fold of the
cross-validation, we randomly divided 290 RCTs in Dataset 1 into 261 RCTs for development and
29 RCTs for evaluation. Due to the input word count limitations of GPT-4o, we were able to input
only up to 5 RCTs out of 261 RCTs for development or out of 29 RCTs for evaluation. We varied the
number of RCTs in the development dataset from 0 to 5 in the hope of finding the optimal number and
thereby reducing the costs of using GPT-4o. We used 5 RCTs randomly selected out of the 29 RCTs for
evaluation without replacement. Once randomly selected out of the 261 or the 29, the same RCTs were
used consistently across all three prompting techniques within each fold. The details of three prompting
techniques are explained in Section 2.3.2.

In our study, we determine “required variables” based on human assessment. We defined the
following variables for performance measures:

True Positive (TP): When the GPT-4o correctly identifies a required variable AND extracts the
correct value.

False Positive Type 1 (FP1): When the GPT-4o identifies a required variable but extracts an
incorrect value.

False Positive Type 2 (FP2): When the GPT-4o extracts a variable that is not required.

False Negative (FN): When the GPT-4o fails to extract a required variable.

True Negative (TN): When the GPT-4o correctly identifies a variable as not required.

Using these variables, we calculated the following metrics:

Sensitivity = TP/(TP + FP1 + FN).

Specificity = TN/(TN + FP2).

Variable detection comprehensiveness = (TP + FP1)/(TP + FP1 + FN).

Precision = TP/(TP + FP1 + FP2).

Accuracy = (TP + TN)/(TP + FP1 + TN + FP2 + FN).

Variable detection comprehensiveness measures the model’s attempt to extract required variables
regardless of correctness. Figure 4 illustrates the relationship between these metrics in the context of
our DE evaluation framework.

For numerical variables, we considered exact matches as accurate. For string variables, two
independent human reviewers visually assessed the semantic equivalence of extracted data and
reference standards. Any disagreements were resolved through discussion. Throughout this process and
the subsequent process, we calculated mean metrics separately for numeric variables, string variables,
and all variables combined.

During the internal validation process, we excluded from the denominator any RCTs where
appropriate article data could not be extracted from the PDF. If all RCTs were excluded, we did not
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Variable Required Variable Not Required

LLM Extracts

LLM Does Not Extract

True Posi�ve (TP)
LLM correctly iden�fies AND extracts the correct value

False Posi�ve Type 1 (FP₁)
LLM iden�fies required variable but extracts incorrect value

False Nega�ve (FN)
LLM fails to extract
required variable

LLM extracts variable

LLM correctly iden�fies

False Posi�ve Type 2 (FP₂)

that is not required

True Nega�ve (TN)

variable as not required

Sensi�vity = TP / (TP + FP₁ + FN)
Propor�on of required variables correctly extracted
(with correct values)

Specificity = TN / (TN + FP₂)
Propor�on of non-required variables
correctly iden�fied

Accuracy = (TP + TN) / (TP + FP₁ + TN + FP₂ + FN)
Propor�on of overall correct extrac�ons

Variable detec�on comprehensiveness
= (TP + FP₁ ) / (TP+ FP₁ + FN)
Propor�on of required variables extracted.

Precision = (TP) / (TP+ FP₁ + FP2)
Propor�on of correctly extracted variables

Figure 4. Data extraction evaluation metrics. This figure illustrates the metrics used to evaluate the
system. LLM, large language model.

use the fold. To prioritize accuracy, we selected the prompting techniques with the best performance
for the next stage of modification. Once the optimal variable descriptions were identified, we checked
the causes of the extraction errors and modified the descriptions where necessary. Additionally, we
adjusted the criteria for correctness to align with human intent within SRs.

2.3.2. Three prompting techniques to optimize meta-prompts
In the first step, we developed meta-prompts that included variable descriptions using the NMA
study protocol, the DE manual, and the names of variables from the DE sheet without extracted data
(Figure 5). These variables represented the human-extracted information in the NMA, such as study
characteristics, population characteristics, and outcomes. We did not include the risk of bias due to the
task complexity.17 We used three prompting techniques to optimize the meta-prompts (Figure 3). The
details are shown in Supplementary Figure 1.

