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Abstract

We investigate the possibility of defining meaningful upper and lower quantization dimen-
sions for a compactly supported Borel probability measure of order r, including negative
values of r. To this end, we employ the concept of partition functions, which generalises
the notion of the L7-spectrum, thus extending the authors’ earlier work with Sanguo Zhu in
a natural way. In particular, we derive inherent fractal-geometric bounds and easily verifi-
able necessary conditions for the existence of quantization dimensions. We state the exact
asymptotics of the quantization error of negative order for absolutely continuous measures,
thereby providing an affirmative answer to an open question regarding the geometric mean
error posed by Graf and Luschgy in this journal in 2004.

2020 Mathematics Subject Classification: 28 A80 (Primary); 60E05, 62E20,
94A12 (Secondary)

1. Introduction and statement of main results

The quantization problem for probability measures dates back to the 1980s (cf. [22]),
where it was first established in the context of information theory, and has recently received
renewed attention, as appropriate quantization of continuous data is fundamental to many
machine learning applications [17, 20].

The aim is to examine the asymptotic behavior of the errors in the convergence of a
sequence of approximations of a given random variable with a quantised version of that ran-
dom variable (i.e., with a random variable that takes at most n € N different values) in terms
of rth power mean with r > 0. The quantization dimension (of order r) is then defined as the
exponential rate of this convergence as n tends to infinity. These ideas have been extensively
explored in the mathematical literature by numerous authors, including [3-6, 12, 14-16, 18,
19, 21, 29-32, 34-36]. The objective of this study is to demonstrate that this concept can be
naturally extended to encompass also negative values of r. In turn, we gain new insights into
the asymptotics of the geometric mean error for absolutely continuous measures, for which
only the upper bound has been established in [6]. In this paper, Graf and Luschgy asked
whether the upper bound they established already represents the exact asymptotic for any
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2 M. KESSEBOHMER AND A. NIEMANN

absolute continuous measure, a question we can now answer in the affirmative under very
mild conditions (see Theorem 1-3 and the following remark).

1-1. Basic set-up and first observations

Let X be a bounded random variable with values in the normed vector space (Rd, I| - ||),
d €N, defined on the probability space (2,.4,P) and we let v:=PoX —1 denote its
(compactly supported) distribution. For a given n € N, let F,, denote the set of all Borel mea-
surable functions f : R4 — R4 which take at most n different values, i.e. with card (f (Rd)) <
n, and call an element of JF, an n-quantiser. Our aim is to approximate X with a quan-
tised version of X, i.e. X will be approximated by f o X with f € F,, where we quantify this
approximation with respect to the 7-quasi-norm. More precisely, we are interested in the nth
quantization error of v of order r € (0, +00] given by

¢, (V)= inf || X—=foX]|;r = inf |lid — .
nr(V) At IX —foXli A llid —fll

where ligllz; = (/ llgl’ dP)"" for 0 < r< oo and gl = inf{c>0: |igll < cP-as)

and id : x — x denotes the identity map on R,

The problem can also be expressed using only the distribution v, which we assume is com-
pactly supported throughout the paper. For every n € N, we write for the set of non-empty
sets with at most n elements A, := {A CcR:1< card(A) < n}. Then due to [4, lemma
3-1] an equivalent formulation of the nth quantization error of v of order r € [0, 4-00) is
given by

0 (1) = infaca, 14 C-, Al r>0,
n,r - ianeAn exp f IOg d(x,A)dv(x), r=0,

with d(x, A) :== minyey ||x — y||. By [4, lemma 6-1] it follows that e, (v) — O or more pre-
cisely, ¢,.(v) = O(n~'/9) and, if v is singular with respect to the Lebesgue measure, then
enr(V)=0 (n_l/d) (see [4, theorem 6-2]). We define the upper and lower quantization
dimension for v of order r by
D,(v) := lim sup bi, D,(v) := liminf loi,
n—o00 — 10g en,r(V) n—oo — IOg en,r(v)

with the natural convention that 1/ log (0) = 0. In particular, when ¢, (v) = 0 for all » large,
then the dimension vanishes. If D,(v) = D,(v), we call the common value the quantization
dimension for v of order r and denote it by D,(v).

We point out that for » > 1 the relevant r-quasi-norm is indeed a norm and only for r €
(0, 1) a quasi-norm, which means that only a generalised triangular inequality holds. In this
note, we will investigate the possibility and significance of also considering negative values
for r in the definition of the quantization error, i.e. we extend the definition of e, (v) to

values r < 0, by setting
1/r
enr(v):= inf (/ d(x,A) dv(x)) .
AcA,

Our first observation is that if v has an atom, that is there exists x € R? with v ({x}) > 0,
then for all » < 0 we have that the integrant in the definition of ¢, (v) is equal to +oc0 on a
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Quantization dimensions of negative order 3

set of positive measure whenever x € A. Therefore, in this situation ¢, (v) =0 foralln e N
and hence D,(v) =0 for r < 0. This means that if the measure has a too high concentration
of mass, the quantization dimension will vanish for negative values of r. This idea can be
taken further: we will assume without loss of generality that the support of v is contained
in the half-open unit cube Q := (0, 114, see [12, Introduction]. Although it is not strictly
necessary to assume that v is normalised, it will always be assumed to be finite throughout
the paper. Let us define the oco-dimension of v by

1 log v (B
dlmOO (V) = hm lnf maXQEDn Og V(Q) — hm lnf SuprRd Og v ( r(x))
n—00 10g 2—n 0 log ’

where B,(x) denotes the ball in (Rd - ||) of radius r > 0 and center x, and D,, denotes the
partition of Q by half-open cubes of the form ]_[f;1 (kiZ_", ki+ 1) 2_"] with (ky,...,kq) €
7. We set D := (U,eny Dn, which defines —after adding the empty set— a semiring of sets.
Note that dims (v) < d. The following observation provides us with the relevant range of
meaningful values for the order of quantization.

PROPOSITION 1-1. For a probability measure v on R and r < — dimeo (v), we have
enr(v)=0, foralln e N (1-1)

and, in particular, D,(v) = 0. Furthermore, if the measure v has an absolutely continuous
part with respect to the Lebesgue measure, then (1-1) holds for r = —d.

Remark 1-2. Note that for absolutely continuous measure the second claim in the above
proposition is only meaningful if d = dim, (v). In instances where the quantity dimy, (V) is
strictly smaller than d and v is absolutely continuous, we refer to Examples 2-11 and 2-12.

Also note that Proposition 1-1 is consistent with our first observation, since dime, (V) =0
whenever v has atoms. Hence the interesting range of values for r in the formulation of
the quantization problem is the interval [— dim (v), +00] which we will focus on in this
paper. This observation also shows that the quantization dimension with negative order is
particularly sensitive to regions of high concentration of the underlying measure — a fact
that could prove particularly useful for applications.

