
Math. Proc. Camb. Phil. Soc.: page 1 of 25 1
doi:10.1017/S030500412510176X

Quantization dimensions of negative order

BY MARC KESSEBÖHMER AND ALJOSCHA NIEMANN
Institute for Dynamical Systems, FB 3 – Mathematics and Computer Science, University of

Bremen, Bibliothekstr. 5, 28359 Bremen, Germany.
e-mails: mhk@uni-bremen.de, niemann1@uni-bremen.de

(Received 22 May 2024; revised 17 August 2025; accepted 11 September 2025)

Abstract

We investigate the possibility of defining meaningful upper and lower quantization dimen-
sions for a compactly supported Borel probability measure of order r, including negative
values of r. To this end, we employ the concept of partition functions, which generalises
the notion of the Lq-spectrum, thus extending the authors’ earlier work with Sanguo Zhu in
a natural way. In particular, we derive inherent fractal-geometric bounds and easily verifi-
able necessary conditions for the existence of quantization dimensions. We state the exact
asymptotics of the quantization error of negative order for absolutely continuous measures,
thereby providing an affirmative answer to an open question regarding the geometric mean
error posed by Graf and Luschgy in this journal in 2004.

2020 Mathematics Subject Classification: 28A80 (Primary); 60E05, 62E20,
94A12 (Secondary)

1. Introduction and statement of main results

The quantization problem for probability measures dates back to the 1980s (cf. [22]),
where it was first established in the context of information theory, and has recently received
renewed attention, as appropriate quantization of continuous data is fundamental to many
machine learning applications [17, 20].

The aim is to examine the asymptotic behavior of the errors in the convergence of a
sequence of approximations of a given random variable with a quantised version of that ran-
dom variable (i.e., with a random variable that takes at most n ∈N different values) in terms
of rth power mean with r ≥ 0. The quantization dimension (of order r) is then defined as the
exponential rate of this convergence as n tends to infinity. These ideas have been extensively
explored in the mathematical literature by numerous authors, including [3–6, 12, 14–16, 18,
19, 21, 29–32, 34–36]. The objective of this study is to demonstrate that this concept can be
naturally extended to encompass also negative values of r. In turn, we gain new insights into
the asymptotics of the geometric mean error for absolutely continuous measures, for which
only the upper bound has been established in [6]. In this paper, Graf and Luschgy asked
whether the upper bound they established already represents the exact asymptotic for any
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2 M. KESSEBÖHMER AND A. NIEMANN

absolute continuous measure, a question we can now answer in the affirmative under very
mild conditions (see Theorem 1·3 and the following remark).

1·1. Basic set-up and first observations

Let X be a bounded random variable with values in the normed vector space
(
R

d, ‖ · ‖),
d ∈N, defined on the probability space (�, A, P) and we let ν := P ◦ X−1 denote its
(compactly supported) distribution. For a given n ∈N, let Fn denote the set of all Borel mea-
surable functions f : Rd →R

d which take at most n different values, i.e. with card
(
f
(
R

d
))≤

n, and call an element of Fn an n-quantiser. Our aim is to approximate X with a quan-
tised version of X, i.e. X will be approximated by f ◦ X with f ∈Fn where we quantify this
approximation with respect to the r-quasi-norm. More precisely, we are interested in the nth
quantization error of ν of order r ∈ (0, +∞] given by

en,r(ν) := inf
f ∈Fn

‖X − f ◦ X‖Lr
P
= inf

f ∈Fn
‖id − f ‖Lr

ν
,

where ‖g‖Lr
P

:= (∫ ‖g‖r dP
)1/r for 0 < r < ∞ and ‖g‖L∞

P
:= inf {c ≥ 0 : ‖g‖ ≤ c P-a.s.}

and id : x 
→ x denotes the identity map on R
d.

The problem can also be expressed using only the distribution ν, which we assume is com-
pactly supported throughout the paper. For every n ∈N, we write for the set of non-empty
sets with at most n elements An := {

A ⊂R
d : 1 ≤ card(A) ≤ n

}
. Then due to [4, lemma

3·1] an equivalent formulation of the nth quantization error of ν of order r ∈ [0, +∞) is
given by

en,r(ν) =
{

infA∈An ‖d ( · , A)‖Lr
ν

, r > 0,

infA∈An exp
∫

log d(x, A) dν(x), r = 0,

with d(x, A) := miny∈A ‖x − y‖. By [4, lemma 6·1] it follows that en,r(ν) → 0 or more pre-
cisely, en,r(ν) = O(n−1/d) and, if ν is singular with respect to the Lebesgue measure, then
en,r(ν) = o

(
n−1/d

)
(see [4, theorem 6·2]). We define the upper and lower quantization

dimension for ν of order r by

Dr(ν) := lim sup
n→∞

log n

− log en,r(ν)
, Dr(ν) := lim inf

n→∞
log n

− log en,r(ν)
,

with the natural convention that 1/ log (0) = 0. In particular, when en,r(ν) = 0 for all n large,
then the dimension vanishes. If Dr(ν) = Dr(ν), we call the common value the quantization
dimension for ν of order r and denote it by Dr(ν).