(i) Contextual Chat Prompting: We created a conversational context using one randomly selected
paper from the five-RCT subset in the Dataset 1 due to the input constraints. We input GPT-4o prompts
structured as a chat, incorporating both the content from the selected paper and relevant meta-prompts.
This approach aimed to leverage GPT-4o’s ability to understand the inputs and respond within a
dialogue-like framework (Supplementary Table 1).

(ii) One-by-One N-Shot Prompting: This stepwise technique began with texts derived from one
randomly selected RCT from the five-RCT subset, along with GPT-4o-extracted and human-extracted
data. We then applied optimized meta-prompts generated from this initial step to process another
randomly selected RCT from the same subset. This iterative process allowed for the gradual refinement
of responses (Supplementary Table 1).

(iii) Conventional N-Shot Prompting: This comprehensive approach combined messages from
multiple RCTs (up to five) from the subset in a single prompt. We supplemented this with GPT-extracted
and human-extracted data from all the included RCTs, as well as relevant meta-prompts. This technique
aimed to provide GPT-4o with a broader context and more diverse examples in a single interaction
(Supplementary Table 1).
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Figure 5. Development of the first meta-prompt (variable description). This figure outlines the process
for creating the first variable descriptions for data extraction (DE) in systematic reviews (SRs). The
inputs provided to GPT-4o included a meta-prompt with specific instructions for an SR, SR-level data,
and a DE manual. The output is an array of objects in a JavaScript object notation (JSON) structure
containing variables and their detailed descriptions, generated entirely by GPT-4o based on these
inputs. JSON is a simple, structured data format commonly used for text analysis. We adopt a JSON
format due to its high representation capacity.

2.4. Comparison of data extraction methods

We chose one prompting technique based on the above results. In the 10-fold cross-validation, GPT-4o
extracted all variables simultaneously (“all-in-one DE”). We explored three other methods based on the
concept of re-read prompting.18

(i) Batch DE (to reduce AI hallucinations, i.e., nonsensical or factually incorrect outputs):
1. Divide the variables into groups of four to reduce the number of variables in a single DE.
2-1. For each group of four variables, perform batch DE.
2-2. For variables where GPT-4o determined there were no data in Step 2-1, perform DE for

each variable again.
3. Repeat Step 2 for all groups.

(ii) Re-check and re-extract DE (to improve the sensitivity):
1. Input all variable descriptions to extract data for all variables.
2. For variables deemed to have no data, perform a batch check with GPT-4o to determine if

data truly do not exist.
3. For variables where data were extracted in Step 1 and variables found to exist in Step 2,

divide the variables into groups of four and perform DE for each group of four.
(iii) Re-extract extracted extraction (to improve the specificity):

1. Input all variables to extract data for all variables.
2. For variables where data were extracted in Step 1, divide the variables into groups of four

and perform DE for each group of four.
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2.5. Choosing the best method

From the results of three prompting techniques and four DE methods, we selected the best method.
We primarily evaluated based on the accuracy of numeric variables. This is because the accuracy of
numeric variables can be assessed objectively without the need for human visual inspection.

2.6. External validation in Datasets 2 and 3

2.6.1. Dataset 2
We used the meta-prompts previously developed in Dataset 1 with the modified contextual chat
prompting method in the five RCTs (hereafter referred to as the “chat-5-RCT”). For the five RCTs
in Dataset 2, we performed DE using 10 different meta-prompts from each fold in the development
process. We used the “all-in-one” DE method. We calculated the average accuracy, sensitivity, and
specificity using the extracted data in each fold. By evaluating across multiple folds, we intended to
capture the variability in performance and provide a more robust estimate of how our method might
perform when applied to new, unseen data.

Additionally, we conducted supplementary experiments using the o3 model (released in April 2025)
with the same prompts and methodology to assess potential performance improvements.