Proof. Fix r < —dimy (v) and ¢ € (r, — dimy, (v)). By definition of dim, (v), we find
sequences (s¢) € (R-o)Y and (x¢) € (Rd)N such that s, \ 0 and v (By, (x¢)) > s, . Setting
Vur(V) 1= ¢,,(v), this gives, for £ — oo,

Vn,r(”) = Vl,r(v) = sup /d (x, A)r dv(x)
Ae A

> [ ) vz By 0) s 25— oo,
B,Se(x(f)

This proves the first claim.

To see that ¢, _4(v) =0 for each n € N, by Lebesgue’s differentiation theorem we find a
point xo € RY such that lim_, o v (By—« (x0)) /27 = ¢ > 0. Consequently, for k € N large
enough (say k > ko) we have for Cy := By—« (x0) \ By—i—1 (x0) that v (C¢) > (c/2) 2~4*+D),
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4 M. KESSEBOHMER AND A. NIEMANN
This gives for eachn e N

Vi,—a(v) > Z / d (x, {xoh) ™ dv(x) > Z %27‘1(1‘“)2‘”‘ = 00.

k>ko k>ko

This shows the second claim.

1-2. Absolutely continuous measures — exact asymptotics

We are able to extend the classical result in quantization theory for absolutely continuous
probability measures with respect to the Lebesgue measure, which goes back to Zador [22]
and was generalised by Bucklew and Wise in [2]; for a rigorous proof for » > 1, which also
works for r > 0, see [4, theorem 6-2].

If for ¥ > 0O the limit

Crae(v) 1= lim 2!/ ey (v)

exists in [0, +00], we refer to its value as the x -dimensional quantization coefficient of order
r of v. In the literature, the lower and upper quantization coefficients defined via limes infe-
rior and superior have also frequently been considered [5, 6, 16, 26, 33]. If this number (or
more generally, its upper and lower version) is positive and finite, the quantization dimen-
sion of order r also exists and is equal to x. Note that &, , (v) = 0 is equivalent to saying that
enr(V)=0 (n’l/’“).

In Section 2-5, we will see that, for the Lebesgue measure restricted to Q and for which we
write A, the coefficient €, 4(A) also exists and is finite for negative r, and positive only for
r > —d (cf. Lemma 2-10). In general, for an absolutely continuous probability v := hA with
density & we set s, := sup {s > 0: |||, < oo}, where for abbreviation we write || - ||, instead
of || - ||LsA. By Lemma 2-6 and 2-7 we have that s, <d/ (d — dimg (v)). In particular, —d <
— dimy, (v) < d/sp — d and these inequalities might be strict as Example 2-11 demonstrates.
For a measurable function /# we set

[ re(—d, o)\ {0},
®,(h):= yexp (— (1/d) [ hlog(h)dA), r=0,
0, r<-—d,

where ||h|| d /( dtr) = =0 whenever r < 0 and h%/@+" not integrable.

THEOREM 1-3. Let v =hA be an absolutely continuous Borel probability measure on Q
with density h and sy, given as above. For r #d /sy — d, and also for r = d /s, — d provided
Al = oo, the d-dimensional quantization coefficient of order r of v exists and its finite
value equals

Cra(v) =Cra(M)P/(h).

Moreover, we have €, 4(v) >0 for r>d/sp—d, and €, 4(v)=0 for r <d/s, —d or, if
2|5, = oo, also for r=d/sp —d.

The proof of this first theorem is outlined at the end of our paper in Section 2-5. This
section covers the necessary prerequisites and explains the main steps of the proof.
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Quantization dimensions of negative order 5

Remark 1-4. The special value r =0, for which e, o(v) coincides with the geometric mean
error, has been previously examined in several papers (see [6, 23-25, 27-29, 35, 36]). The
present approach, which now takes negative orders into account, provides a straightforward
answer to a question posed by Graf and Luschgy over 20 years ago. In [6] they showed
that

lim sup n'/?e,,0(v) < €o4(A)Do(h), (1-2)
n—oo
and pointed out that it “remains an open question whether one has a genuine limit in (1-2)
for absolutely continuous probabilities PP different from uniform distributions on cubes.”
Whenever s;, > 1, our first main result covers the geometric mean error, i.e. » = 0, and hence
answers the question in the affirmative.

It should also be noted that explicit formulae for €, 4(A) are often difficult to obtain
and that its value is dependent on the underlying norm on R?. Nevertheless, the quantiza-
tion dimension is independent of the underlying norm. For the sake of simplicity, both the
euclidean and the maximum norm will be used in the subsequent proofs.

In Example 2-12 we provide an example with ||A|[;, < oo such that the d-dimensional
quantization coefficient of order d/s, —d exists and is positive. This critical situation
lAll5, < oo will be revisited in Remark 1-9.

The fact that ||2]| /(44 = 00 for a certain negative r indicates a strong concentration of
mass and can be considered analogous to singular measures and positive r. In both cases,
the convergence rate of the quantization error is o (n’l/ d).

1-3. Partition functions and related concepts

Building upon the ideas developed in the context of spectral problems for Krein—Feller
operators in [9, 10] and for approximation orders of Kolmogorov, Gel’fand, and linear
widths in [8, 13], we will address the quantization problem as initiated in [12], where we
considered positive order and determine the exact value of the upper quantization dimen-
sion with the help of the L7-spectrum. In this instance, however, we will consider negative
order, for which novel concepts and strategies are required, particularly the more general
concept of the J-partition function. Interestingly, the underlying methods elaborated in [11]
and initially utilised in the context of spectral problems prove to be precisely the appropriate
tools in this context. The main difference to the results obtained for the positive order case
is that, this time, our formalism provides the exact value of the lower quantization dimen-
sion, as well as an upper bound for the upper quantization dimension (see Theorem 1-5).
Additionally, we provide the exact value for the upper and lower quantization dimension in
the regular cases (see Section 1-6).

With D,(Q):={Q €D,:0' cQ}, neN, we let D(Q):= J,ey Du(Q). For
r> — dimy (v), we then set

J=3%,:D—>Rsp, QOr> max v (Q’) A (Q’)r/d
Q'eD(Q)

and define the J-partition function ty, for g € R>¢, by

1. - log <ZQ€Dn,3(Q)>0 3(Q)q>
~ = 3 5 t J =
73(q) im sup T3a(q), with  73,(q) log (27)
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6 M. KESSEBOHMER AND A. NIEMANN

Define the critical value
gy = inf {q >0:13,,(q9) < O} .

Note that for >0 we have J, (Q)=v(Q)A(Q)" /4 and consequently for non-negative
values of 7, t3(q) = Bv(q) — qr, where

log (ZQeDn,v(Q)>O V(Q)q)
By g lim sup IBU,n(Q) with ﬂv,n(Q) = o "
n—00 g(2")

denotes the Li-spectrum of v, which was the central object in [12]. In Example 1-12 (see
also Figure 1 on page 10) we provide a measure for which 73, (¢q) = B,(q) — gr holds
also for negative values of r. We always have t3,,(q) > B,(q) — gr by the definition tj.
It is easy to construct purely atomic measures such that g, =0 for all r > 0 and $,(0) > 0,
see [9]. In this case it turns out that the upper quantization dimension is also 0.