We point out that for r ≥ 1 the relevant r-quasi-norm is indeed a norm and only for r ∈
(0, 1) a quasi-norm, which means that only a generalised triangular inequality holds. In this
note, we will investigate the possibility and significance of also considering negative values
for r in the definition of the quantization error, i.e. we extend the definition of en,r(ν) to
values r < 0, by setting

en,r(ν) := inf
A∈An

(∫
d (x, A)r dν(x)

)1/r

.

Our first observation is that if ν has an atom, that is there exists x ∈R
d with ν ({x}) > 0,

then for all r < 0 we have that the integrant in the definition of en,r(ν) is equal to +∞ on a
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Quantization dimensions of negative order 3

set of positive measure whenever x ∈ A. Therefore, in this situation en,r(ν) = 0 for all n ∈N

and hence Dr(ν) = 0 for r < 0. This means that if the measure has a too high concentration
of mass, the quantization dimension will vanish for negative values of r. This idea can be
taken further: we will assume without loss of generality that the support of ν is contained
in the half-open unit cube Q := (0, 1]d, see [12, Introduction]. Although it is not strictly
necessary to assume that ν is normalised, it will always be assumed to be finite throughout
the paper. Let us define the ∞-dimension of ν by

dim∞ (ν) := lim inf
n→∞

maxQ∈Dn log ν(Q)

log 2−n
= lim inf

r→0

supx∈Rd log ν (Br(x))

log r
,

where Br(x) denotes the ball in
(
R

d, ‖ · ‖) of radius r > 0 and center x, and Dn denotes the

partition of Q by half-open cubes of the form
∏d

i=1

(
ki2−n, (ki + 1) 2−n

]
with (k1, . . . , kd) ∈

Z
d. We set D := ⋃

n∈N Dn, which defines –after adding the empty set– a semiring of sets.
Note that dim∞ (ν) ≤ d. The following observation provides us with the relevant range of
meaningful values for the order of quantization.

PROPOSITION 1·1. For a probability measure ν on R
d and r < − dim∞ (ν), we have

en,r(ν) = 0, for all n ∈N (1·1)

and, in particular, Dr(ν) = 0. Furthermore, if the measure ν has an absolutely continuous
part with respect to the Lebesgue measure, then (1·1) holds for r = −d.

Remark 1·2. Note that for absolutely continuous measure the second claim in the above
proposition is only meaningful if d = dim∞ (ν). In instances where the quantity dim∞ (ν) is
strictly smaller than d and ν is absolutely continuous, we refer to Examples 2·11 and 2·12.

Also note that Proposition 1·1 is consistent with our first observation, since dim∞ (ν) = 0
whenever ν has atoms. Hence the interesting range of values for r in the formulation of
the quantization problem is the interval [− dim∞ (ν), +∞] which we will focus on in this
paper. This observation also shows that the quantization dimension with negative order is
particularly sensitive to regions of high concentration of the underlying measure — a fact
that could prove particularly useful for applications.

Proof. Fix r < − dim∞ (ν) and t ∈ (r, − dim∞ (ν)). By definition of dim∞ (ν), we find

sequences (s�) ∈ (R>0)
N and (x�) ∈ (

R
d
)N

such that s� ↘ 0 and ν
(
Bs� (x�)

)≥ s−t
� . Setting

Vn,r(ν) := en,r(ν)r, this gives, for � → ∞,

Vn,r(ν) ≥ V1,r(ν) ≥ sup
A∈A1

∫
d (x, A)r dν(x)

≥
∫

Bs� (x�)

d (x, {x�})r dν(x) ≥ ν
(
Bs� (x�)

)
sr
� ≥ sr−t

� → ∞.