2.6.2. Dataset 3
For Dataset 3, we used the original authors’ variable descriptions with our meta-prompts. We used the
reference standard trial-level results reported by the original authors. Our system extracted data at the
arm level, and two independent reviewers evaluated the combined results. We compared the “all-in-one
DE” method with the “batch DE” method. The batch method was used to address oversights identified
in the “all-in-one approach.”

2.7. Development environment

We used Google Collaboratory and the Microsoft Azure OpenAI API (GPT-4o-2024-05-13), as well as
the OpenAI API (o3-2025-04-16). The knowledge cutoffs of GPT-4o and o3-2025-04-16 are October
2023 and June 2024, respectively.19,20 Dataset 1 is derived from a paper published in January 2024, and
this temporal sequence eliminates concerns about potential training data contamination for GPT-4o.
The source code is available on GitHub (https://github.com/Tomo-for-lab/automating-DE). We used R
Studio (2023.12.1.402.1) with the ggplot2 package (3.5.1) for visualization.21

3. Results

3.1. Development of meta-prompts in Dataset 1

Figure 6 presents the detailed number of the sampled RCTs, the included RCTs, the arms in the included
RCTs, and the variables examined in Dataset 1.

3.2. Performance of three prompting techniques for numeric variable descriptions

We evaluated the performance of the LLM in extracting numeric variables across the three different
prompting techniques using 10-fold cross-validation. Table 1 summarizes the results, highlighting
sensitivity, specificity, variable detection comprehensiveness, and accuracy for each method and
varying numbers of RCTs used for training.

Sensitivity ranged from 65.9% to 73.2%, specificity from 57.2% to 78.1%, precision from 62.6%
to 70.6%, variable detection comprehensiveness from 93.3% to 98.1%, and accuracy from 66.3% to
73.4%. Regarding accuracy, the contextual chat prompting method achieved the highest accuracy of
73.4% when trained with five RCTs (chat-5-RCT).
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Figure 6. Flowchart of the number of RCTs, arms, and variables examined across different training methods. This figure details the breakdown of RCTs,
arms, and variables used in the evaluation of three prompting techniques in 10-fold cross-validation. The top section shows the initial sampling of RCTs for
training and evaluation. The middle section details the reasons for excluding various RCTs from the initial sample. API errors occurred when processing
articles with many pages, leading to incomplete text extraction. GPT-4o sometimes misidentified the number of trial arms, creating data mismatches.
Some trials included in the overall dataset did not undergo data extraction for meta-analysis. The bottom tables present the final counts of RCTs, arms,
and variables used in the analysis for each training scenario across the three methods.
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Table 1. Performance of three prompting techniques to optimize numeric variable descriptions.

The number of RCTs in the training data

Mean (SD) No training 1 RCT 2 RCTs 3 RCTs 4 RCTs 5 RCTs

Contextual chat
prompting

Sensitivity 67.5 69.4 66.3 69.0 67.0 72.7

(7.46) (8.22) (4.79) (12.9) (6.65) (4.93)
Specificity 64.6 59.1 77.5 64.7 65.5 75.3

(21.2) (24.4) (13.0) (15.5) (25.5) (10.9)
Precision 63.5 62.6 65.8 63.4 64.3 70.6

(5.67) (7.37) (4.33) (7.08) (6.72) (5.18)
Variable detection

comprehensiveness
96.4 98.1 93.3 96.7 95.5 94.6

(3.93) (2.47) (4.00) (4.18) (5.63) (3.33)
Accuracy 67.5 67.2 69.6 67.6 67.2 73.4

(6.12) (8.73) (4.46) (7.78) (7.34) (3.75)
One-by-one n-shot

prompting
Sensitivity 67.4 70.2 66.3 67.8 68.4 72.4

(7.17) (7.07) (6.39) (14.3) (6.22) (6.13)
Specificity 57.2 59.4 75.1 71.3 62.8 67.1