For the following fundamental inequalities for g, we assume dimeo (v) > 0. Then
Bv(0)=13,,(0)= dimys(v) > dimeg (v) > 0 and for — dime (v) < 7 < 0 and g > 0, we have
73,,(q@) = Bv(q) — gr. For g > 1, the convexity of 73, gives

73,,(@) = (t3,,(1) = 73,,(0)) ¢ + 73,,(0) = (= — Bu(0)) ¢ + Bu(0).
On the other hand, again the convexity of 73, gives for g > 1
73,,(q) < (— dim (v) — 1) ¢ + dimeo (v) + 7 + 73, (1).

Combining both inequalities and using the definition of g, proves for r € (— dimgo (1), 0)

dimy(v) (D dimy(v) — dime (v)

1 - <g.<l4+ —"
= =1t im0+ dimeo (V) + 7

— 1.3
dimy; (V) +r (43

Moreover, for r> 0, due the convexity of B, and the fact that B,(q) =1t3,,(q) +rg <
1-9 dimyy(v) for q € [0, 1], we conclude

dimp(v)

0<gr< <1 (1-4)

"= mM(U)—FV

Further, we will need some ideas from entropy theory: Let IT denote the set of finite
partitions of Q by cubes from D. We define

M, p(x) := inf {card(P) :PeTl, Iélﬁ]))( Jvr(0) < l/x}
€

and

— 1 , 1 .
hy,:= lim sup log M., (x) h,, = lim infw

X—>00 log x ’ ’ X—>00 log x

will be called the upper, resp. lower, (v, r)-partition entropy. We write h, 1= E,,,r and h, :=
hm&w hv,r—a .
For all n € N and « > 0, we define

Nv,a,r(n) = Carde,a,r(n), Nv,a,r(n) = {Q €D, H?v,r(Q) > 270”1} s
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Quantization dimensions of negative order 7

and set

_ log™ (Ny o (n log™ (N, .e.r(n
Fy (@) := lim sup M and F, () := lim inf M’
’ n log 27 ’ n log 2"

with log™ (x) := max{0, log (x)}, x > 0. Following [10], we refer to the quantities

- - F F, (a
F,:=F,,:= sup vr () and F,.:=F, . := sup £,,@

a>0 ¢ a>0 o

as the (v, r)-upper, resp. lower, optimised coarse multifractal dimension. We know from
general consideration obtained in [11] that we always have F, =g, =h,> h.>F,
Proposition 2-1.

1-4. Main results

In our main theorem we combine the main result in [12] for positive r with our new
results on negative r. Note that our assumption in [12], that sup, ;) Bv(x) > 0, is implied
by our stronger assumption dimg, (v) > 0. It is important to note that under this stronger
assumption r > 0 implies 0 < g, < 1, just as — dimg, (v) <7 <0 implies g, > 1 (see (1-4)
and (1-3)). Finally, we set

dimg (v) := inf {dimg (A) : v(4) > 0}

with dimy (A) referring to the Hausdorff dimension of A C R¢. The proof of our main
theorem is postponed to the last section.

THEOREM 1-5. For a compactly supported probability measure v on R¢ we have:

@) forre (0, +00),

rF, rh - rﬁr_ Doy — I _ rF,

(i) forr e (— dimy (v), 0),

qr

a — =
@ __Fr I_QV /’l

rF
<D(1))<1

—r

h < 1 h under the assumption F,. > 1;

(iii) for r =0, and under the assumption that dims, (v) > 0 and r +— g, is differentiable at
0, we have B, is differentiable at 1 and

Do(v) = —p,(1) = dimy (v).

Remark 1-6. It should be noted that in [12], the notion of the (upper) generalised Rényi
dimension of v [1] was employed. In our context, it is necessary to replace the concept
of the L7-spectrum with the more general concept of the t3, ,-partition function, where for
r> — dimy (V), we set

73,,(@)/ (1 —q), for g € R0 \ {1},

R, (q) =
@ lim sup,, (ZCeDn v(O)logv(0)) /log (27"), forg=1.
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8 M. KESSEBOHMER AND A. NIEMANN

In this manner, we derive for both positive and negative values of r the remarkable
identity

which can be applied to Theorem 1-5 (i) and (ii), providing an alternative expression for
D,(v) whenever r is positive and for D,(v) whenever r is negative.

The connection between the derivatives of r — ¢, and $, becomes apparent in the proof
at the beginning of Section 2, where we show that g is differentiable at 1 with B/(1) =
1/9,gr|r=0. This fact is contingent on the monotonicity of r+ D,.(v) on (— dimy (v), 0],
which we establish in Lemma 1-7.

1-5. Fractal-geometric bounds and basic properties

For a compactly supported probability measure v on R?, we let dimy(v):=
dimy, (supp(v)), where dimys(A), denotes the upper Minkowski dimension of the bounded
set A C R4,

The fact that 73 is proper, convex with $,(0) = t3(0) = dimpy(v), 13(q) > Bu(q) — rq for
g >0, and that its asymptotic slope lim,_. 73(¢)/q is equal to —r — dimy (v) plays a
crucial role in many fundamental properties of the quantization dimension. To begin this
investigation, we first observe a simple fact that is well known for positive r.

LEMMA 1.7. If dimy (v) >0, then the functions r+— D,.(v) and r+— D,(v) are both
monotonically increasing on the interval (— dimy, (v), 0].

Proof. Note that for — dimy, (V) <5 <r <0 and A € A,, we have by Holder’s inequality
(assuming without loss of generality that v is normalised)

r/s 1/r
/d(x,A)’ dv < (/d(x,A)S dv) < (V,,,s(v))*“ = (/d(x,A)r dv) > ey5(V)

and by Jensen’s inequality, to cover the case r =0,
/ logd (x,A)" dv <log [ d(x,A)" dv
1/r
= exp/logd (x,A) dv > </ d(x,A) dv) > ¢, (V).
Taking in both cases the infimum over all A € A, gives
en,x(V) = en,r(V) =< en,O(V)

and the claim follows.

Let us now discuss the behaviour of the quantization dimension at the relevant boundary
points — dimeo (v) and 4-00. The case +oo follows from [12] and by observing

lim D (v) = 1im £1(q) < fu(0) = Ty () = Doc (v), (1-5)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 21:31:16, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/5030500412510176X


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030500412510176X
https://www.cambridge.org/core

Quantization dimensions of negative order 9
where the last equality can be found in [4, theorem 11-7, Proposition 11-9]. To discuss the
boundary point — dimy, (v) we need the following auxiliary quantity

ay := sup{g,:r € (—dimy (v),0)} .

LEMMA 1-8. For a compactly supported probability measure v on R with dims, (v) > 0,

“i - dimo (1), (1-6)

dimy (v) < lim D.(v)=
oo ( )_r\—dimoc (u)_’( ) ay

where we set a, [/ (a, — 1) = 1 whenever a,, = +00.