This proves the first claim.
To see that en,−d(ν) = 0 for each n ∈N, by Lebesgue’s differentiation theorem we find a

point x0 ∈R
d such that limk→∞ ν

(
B2−k (x0)

)
/2−kd = c > 0. Consequently, for k ∈N large

enough (say k ≥ k0) we have for Ck := B2−k (x0) \ B2−k−1 (x0) that ν (Ck) > (c/2) 2−d(k+1).
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4 M. KESSEBÖHMER AND A. NIEMANN

This gives for each n ∈N

Vn,−d(ν) ≥
∑
k≥k0

∫
Ck

d (x, {x0})−d dν(x) ≥
∑
k≥k0

c

2
2−d(k+1)2dk = ∞.

This shows the second claim.

1·2. Absolutely continuous measures – exact asymptotics

We are able to extend the classical result in quantization theory for absolutely continuous
probability measures with respect to the Lebesgue measure, which goes back to Zador [22]
and was generalised by Bucklew and Wise in [2]; for a rigorous proof for r ≥ 1, which also
works for r > 0, see [4, theorem 6·2].

If for κ > 0 the limit

Cr,κ (ν) := lim
n→∞ n1/κen,r(ν)

exists in [0, +∞], we refer to its value as the κ-dimensional quantization coefficient of order
r of ν. In the literature, the lower and upper quantization coefficients defined via limes infe-
rior and superior have also frequently been considered [5, 6, 16, 26, 33]. If this number (or
more generally, its upper and lower version) is positive and finite, the quantization dimen-
sion of order r also exists and is equal to κ . Note that Cr,κ (ν) = 0 is equivalent to saying that
en,r(ν) = o

(
n−1/κ

)
.

In Section 2·5, we will see that, for the Lebesgue measure restricted to Q and for which we
write �, the coefficient Cr,d(�) also exists and is finite for negative r, and positive only for
r > −d (cf. Lemma 2·10). In general, for an absolutely continuous probability ν := h� with
density h we set sh := sup {s > 0: ‖h‖s < ∞}, where for abbreviation we write ‖ · ‖s instead
of ‖ · ‖Ls

�
. By Lemma 2·6 and 2·7 we have that sh ≤ d/ (d − dim∞ (ν)). In particular, −d ≤

− dim∞ (ν) ≤ d/sh − d and these inequalities might be strict as Example 2·11 demonstrates.
For a measurable function h we set

�r(h) :=

⎧⎪⎨⎪⎩
‖h‖1/r

d/(d+r) , r ∈ (−d, ∞) \ {0} ,

exp
(− (1/d)

∫
h log (h) d�

)
, r = 0,

0, r ≤ −d,

where ‖h‖1/r
d/(d+r) = 0 whenever r < 0 and hd/(d+r) not integrable.

THEOREM 1·3. Let ν = h� be an absolutely continuous Borel probability measure on Q
with density h and sh given as above. For r 
= d/sh − d, and also for r = d/sh − d provided
‖h‖sh

= ∞, the d-dimensional quantization coefficient of order r of ν exists and its finite
value equals

Cr,d(ν) = Cr,d(�)�r(h).

Moreover, we have Cr,d(ν) > 0 for r > d/sh − d, and Cr,d(ν) = 0 for r < d/sh − d or, if
‖h‖sh

= ∞, also for r = d/sh − d.

The proof of this first theorem is outlined at the end of our paper in Section 2·5. This
section covers the necessary prerequisites and explains the main steps of the proof.
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Quantization dimensions of negative order 5

Remark 1·4. The special value r = 0, for which en,0(ν) coincides with the geometric mean
error, has been previously examined in several papers (see [6, 23–25, 27–29, 35, 36]). The
present approach, which now takes negative orders into account, provides a straightforward
answer to a question posed by Graf and Luschgy over 20 years ago. In [6] they showed
that

lim sup
n→∞

n1/den,0(ν) ≤ C0,d(�)�0(h), (1·2)

and pointed out that it “remains an open question whether one has a genuine limit in (1·2)
for absolutely continuous probabilities P different from uniform distributions on cubes.”
Whenever sh > 1, our first main result covers the geometric mean error, i.e. r = 0, and hence
answers the question in the affirmative.

It should also be noted that explicit formulae for Cr,d(�) are often difficult to obtain
and that its value is dependent on the underlying norm on R

d. Nevertheless, the quantiza-
tion dimension is independent of the underlying norm. For the sake of simplicity, both the
euclidean and the maximum norm will be used in the subsequent proofs.

In Example 2·12 we provide an example with ‖h‖sh
< ∞ such that the d-dimensional

quantization coefficient of order d/sh − d exists and is positive. This critical situation
‖h‖sh

< ∞ will be revisited in Remark 1·9.
The fact that ‖h‖d/(d+r) = ∞ for a certain negative r indicates a strong concentration of

mass and can be considered analogous to singular measures and positive r. In both cases,
the convergence rate of the quantization error is o

(
n−1/d

)
.