(25.8) (25.0) (11.0) (21.2) (33.4) (14.8)
Precision 63.1 64.7 63.3 65.0 67.0 66.9

(5.89) (7.25) (6.38) (10.3) (7.38) (8.13)
Variable detection

comprehensiveness
95.6 96.9 96.7 96.1 94.6 96.1

(3.65) (3.88) (2.19) (4.13) (5.76) (3.73)
Accuracy 66.3 68.5 68.8 69.1 68.8 70.8

(6.28) (8.36) (5.79) (11.4) (7.99) (6.37)
Conventional
n-shot prompting Sensitivity 68.7 69.2 65.9 70.2 67.6 73.2

(7.08) (7.02) (8.15) (12.0) (5.25) (5.65)
Specificity 62.4 58.8 78.1 67.0 58.9 66.9

(19.9) (24.6) (14.6) (22.1) (20.8) (18.6)
Precision 63.9 62.8 65.9 67.4 63.3 67.6

(6.17) (6.83) (6.35) (11.1) (4.06) (8.38)
Variable detection

comprehensiveness
96.7 97.9 93.3 95.9 96.4 96.8

(3.55) (2.56) (3.42) (5.30) (4.09) (3.81)
Accuracy 67.8 67.2 70.0 70.0 66.5 71.7

(6.43) (8.22) (5.45) (11.1) (4.64) (6.44)
Note: Values are represented as mean (standard deviation). This table presents the sensitivity, specificity, and accuracy of numeric variable
extraction across three different methods: contextual chat prompting, one-by-one n-shot prompting, and conventional n-shot prompting. For each
method, the results are presented for varying numbers of training data (0–5 RCTs). The underbar shows the highest accuracy.

3.3. Performance of the modified chat-5-RCT method for string variables and all the
variables in Dataset 1

Based on the previous experiment, we selected the contextual chat prompting technique with five RCTs
due to the highest accuracy (chat-5-RCT). In some cases, variable descriptions in the meta-prompt were
changed as the extracted data due to an error by GPT-4o. Hence, when optimizing descriptions, we used
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Table 2. Performance of the chat-5-RCT method with modifications in Dataset 1.

Numeric (58 variables) Strings (9 variables) Total (67 variables)

Sensitivity 73.5 79.0 74.4
(5.32) (10.8) (4.87)

Specificity 70.4 50.6 68.8
(12.1) (34.8) (12.6)

Precision 68.0 75.1 69.1
(8.52) (8.94) (7.48)

Variable detection
comprehensiveness

97.2 96.6 97.1

(2.38) (2.94) (2.27)
Accuracy 72.3 74.0 72.6

(6.91) (7.92) (6.05)
Note: Values are represented as mean (standard deviation). This table presents the sensitivity, specificity, variable detection comprehensiveness,
and accuracy for numeric and string variables using the modified contextual chat prompting method with five RCTs.

GPT-4o to judge whether the output was an optimized meta-prompt or extracted data for each variable.
If the output was extracted data, we used a pre-optimized description. When evaluating performance,
we ensured alignment with the human-unique extracted data. For example, when extracting data for
multiple outcome evaluations, data extractors used a shorthand code of “*” if a scale had already been
recorded for a previous outcome, eliminating the need to re-enter the full-scale name.

We used 10-fold cross-validation to evaluate the modified contextual chat prompting method with
five RCTs (Table 2). Figures 7–11 show the sensitivity, specificity, precision, variable detection
comprehensiveness, and accuracy results for each variable. In the subsequent stage, we evaluated the
performance in the modified ways.