The proofs will be given at the end of Section 2.3, where we also show that a, is strictly
greater than 1. See also [12, proposition 1-7] for the corresponding upper bounds for the
upper quantization dimension of order r > 0.

Remark 1-9. It is easy to construct an absolutely continuous measure with a density that
has one singularity, such that 8, is piecewise linear, which gives rise to the above described
behavior with a,, < oo, see Example 2-12.

The above observation and lemma demonstrate that the boundary behavior is only par-
tially encoded by 73. Equation (1-5) shows that continuity of 7+ D,(v) in r = +oo0 if and
only if the L9-spectrum S, is continuous from the right in 0 or, equivalently, the same holds

for 73, for all r > 0. In general, continuity of r > D, (v) in r = — dim (v) from the right
cannot be derived from 73 alone. In point of fact, Proposition 1-1 together with Theorem 1-5
covers all values of r except the critical value r = — dimy, (v). We would like to point out

that the behaviour at this critical value is not easily accessible and depends very much on
the measure under consideration:

For instance, as we have already observed in Theorem 1-3, for the uniform distribution A
we have dimy, (A) = d, while

d, re(—dimg (A),00),

D,.(A)=
HA) 0, r<—dimg (A).

That is to say, r — D,(A) is discontinuous and continuous from the left in r = — dimy, (A).
On the other hand, in Example 2-12 we construct an absolutely continuous measure v
with d > dim (V) > 0 such that

lim D =D_ =d,
N— (}imoo W) D, (V) =D gimy, ()

that is, r+> D,(v) is this time discontinuous and continuous from the right in
r=—dimy (V).

1-6. Regularity results

As a second main result we find necessary conditions for the upper and lower quantization
dimension to coincide, which are easy to check in many situations.

Definition 1-10. We define two notions of regularity for a compactly supported probability
measure v on R? such that dims (v) > 0.

(1) The measure v is called multifractal-regular at r (r-MF-regular) if F,, , = Fr.
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10 M. KESSEBOHMER AND A. NIEMANN

Bv(q)

2% dimy (v)

Figure 1. For the L7-spectrum of the self-similar measure v supported on a dyadic
Menger sponge in R3 with four contractions and with probability vector (0.66,0.2,0.08, 0.06)
we have B,(q)=13, (9 +qr, By(0)=2 and dim (v)=10g0.66/log2 < —0.599. For
r=—0.5> — dimg (v) the intersection of the graph of B, and the dashed line determines g,
The (solid) line through the points (g, B, (¢r)) and (1, 0) intersects the vertical axis in D,(v).
The (dash-dotted) tangent to B, in 1 intersects the vertical axis in Dg(v). Also the lower bound
D, (v) > dimy (v) becomes obvious.

(2) The measure v is called partition function regular at r (r-PF-regular)

a. 73(q) =liminf, t3,(q) € R for all g € (¢, — ¢, g,), for some ¢ > 0, or
b. 73 (g) =liminf, t3, (¢,) and 73 is differentiable at g,..

The following theorem, which is a direct consequence of [11, theorem 1-12], shows that
the spectral partition function is a valuable auxiliary concept to determine the quantization
dimension for a given measure v.

THEOREM 1-11. The following regularity implications hold for re (—dims (V),
+00) \ {0}:
qr

v is r-PF-regular —> v is r-MF-regular — Qr(v)zﬁr(v): T .

We would like to point out that all examples discussed in [12] for which the quanti-
zation dimension exists (self-similar measure, inhomogeneous self-similar measure, Gibbs
measures with possible overlap) remain literally valid for r € (— dimg (v), 0) as well.

Example 1-12. We briefly discuss one particularly regular example. We consider the self-
similar measure v supported on a dyadic Menger sponge in R? with the four defining
contractions
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Quantization dimensions of negative order 11
{ok 12> 1/2-24+k:k€{(0,0,0),(1/2,0,0),(0,1/2,0), (0,0, 1/2)}}

and probability vector (0.66,0.2,0.08,0.06). In this example, we have that 73, .(q) =
Buv(g) — gr even for r <0 and the L7-spectrum exists as a limit and is differentiable on
R . Furthermore, we have §,(0) = dimy(v) = 2. Therefore, our second main result (see
Theorem 1-11) on regularity applies and we can read off the value of ¢, and, as a con-
sequence of Theorem 1-5 also of D,(v), directly from g, for all values r > — dimg
(v) =log, 0.66 =~ —0.599 as demonstrated in Figure 1 on page 10.

2. Proof of main theorems

In this section, we only give a proof for the upper and lower bounds of the quantiza-
tion dimension of order r € (— dimg (v), 0) as stated in Theorem 1-5 (ii) and the proof of
part (iii). This is sufficient for proving Theorem 1-5, since part (i) is fully covered by [12].
We conclude this section by outlining the proof of the theorem on absolutely continuous
measures, Theorem 1-3.

2-1. Optimal partitions and partition entropy

We make use of some general observations from [11] which are valid for arbitrary
set functions J:D — Rso on the dyadic cubes D, which are monotone, dime (J) >0
(in particular uniformly vanishing) and locally non-vanishing with J(Q) > 0 and such
that liminf, 73,(¢9) € R for some g > 0. Here, uniformly vanishing means limy_,
SUPge| J,_, D, J(Q) =0 and locally non-vanishing means J(Q) > 0 implies that there exists
Q' € D(Q)\ {Q} with J (Q') > 0. It is important to note that all these conditions on the
set function are fulfilled for our particular choice J =, , whenever r > — dime (V) since
dime (Jy,r) = dime (V) + 1.

We also recall the closely connected dual problem, where we consider

= inf max J
Van Pellcard(P)<n QeP Q)

and convergence rates

lo ~ lo ~
oy = lim sup M and ay = lim inf g (V\J,Vl) .
n—00 IOg (}’l) n— 00 IOg (l’l)

With this at hand, we can state the crucial results used in the proofs of our main theorem as
follows.

PROPOSITION 2-1 ([11, theorems 1-4, 1-8 and section 1-3]). We have

_ -1 —1
Fy= TE B and  Fy<hy=—.

For the proof of the main theorem, we divide the problem into upper and lower bounds.

2-2. Upper bounds

We first prove the upper bounds, which are somewhat less demanding than the lower
bounds discussed thereafter. In this section, the underlying norm on R? is assumed to be
euclidean.
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12 M. KESSEBOHMER AND A. NIEMANN

PROPOSITION 2:2. Forr € (— dimy (v), 0), we have

D,(v) < rFr_ _ rﬁr_ _ rqy
I—Fr l—hr l_qV
and, if F, > 1,
Do) < 2
v .
r “1-F

r

Proof. The second and third equalities follow from Proposition 2-1. For fixed « >0
define ¢y, 1= card (N,,’a’,(n)). We begin with the upper bound for the lower quantization
dimension. For each Q € NV, 4.,(n) we consider Q' € D(Q) such that

r/d

v (Q)A(Q)" = max v(0)A©O)"=7,,(0)
CeD(Q)

and let A denote the set of all centers of the elements Q° for Q € N, 4 (n). Then,

sup d(x, A) < VA (')
xeQ’

keeping in mind that r is negative,

1/r
1/r
eca,izsr(v) = (/ d(x’ A)V dU(X)) =< Z / d(x, A)r dV(-)C)
QeNv,a,r(n) Q/
1/r 1/r
v Y a@)"v@)| =va|l > .0

QENv,a,r(n) QENv,a,r(n)
<del/ramonr.

Since F, =g, > 1 we consider only « in o= {a >0:Fr(a)/a> 1} # . For such o € o,
take a subsequence (nx) such that limy log ¢y, /7k =F.(a¢)>a >0 and cé{,:k2_“"k/’ <1.
Then

log cq - rlog cq _ rlogcyn, / (ang)
— log eca,nk,r(‘)) ~ —r/2logd —logcyu, +ang — 1 —rlog(d) / Qang) —log cq u,/ (ctng)

and therefore

logn . log ¢, - rF (o)) o

D,(v)=liminf ————— < < — .
n—oo —loge, (V) ~ k—>oo —log eca’nk,r(v) 1 —-F(x)/a

Taking the infimum over « € o/ and, keeping in mind that r < 0, yields

D,(v) < inf I’Fr_(a)/oz _ _SUPa>0 Fi(“)/“ _ rfr_ _ "
wed 1 —Fp(a)/a 1 —sup,.oFra)/a 1—-F, 1—gq;

Finally, we show the upper bound for the upper quantization dimension under the
assumption F,.> 1. Let Q€ Ey,, Q' € D(Q) and A be given as above. Then for o > 0
such that F.(«) > 0 and every ¢ G(O, E,(oc)) and n large, we have ¢y, > 21(E@)—¢) With
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Quantization dimensions of negative order 13
ng = Llogz k) / (Er(oz) — S)J, k e N, we find

ek,r(V) =< eco[,,,k,r(V) =< \/Ecé{,:kz_“""/’.

Since F, > 1 we have a € &= {a > 0: F,(@)/a > 1} # @ and /deo/p, 27"/" < 1 for k
large. Hence, we find
logk - rlogk
—loger,(v) = —r/2logd —log cy u, + anylog (2)

_ rlogk
~ —r/2logd —logk + o log (k) / (E,(a) — 8)'

Taking the upper limit and since F,.(o)/a > 1 we find

By < E@/2
1-F.(a)/a
Taking the infimum over « € &yields
F(a)/a  rsup, o F()/a  rF,

D,(v) < inf = .
ac 1 —F (oz)/oz 1 —sup,.oF(¢)/a 1—-F

r

2-3. Lower bounds

In this section we give the proof of the following lower bounds.

PROPOSITION 2-3. Ifr e (— dimg (v),0), then g, > 1 and we have

rh,_,  —
M <D (v)and lim == <D,().
1—q 01— h

For convenience in this section we choose the maximum norm on R¢. For any Q € D, we
let |Q| denote the side length of Q. Before we proceed, we need the following two elementary

lemmas. For @ €D we let Bn(é) =U {Q €D, :5 nQ+ @} denote the 27"+ -parallel
set of é

LEMMA 2-4. For é € D, a finite set A C Rd, and an integer n > |10g2 0

card {Q € Dy(0Q) :d (Q,A) > |0 &¥Q' € D,_1(0): Q' 2 0,d (0, A) < |0']}
<6card (A N B, (é)) .

, we have

Proof. First we show that for any a € R? we have

card {Q € Dy(0):d (Q.a) 2 101 &YQ' € Dy-1(0): Q' 2 0.d (Q'.a) < |Q']}

< 6 ]an(Q) (a).
The case a ¢ B, (Q) follows by observing that n > ilogz |Q|| implies that for every Q €
D, (Q) there exists Q' € D, (@) with O’ D 0 and d (Q’ ) >d (Q a) > o—n+l _ |Q |

and the relevant set is therefore empty.
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14 M. KESSEBOHMER AND A. NIEMANN

For the case a € B, (é), observe that we have at most 3¢ cubes Q' € D,_; (@) such that
d (Q’ , a) < |Q’ | and in each such cube there are at most 2¢ subcubes from D,,. This gives
the upper bound for the cardinality in question of 2¢ - 39

Now the claim follows from

card {Q € Dy(0) : d (0, A) > 10| &YQ € D,—1(0): @' 2 0.d (0, A) < |¢|}
<) card {Q € Dy(Q):d (Q.a) = 10| &¥Q € D,_1(0): Q' D 0.d (Q'.a) <|Q']}.

acA
LEMMA 2-5. ForACR? and P C UZ;} Dr, n € N a finite disjoint family of sets we have
> " card (AN B, (Q)) < 3card(A).
Qep
Proof. Since for all é € P we have ’§| > 27"+ we find

anrd (ANB, Z > card (AN Q)

QOeP 0P 0eD,,0N0+2

> > card(AnQ)

QD1 GeP,0N0#2

> > card (AN Q)

Q€Pu-1 D, 1,0N0#2

> 3card (AN Q) = 3%card(A).
QEDIZ—I

Proof of Proposition 2-3. For k € N choose A € Ay, and ¢ > 0 such that r — & > — dimy, (V).
Let #%:=yj3,, .k be as in Proposition 2-1 and P€Il an optimal partition realis-
ing y3,, .« that is card(P) <k and J,,- S(Q) <t for all Q € P (see [11]). Let us
define

Pi:={0eP,d(0,A)>|0|} and P, := P\ Py.

This allows us to estimate

/d(x A) dv(x) = Z / d(x,A)" dv(x) + Z /d(x A) dv(x)
o

QeP
< Z 0)""v)+ Y /Nd(x,A)rdv(x)
—,—z o
QeP, <t QeP; Q

< frcard(P) + Z /~ d(x, A) dv(x).
QeP,

Further, for n € N, and é € P, we set

E, (0) :={0eDu(0):d (0,A4) > |01 &¥Q € D,_1(0): Q' D 0,d (0, A) < ||}
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Quantization dimensions of negative order 15

Note that for 27" |Q| we have D, (Q) @ and therefore E,, (Q) @. For 27" |Q| and
QeD, (Q) there is exactly one Q' €D, (Q) with Q' D Q. Finally, if d (Q A) |Q|
we again have E,, (Q) . Since v has no atoms,

UU&@©@=U o\

neN éEPZ éEPz

ie. (Ep (é))n eN.Jep, 18 @ countable v-almost sure infinite partition of (Jg.p, 0. With this
at hand, we find for the second summand in the above estimate

Z /d(x A dv(x)<2 Z Z /d(x,A)’ dv(x)

QeP, n=0 QeP, QcE,(0)
< Z D D ( (RN (Ul
n=0 DeP; QeE,(0) < o
<ty Z 2-en Z 6%card (AN B, (é))
n=0 QePy,|0|>2"
o0
<uy 276! " card (ANB, (Q))
n=0 @eP2,|§|>2*"
d
< — Ik card(A), 2D

1—

where for the third inequality we used Lemma 2-4 and for the fifth inequality we used
Lemma 2.-5. Combining the above then gives

, 184
dix,A) dvi(x)<(1+ o= tik.
18d 1/r
= (1125 ) )"

Now, using g,—¢ + € > log (n)/ (— log (¢,)) for all n large and Proposition 2-1, gives

With (2-1) this gives

rlog k rlimsup;_, , log (k) /log (1/1) r(qr—e +¢€)
D,(v) > liminf = - > .
k>oo —logk—logty 1—Ilimsup;_,, log(k)/log(1/tx) — 1—(gr—s+¢€)

Letting ¢ tend to zero and by the continuity of a+> ¢q,, a € (— dimy (v),0) the first
inequality follows.