3.4. Comparison of data extraction methods in Dataset 1

Using the “chat-5-RCT” prompting technique, we compared four DE methods in Dataset 1 (Table 3).
The all-in-one DE method achieved the highest accuracy of 72.3% (SD 6.91) with sensitivity of 73.5%
(SD 5.32), specificity of 70.4% (SD 12.1), precision of 68.0% (SD 8.52), and variable detection
comprehensiveness of 97.2% (SD 2.38). The batch DE method had the lowest accuracy of 54.9%
(SD 7.79), with sensitivity of 72.8% (SD 5.13) and low specificity of 2.76% (SD 2.99). The re-
extract method showed comparable accuracy at 71.9% (SD 7.61), with sensitivity of 70.8% (SD 5.89),
the highest specificity of 76.1% (SD 17.3), precision of 68.1% (SD 9.04), and variable detection
comprehensiveness of 95.5% (SD 4.90). The re-check and re-extract method reached 68.2% (SD 6.72)
accuracy, with sensitivity of 71.4% (SD 5.74), specificity of 60.3% (SD 12.9), precision of 63.4%
(SD 7.69), and variable detection comprehensiveness of 98.4% (SD 1.21).

3.5. Evaluation in Dataset 2

Table 4 shows the all-in-one DE method for all variables in Dataset 2 using 10-fold cross-validation.
Across all variables, GPT-4o showed 61.6% accuracy (SD 1.76), 61.9% sensitivity (SD 2.44), 60.1%
specificity (SD 8.99), 61.2% precision (SD 2.86), and 92.2% variable detection comprehensiveness
(SD 3.62). For numeric variables specifically, GPT-4o showed 60.4% accuracy (SD 1.85), 60.6%
sensitivity (SD 2.33), 59.5% specificity (SD 7.78), 59.5% precision (SD 3.07), and 91.9% variable
detection comprehensiveness (SD 3.89). For string variables, GPT-4o showed higher performance with
68.8% accuracy (SD 2.06), 69.0% sensitivity (SD 4.16), 67.0% specificity (SD 31.6), 70.5% precision
(SD 2.44), and 93.9% variable detection comprehensiveness (SD 3.25).
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Figure 7. Sensitivity for all variables by the chat-5-RCT method with modifications in Dataset 1.
Square: mean. Horizontal line: standard deviation. Some variables lack data points because a human
reviewer extracted all relevant information, leaving no examples of “missing” data to calculate
specificity against.

For o3, the performance improved substantially over GPT-4o. Across all variables, o3 showed 75.3%
accuracy (SD 1.34), 74.9% sensitivity (SD 1.07), 76.7% specificity (SD 8.05), 75.7% precision (SD
2.29), and 93.5% variable detection comprehensiveness (SD 2.53). Focusing on numeric variables only,
o3 showed 74.2% accuracy (SD 1.48), 73.0% sensitivity (SD 1.54), 78.5% specificity (SD 9.13), 74.2%
precision (SD 2.43), and 92.9% variable detection comprehensiveness (SD 2.81). For string variables,
o3 showed 81.7% accuracy (SD 2.41), 84.8% sensitivity (SD 3.94), 57.0% specificity (SD 24.1), 83.2%
precision (SD 2.96), and 96.8% variable detection comprehensiveness (SD 2.37).

3.6. Evaluation in Dataset 3

Table 5 presents a comparison of the performance of our “all-in-one DE” method and the “batch DE”
method in Dataset 3 with the results obtained in another study using Claude 2.10 The “all-in-one DE”
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Figure 8. Specificity for all variables by the chat-5-RCT method with modifications in Dataset 1.
Square: mean. Horizontal line: standard deviation. Some variables lack data points because a human
reviewer extracted all relevant information, leaving no examples of “missing” data to calculate
specificity against.

method using GPT-4o had a mean accuracy of 84.4%. In contrast, the batch DE method using the
modified GPT-4o approach achieved a mean accuracy of 96.3%.