For the second inequality, recall that by our assumption and Proposition 2-1 we have
l<Fy< h3~ For the second inequality we consider P € IT with card(P) = M, ,_, (1/1).
This time (2-1) gives

d 1/r
e My r—e (l/t))

e M,,_o(1/n(V) = (1 -
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16 M. KESSEBOHMER AND A. NIEMANN
and hence using h,_, 4 ¢ > log (Mv,r_s (l/t,l)) /log (1/t,) on a subsequence #,, \ 0,

— . rlog M, ,—s (1/1) rliminflog (n)/ log (1/t,)
D,(v) > lim sup = —
0 —log My,— (I/0) +log (1/5) 1 —liminflog (n)/ log (1/t,)
iy te)
1= (hr—s+8)‘

Proof of Lemma 1-8. First note that a, := sup {g, : r € (— dimy, (), 0)} > 1, due to the fact
that go = 1 and r > ¢, is strictly decreasing on (— dimy, (v), 0]. Since r — ¢, is decreasing
we have

r\—lc}irllnlm o qr=sup{q,:r e (—dimy (v),0)}=a,,

and therefore

. qr ay
lim r =
N—dime ) 1—¢q, a,—1

dimy (V), a, <00,
lim D.(v)=

N\— dimge (V) =dimy (v), a, = o0.

T —
r\— dime (V) l/qr -1

2-4. Quantization via geometric mean error

In this subsection we settle the quantziation problem for the geometric mean error as
stated in Theorem 1-5 (iii).

Proof of Theorem 1-5 (iii). Part (iii) follows by combining Lemma 1-7 with [7, 25] and our
results from part (ii) by noting, on the one hand,
-1 r rq,

=lim qr <lim =1limD.(v) < Dy(v), 22)
qrlr—o  rt0 L—gq, " ~rt0l—gq, 0" 0

where we used lim,4¢ g, = 1. Using B, (¢,) < tvr (/) + rq, = 1q,, this also shows

1 P (@)
8rC]rlr=O 10 1 — qr

=—p, (1+). (23)

On the other hand, using B, (g,) = rq, for r > 0, as established in [12] and the monotonicity
of > D,(v) on r > 0 obtained e. g. in [6, lemma 3-5], we have that

Bv(gr) — Bu(1) .

D <limD,(v) =lim /="~ — _ g8/ (1—
o(v) < i ) o R . By (1-)
. r —1
=lim qr= (2-4)

rl0 1 — qr N arCIr|r:0‘

Combining —p;, (14+) < —p/ (1-), (2-3), and (2-4) shows that B, is differentiable at
I with B/(1)=1/8,gl,—0. Combining (22) and (2:4) —1/d,,l,—o < Dy(v) < Do(v) <
—1/0,qr|r=0- This proves the claim.
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Quantization dimensions of negative order 17
2-5. Absolutely continuous case

We start with the following lemma, which has been stated in a similar context in
[10, lemma 3-15].

LEMMA 2-6. Let v be a non-zero absolutely continuous measure with Lebesgue den-
sity f €L} for some s>1. Then, for all q€l0,s], the Li-spectrum is linear with
liminf, o Bu.u(q) = Bu(q) =d(1 — q) and t3, ,(q) = Bu(q) — rq for r > d/s — d.

Proof. First, we remark that, 8,(1) =0 and §,(0) = d. Hence, the convexity of 8, implies
Bu(q) <d(1 —q) for all g €[0,1] and B,(g) = d(1 — gq) for g > 1. Moreover, by Jensen’s
inequality, for all g € [0, 1] and n large, we have

Jof dn\*
- L) A A 4—1/ 7dA > A q—lf 7 dA,
Y@= > ( D) Q7= Y AQ) ranz A |

QeD, QeD, 0eD,

implying liminf,_, o Bvx(q) > d(1 — g). Further, Jensen’s inequality, for all g e[l,s],

yields
Jof da ) 1
v(Q) = ( A(Q) < A(Q)1! ffq dA < A(Q)7T! f fIdA.
an an AQ) Qén 0 Q

Hence, we obtain lim sup,,_, ., Bv.x(q) <d(1 — g). To prove the last equality we again use
Jensen’s inequality, for Q € Dy, r > d/s —d and g = s:

q
v(Q) = ( / FAO! dA) AQ) < ( f i dA) AQ)T,
0 (@)

implying v(Q)?AQ)?/? < ( Jof? dA) AQ)11H7/D=1 Note that

d
q(l+r/d)—1:<%)q—lzg—1:0
A

and since have that Q +— ( f 0 f1 dA) A(Q)11+7/D=1 is monotonic. Therefore, we get the
following upper bound:

max v (Q/)A (Q/)rS Z (/ 14 dA) A(Q)({(H—r/d)—l
Q'eD(Q) 0
QeD, 0eD,
< q 2—q(d+r)+d
=l o)

showing

T;]v,r(q) E d(l - CI) - rq'

Further, 73,,(0) <d combined with the convexity of 73, ., we conclude that for all
q €10,s]

13,,.(q@) <d(1 —q) — rq.
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18 M. KESSEBOHMER AND A. NIEMANN

The lower bound follows from
d(1 —q) —rqg <liminf §,,(¢q) — rg <liminfr3, ,(¢) < 7,,(9)-
We also need the following easy observation.
LEMMA 2.7. For any compactly supported probability measure v we have for g > 0,
Bv(q) = — dim (v) - g.

Proof. By the definition of dims (V) we have that for every & > 0 there exists infinitely
many n € N with maxpep, v(Q) > 2(=dimeo V)=&)n gn{ therefore

log Y v(Q) = (—dimy (v) — &) 4.

Q€eDy,

1
lim sup
n— o0 10g 2n

Combining the previous two lemmas gives s; <d/ (d — dim (hA)), as claimed at the
beginning of Section 1-2.

For what follows, we take advantage of the fact that many basic inequalities for positive r
can simply be reversed to hold for negative r. To see this, recall from the introduction, that
for negative r,

infac4, [d(x,A)" dv(x), r>0,

V V)=¢ V r ==
n,r(V) nr(V) SUPAcA, fd(x, A)" dv(x), r<0.

For the reversed inequalities of the following lemma for the case r >0 we refer to
[4, lemma 4-14].

LEMMA 2-8. For r <0 and a linear combination v := Y _ s;v;, s; > 0, of finite measures v;
and n € N, we have

Vi (v) < Z $iVur (Vi) .
Further, for n > n;, n; € N, we have
Vn,r(U) > Z siVn,-,r (i) .

Proof. ForA e A,,

/ d (@A) @ =) s / d (@A) dvi() <) iV ().
Taking the supremum over A € A, gives the first inequality.

For the second inequality, assume n> ) n; and note that for A; €A, we have
A:= J;Ai € A,. Hence,

Vi (v) = f d (@A) =) s f d (@A) dv() =) i / d (v, Ap)" dvi(x).
Now taking the supremum over all A; € A, gives the desired second inequality.
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Quantization dimensions of negative order 19

LEMMA 2.9. Forr e (—d,0) we let Cy4:= 27"+ 187/ (2" — 2=%). Then for all m € N and
A e A,, we have

/ d (x,A)" dA(x) < Cpqm~"/4.

Proof. Let us first consider the case m = 2" for n € N. We follow the estimates in Section
2.3 for the lower bound of the quantization dimension with v = A. Observe that for n € N
the optimal partition P of cardinality 2" is in this situation given by D,. As in the proof
Proposition 2-3 we partition P into P, P, and obtain

/ d(x, A dA(x) = Z / d(x,A)Y dA(x) + Z / d(x, A dA(x)
Q P QeP Q

<card(P) - A (@)’/d A (Q) + Z ﬁ d(x,A)" dA(x)
——— Q

—p—n(d+r) Qchy

<md 4 Z / d(x,A) dA(x).
OeP,

Using Lemma 2-4 and Lemma 2-5 we estimate the second summand as follows:

Z /d(x A dA(x)<Z Z Z /d(x,A)” dA(x)

QePy k=0 OeP; QeE(0)

r/d
ZZ > AQTAQ)

k=0 QeP; QeEr(Q)  _p—kd+n

< Z Z 6?card (A N By (@)) QK+

k=n+1Qep,, |§|>2—k

18¢
d k(d+r) _ =14
< 18%card(A) kE 2- — @M .
n

Combining the above, we obtain with C := (1 + 184 /(1 — 2 (dtr )))

18¢
/ d(x,A)r dA(x) < (1 + W) m_r/d = Cm_r/d.

Now for m € N and A € A,, arbitrary, there find n € N with 2" < m <20*D4_ Using our
result on the special subsequence, we get

/ d (x,A)" dA(x) < C27FDr = (C27 ")y =74,

which proves our claim by setting C, 4 := 27"C.

LEMMA 2-10. For the uniform distribution A on Q, the d-dimensional quantization coeffi-
cient €, 4(A) of order r e R exists, is finite, and positive only for r € (—d, 4-00) ; otherwise,
it is equal to zero.
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Proof. This statement is well known for r > 1 (see e. g. [4]; the proof there also works for
r € (0, 1]) and for r = 0 see [6, theorem 3-2]. Now for r € (—d, 0), note that by an observation
from the introduction of [12] we know that for any subcube Q C Q with side length a € (0, 1)
and A denoting the normalised restriction of A to Q, we have

Var (AQ) = arVn,r(A)

Now, for k € N, let us divide Q evenly into K axis-parallel subcubes {Ql-,k i=1,..., kd}
with side length 1/k. Then we have A =) k= Ag,, and hence by part (ii) of Lemma 2.8,
forme N and n:= km,

k‘/
Vir(A) = Y K Vonr (M) =K Vinr(A).
i=1
Therefore,
1V, (A) = Km" IV, (N = m TV, ().

This gives for each m e N

lim sup n'/9e,, (A) < m'4e,, (A).

n— o0

Hence, in the chain of inequalities

lim sup n'/9¢, (A) < inf m"/%e,, (A) <liminfn'/?e, (A)
n—>00 m n—00
in fact equality holds and the claimed limit exists and is smaller than Vi ,(A)!/" < co. The
limit is also positive by Lemma 2.9. The fact that €, 4(A) =0 for r < —d follows from
Proposition 1-1.

Proof of Theorem 1-3. With v := hA, the statement for positive r follows by [4, theorem
6-2] and r < — dimy (v) is also clear from Proposition 1-1. For r € ( — d, 0), we first follow
almost literally the proof of [4, theorem 6-2]:

First, let us consider only densities / that are constant on cubes from D,. By using
Lemma 2-8 and Lemma 2-10 at the appropriate places and exchanging all relevant inequali-
ties with their inverses and limes superior with limes inferior we see that the theorem holds
for such densities. For example, for r negative [4, lemma 6-8] provides a unique max-
imiser (instead of minimiser for positive r) as required in the proof for the upper bound
of lim sup,, n" / an,r (hA). Namely, at the appropriate place we need the following general
observation, which is an immediate consequence of Holder’s inequality: For m € N and
numbers s; > 0, let B= {(vl, s ) €0, 000" 3 v < 1} and

/)
o — i 7
fi= s dIdE =t=m.
j=1"7j
Then the function F: B— Ry, Fi,...,vpy) = Z:"zl s,-vl._r/dsatisﬁes

m (d+r)/d
F(tr,. oot = Y 740 = max F(i,...,vm)
_1 (V1sessVm)EB
and (#1, . . ., tyy) is the unique maximiser of F.
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Quantization dimensions of negative order 21

For all r € (d/sy, — d,0) we have | || e < 00 and, by Jensen’s inequality, we find that for
+r

the conditional expectation Ay := E (h | Di) we have [ h‘,f/ @ gA < [ R dA < o0.
Since o(Dy) /' o(D)=DB, by the martingale convergence theorem, we infer that the
sequence (hg) converges to h almost surely and, for all ¢ <d/ (d +r), also in L% in
particular, we have [|hll, — (1Al

For the final step in the proof we argue as follows. For d/sp, —d <7 <r<0,n €N, and
A € A, we have by Holder’s inequality

/d(-,A)rhdA=/d(~,A)r(h—hk+hk) dA

<V, (hkA>+/d<',A>’ Ih— Iy dA

—r'/d
< Vor (i A) + ( / d(-,A)~r dA) 17 = hill aycasry

—r'/d
< Vair (i A) + (Vn,frd/r’(A)) / lh— hk||d/(d+r’) .

If we take the supremum over all A € A, multiply by n"/ and take the limes superior, we
obtain,

lim sup n'/¢ Vor (hA) <lim sup n’/an,r (hi \)

n—oo n— oo

+Lim sup "7V, g (W) N0 — il g

n—oo

= (@, (1) €ra(N))" + Crapr a4 MR — il gy gasry
— (@, () €ra(A))" for k— oo.