4. Discussion

We developed and evaluated an automated system for DE in SRs using GPT-4o and o3. Our results
demonstrated varying levels of performance across different datasets and methods. In Dataset 1, we
found that the contextual chat prompting method with five RCTs (chat-5-RCT) showed the highest
accuracy of 73.4% among three optimization methods. After modifications, our evaluation on Dataset 1
achieved 72.3% accuracy, 73.5% sensitivity, 70.4% specificity, 68.0% precision, and 97.2% variable
detection comprehensiveness across all variables. Our evaluation on Dataset 2 GPT-4o demonstrated
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Figure 9. Precision for all variables by the chat-5-RCT method with modifications in Dataset 1.
Square: mean. Horizontal line: standard deviation. Some variables lack data points because a human
reviewer extracted all relevant information, leaving no examples of “missing” data to calculate
specificity against.

slightly lower performance with 61.6% accuracy, 61.9% sensitivity, 60.1% specificity, 61.2% precision,
and 92.2% variable detection comprehensiveness for all variables. For o3, performance improved
substantially over GPT-4o. Across all variables, o3 showed 75.3% accuracy, 74.9% sensitivity, 76.7%
specificity, 75.7% precision, and 93.5% variable detection comprehensiveness. Notably, in Dataset 3,
which has few missing variables, we found that the “batch DE” method achieved a mean accuracy of
96.3%, comparable to the previous study using Claude 2 with manual interaction (96.3%).10

Our results suggest the potential utility of our system for replacing one of two independent human
reviewers for extracting string variables. Unlike previous studies that required iterative interaction
from the end user,10,11 our approach omitted the need for human interaction during the extraction
process. For string variables, our batch extraction method achieved good accuracy on Dataset 3,
comparable to another study using Claude 2 with a manual interaction.10 The high variable detection
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Figure 10. Variable detection comprehensiveness for all variables by the chat-5-RCT method with
modifications in Dataset 1. Square: mean. Horizontal line: standard deviation. Some variables lack
data points because a human reviewer extracted all relevant information, leaving no examples of
“missing” data to calculate specificity against.

comprehensiveness we observed for string variables in Datasets 1 and 2 further supports this potential.
The results were on a par with those from other studies.13 These results suggest that systematic
reviewers could use our system in SR to reduce the time spent manually checking for missed
information when extracting string variables.

In contrast to string variables, our results showed that numeric variable extraction performed poorly.
This finding aligns with previous research highlighting the challenges of extracting quantitative data
using LLMs.22 The risk of generating incorrect numerical values remains a concern. Recent work has
explored potential solutions such as retrieval-augmented generation techniques, which aim to improve
output accuracy by providing LLMs with processed source documents.12,23 We input plain texts and
figures into GPT-4o and improved the meta-prompt. Future studies should explore alternative input
methods to achieve further improvements.

https://doi.org/10.1017/rsm.2025.10030 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10030


Research Synthesis Methods 17

Figure 11. Accuracy for all variables by the chat-5-RCT method with modifications in Dataset 1.
Square: mean. Horizontal line: standard deviation.

This study has several limitations. First, we externally evaluated our system on only two datasets,
which may limit the applicability of our findings to other SR topics. Further investigation in different
fields of study or types of reviews will be necessary. Second, while our system is open-source, it relies
exclusively on GPT-4o, a model whose detailed internal structure is not publicly accessible. This black-
box nature poses a risk that results might change in the future, as the GPT-4o may be updated without
notice. Consequently, continuous accuracy verification using standardized benchmarks is necessary to
ensure consistent performance over time. Additionally, the rapid pace of development in LLMs means
that newer models may soon outperform the GPT-4o used in this study. Fourth, GPT-4o is a widely used
but expensive model, which limits the implementation of our system to those who can afford it. This
cost barrier may restrict the broader adoption and replication of our research. It’s worth noting that the
core methodology of our approach is not intrinsically tied to GPT-4o and could potentially be adapted
to other language models, including open-source alternatives, with minor adjustments. Future work
could explore the use of more accessible models to increase the applicability and reproducibility of this
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Table 3. Comparison of prompting techniques for data extraction in Dataset 1.