Taking the rth root, this proves the lower bound on lim inf},_, n'/ den,, (hA).
Similarly,

Vn,r(hA)Z/d(-,A)rhdA=/d(-,A)r(h—hk—l—hk) dA

Z/d(-,A)rhde—/d(-,A)th—hk| dA

—r'/d
= [ac.ayhan- (/d(-,Ard’/r dA) = el
, '/
z/d(-,A) hie dA — (Vi —yayr (D)) " A — hillayasry -

Again, if we take the supremum over all A€ A, —this time on the right-hand
side—, multiply by n’/¢ and take the limes inferior, we obtain,

lim inf nV, . (hA) > lim inf nv, . (hA)

— lim sup "7V, _ /(M) ||h — Ficllayca+r)

n— oo
= (©r () Cra(D)) = Sy a(D) 14 10— el ayas
— (/W)€ q(A)) fork — oo.

This proves the upper bound on lim sup,,_, o, n'/ den,r (hA).
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To cover the case r=d/sp,—d with |[hl|;, =00, we consider the truncated ver-
sion h A s1, for s > 0, which gives lim sup nl/de,,,r (hA) <limsup nl/den,r ((hAsT)A) =
Cra(A)D, (hAs)— Ofors 7 oo.

For r =0 the claimed upper bound is contained in [6, theorem 3-4]. For the lower bound

we make use of our results for negative r together with the fact that r — nl/d (Vn,, (hA)) 1/ "
n € N, is monotonically increasing on r € (—d, 0] and that

*(d:r;)/r
lim ®,(h) = lim ( / B/ dA)
r/0 r,/10
= li\l’I(l) exp (—l/d- 1/t-log / exp (tlog (h)) hdA)
t

—ex J G exp (tlog () |i—oh dA
~ P4 T exp (Olog () hdA

=exp— (1/d) / exp (0log (h)) log (W)h dA = Dy(h).

In the third equality we used that (exp (¢t log (h)) h) /t < h'1¢ € L}\ forall ¢ € (0, £) and some
¢ > 0 in tandem with Lebesgue’s dominated convergence theorem.

Example 2-11. We provide an example of an absolutely continuous measure v on
Q:= [0, 1] such that —d < — dimy, (v) < d/s;, — d. For this we consider a disjoint family
(Ink :n €N, 1<k <2") of pairwise disjoint subintervals of [0, 1] such that for each n € N

and k € {1,...,2"} we have {In,k} =273"+1 We define a measure by
—1/2
vi= Y A (L)% Al
neNk=1,...,2

Since v (Inx) = A (In,k)l/2 and

v ([0, 1]) = Z A (In,k)1/2 _ Z 2 (=3n+1)/24n g

neNk=1,...,2" neN

this measure is finite and absolutely continuous with density

he= Y A (L) 1,

Then /‘Uk I WdA = 2)12S(r13/2—1/2)—3n+1 — 2n(s3/2—2)+1—s/2 and therefore

/ B dA — Z n(s3/2-2)41=5/2 _ 5—s/2+1 Z 5G/25-2m | =00, fors=4/3,
el el < oo, fors<4/3.

Hence, s, =4/3. On the other hand, dimy, (v) =1/2 and d = 1 giving

—d=—1<—dime (V)=—1/2<—-1/4=d/s, — d.
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Example 2-12. Our second example concerns an absolutely continuous measure v on
Q :=[0, 1] this time with density

h(x) = x~1/2 (1og (lxm))*z, xe(,1].

A straightforward calculation shows that dime, (V) = 1/2 and 53, = 2. This fact in combina-
tion with Lemma 2-6 and Lemma 2-7 gives

l1—gq, 0<¢g=<2,

ﬁ”@:{—(l/z)q, q>2.

and consequently, t3,.(q9)=pB,(q) —rq for q€[0,2], ay=2, and D(v)=1 for all
—1/2 <t <O0. In particular, by right continuity (Lemma 1-8), monotonicity (Lemma 1-7)
and regularity (Theorem 1-11) we have

ay

lim D,(v)=1=

di >D_ .
Jm a1 imeo (V) = D_1/2(v)

It is more involved to show that D_1,»(v) > 1:
For I(A):= [} (d(x,A)™"? h(x) dA(x) with A={0=aj <ar <---<a, =1} C[0, 1],
n > 2, our claim is that for a universal constant C > 0,

I(A) < C/n.

This implies that SUPgc A, Vi—12(v) < C+/n and therefore Q_l/z(v) > 1. Note that we have
made use of the observation that the assumption {0, 1} C A does not result in a loss of gen-
erality as a consequence of n+> V), _1,2(v) being monotonically increasing. We proceed to
prove this claim as follows:

Fartitioning the interval. Foreach 1 <i<n—1, set J; := [ai, ait+1), a partition of [0, 1),
and define ¢; := a;y1 — a;. Then, I(A) = Y /- I with I; := [, (d(x, A))™"/ h(x) dA(x). We
derive two useful upper bounds for this last integral: Since on each cell J;, the density 7 is
strictly positive and decreasing, we have

ajtajy|
-2 ait1
h(x) h(x) 1/2 1/2
Ii= dA ————dA ) <2h(a;))V2¢.'" <3h(a;) £.'". (25
/ T A+ ——=dAW = (@)V2¢;”” <3h (@) ;. (2:3)

a; ai+aj
2
The second bound considers the behavior for a; close to 0, for which we get

2

A= —————.
| log (¢;/200)]

22
L<2 / 4 (2:6)
o x(log (x/100))?

Partition of the indices. We now partition the set of indices into three disjoint cases according
to the location and size of the intervals:

R:= {i:a,-<e*~/ﬁ}, Si={i:t;>a}\R,  T:={i:;<aj}\R.
For each P € {R, S, T}, define Ip := Ziep I;. Thus, I(A) =Ig + Is + It.
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Case 1: Small g; (i € R). Using bound (2-6) above, and that for q; <e_*/ﬁ, we have
Eife_ﬁ by construction, so |log(¢;/200)| > /n for large n. Therefore, Iz <n-
max;eg (2/| log (¢;/200)]) < 2n//n = 2/n.

Case 2: Large intervals (i € S). For intervals where ¢; > a;, using bound (2-6) again,
f 7; h(x)|x —a;]""?dA(x) <1, and the number of such intervals is controlled by

peard($)=le=vn < 1 5o card (S) <34/n, hence Is <3./n.

Case 3: Small intervals away from O (i € T). For these, applying Holder’s inequality, the
bound (2-5), the fact that (a;)? /h(a; + ¢)?<2forieT,and using the integral comparison
criterion,

1/2
Ir <3 ha) Ve <3yeard (T) (Y (h (@)’ ei)

ieT ieT
1/2 12
<3/n ZZ(h(ai—i-Ei))zZi <6n </h2dA> < .Jn.
ieT
=1/+/3(log(100))~%/2

Combining the above, we can conclude that the constant C can be chosen as 6.
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