All-in-one
data Batch Re-check and Re-extract

extraction data re-extract data data
Metric (original) extraction extraction extraction

Sensitivity 73.5 72.8 71.4 70.8
(5.32) (5.13) (5.74) (5.89)

Specificity 70.4 2.76 60.3 76.1
(12.1) (2.99) (12.9) (17.3)

Precision 68.0 54.6 63.3 68.1
(8.52) (7.89) (7.69) (9.04)

Variable detection
comprehensiveness

97.2 100 98.4 95.5

(2.38) (0.00) (1.21) (4.90)
Accuracy 72.3 54.9 68.2 71.9

(6.91) (7.79) (6.72) (7.61)
Note: Values are represented as mean (standard deviation).

Table 4. All-in-one data extraction method in Dataset 2.

GPT-4o o3

Numeric Strings All Numeric Strings All
Metric variables variables variables variables variables variables

Sensitivity 60.6 69.0 61.9 73.0 84.8 74.9
(2.33) (4.16) (2.44) (1.54) (3.94) (1.07)

Specificity 59.5 67.0 60.1 78.5 57.0 76.7
(7.78) (31.6) (8.99) (9.13) (24.1) (8.05)

Precision 59.5 70.5 61.2 74.2 83.2 75.7
(3.07) (2.44) (2.86) (2.43) (2.96) (2.29)

Variable detection
comprehensiveness

91.9 93.9 92.2 92.9 96.8 93.5

(3.89) (3.25) (3.62) (2.81) (2.37) (2.53)
Accuracy 60.4 68.8 61.6 74.2 81.7 75.3

(1.85) (2.06) (1.76) (1.48) (2.41) (1.34)
Note: Values are represented as mean (standard deviation).

research. Fifth, some reference variables contained data unavailable from the full text but originally
obtained by direct requests to the study authors. However, this information bias could reduce system
performance.

In conclusion, we developed a fully automated system where humans only need to input the SR
protocol and variable definitions (users do not need to write the prompts themselves). All the steps
covered in this article are open access (https://github.com/Tomo-for-lab/automating-DE), so that other
researchers can replicate our findings, apply them to their own SRs and data, and further improve/adapt
the methods. Additionally, our system extracted data directly from primary research articles in the
context of a real SR using a large-scale dataset, reflecting the authentic challenges and complexities
encountered in SRs.

https://doi.org/10.1017/rsm.2025.10030 Published online by Cambridge University Press

https://github.com/Tomo-for-lab/automating-DE
https://doi.org/10.1017/rsm.2025.10030


Research Synthesis Methods 19

Table 5. Comparison of the data extraction method in Dataset 3.

Gartlehner All-in-one data extraction Batch data extraction
Claude 2 accuracy GPT-4o accuracy GPT-4o accuracy

First author, last name 100% (10/10) 100% (10/10) 100% (10/10)
Trial registry number 90% (9/10) 100% (10/10) 100% (10/10)
Study name, acronym 100% (10/10) 80% (8/10) 90% (9/10)
Study funder 100% (10/10) 100% (10/10) 100% (10/10)
Mean age 90% (9/10) 80% (8/10) 100% (10/10)
Female participants 100% (10/10) 70% (7/10) 90% (9/10)
Mean PASI score at

baseline
100% (10/10) 70% (7/10) 100% (10/10)

Mean duration of disease 90% (9/10) 60% (6/10) 90% (9/10)
Inclusion criteria 100% (10/10) 100% (10/10) 100% (10/10)
Exclusion criteria 90% (9/10) 90% (9/10) 100% (10/10)
N randomized 100% (10/10) 100% (10/10) 100% (10/10)
N randomized per group 100% (10/10) 100% (10/10) 100% (10/10)
N analyzed 100% (10/10) 20% (2/10) 90% (9/10)
Dose, route, and

frequency of
intervention

100% (10/10) 90% (9/10) 100% (10/10)

Primary outcome 100% (10/10) 100% (10/10) 90% (9/10)
Primary outcome, effect

estimate
80% (8/10) 90% (9/10) 90% (9/10)

Source: Gartlehner et al. (2024).10

Note: This table compares the accuracy of data extraction (DE) from Dataset 3 using three different methods: Gartlehner (with Claude 2), all-in-
one DE (with GPT-4o), and batch DE (with GPT-4o).
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