1·3. Partition functions and related concepts

Building upon the ideas developed in the context of spectral problems for Kreı̆n–Feller
operators in [9, 10] and for approximation orders of Kolmogorov, Gel’fand, and linear
widths in [8, 13], we will address the quantization problem as initiated in [12], where we
considered positive order and determine the exact value of the upper quantization dimen-
sion with the help of the Lq-spectrum. In this instance, however, we will consider negative
order, for which novel concepts and strategies are required, particularly the more general
concept of the J-partition function. Interestingly, the underlying methods elaborated in [11]
and initially utilised in the context of spectral problems prove to be precisely the appropriate
tools in this context. The main difference to the results obtained for the positive order case
is that, this time, our formalism provides the exact value of the lower quantization dimen-
sion, as well as an upper bound for the upper quantization dimension (see Theorem 1·5).
Additionally, we provide the exact value for the upper and lower quantization dimension in
the regular cases (see Section 1·6).

With Dn(Q) := {
Q′ ∈Dn : Q′ ⊂ Q

}
, n ∈N, we let D(Q) := ⋃

n∈N Dn(Q). For
r > − dim∞ (ν), we then set

J := Jν,r : D →R≥0, Q 
→ max
Q′∈D(Q)

ν
(
Q′)�

(
Q′)r/d

and define the J-partition function τJ, for q ∈R≥0, by

τJ(q) := lim sup
n→∞

τJ,n(q), with τJ,n(q) :=
log

(∑
Q∈Dn,J(Q)>0 J(Q)q

)
log (2n)

.
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6 M. KESSEBÖHMER AND A. NIEMANN

Define the critical value

qr := inf
{
q > 0 : τJν,r (q) < 0

}
.

Note that for r ≥ 0 we have Jν,r(Q) = ν(Q)�(Q)r/d and consequently for non-negative
values of r, τJ(q) = βν(q) − qr, where

βν : q 
→ lim sup
n→∞

βν,n(q) with βν,n(q) :=
log

(∑
Q∈Dn,ν(Q)>0 ν(Q)q

)
log (2n)

denotes the Lq-spectrum of ν, which was the central object in [12]. In Example 1·12 (see
also Figure 1 on page 10) we provide a measure for which τJν,r (q) = βν(q) − qr holds
also for negative values of r. We always have τJν,r (q) ≥ βν(q) − qr by the definition τJ.
It is easy to construct purely atomic measures such that qr = 0 for all r > 0 and βν(0) > 0,
see [9]. In this case it turns out that the upper quantization dimension is also 0.

For the following fundamental inequalities for qr we assume dim∞ (ν) > 0. Then
βν(0) = τJν,r (0) = dimM(ν) ≥ dim∞ (ν) > 0 and for − dim∞ (ν) < r < 0 and q ≥ 0, we have
τJν,r (q) ≥ βν(q) − qr. For q ≥ 1, the convexity of τJν,r gives

τJν,r (q) ≥ (
τJν,r (1) − τJν,r (0)

)
q + τJν,r (0) ≥ (−r − βν(0)) q + βν(0).

On the other hand, again the convexity of τJν,r gives for q ≥ 1

τJν,r (q) ≤ (− dim∞ (ν) − r) q + dim∞ (ν) + r + τJν,r (1).

Combining both inequalities and using the definition of qr proves for r ∈ (− dim∞ (ν), 0)

1 <
dimM(ν)

dimM(ν) + r
≤ qr ≤ 1 + τJν,r (1)

dim∞ (ν) + r
≤ 1 + dimM(ν) − dim∞ (ν)

dim∞ (ν) + r
. (1·3)

Moreover, for r > 0, due the convexity of βν and the fact that βν(q) = τJν,r (q) + rq ≤
(1 − q) dimM(ν) for q ∈ [0, 1], we conclude

0 < qr ≤ dimM(ν)

dimM(ν) + r
< 1. (1·4)

Further, we will need some ideas from entropy theory: Let 
 denote the set of finite
partitions of Q by cubes from D. We define

Mν,r(x) := inf

{
card(P) : P ∈ 
, max

Q∈P
Jν,r(Q) < 1/x

}
and

hν,r := lim sup
x→∞

log Mν,r(x)

log x
, hν,r := lim inf

x→∞
log Mν,r(x)

log x

will be called the upper, resp. lower, (ν, r)-partition entropy. We write hr := hν,r and hr :=
limε↓0 hν,r−ε.

For all n ∈N and α > 0, we define

Nν,α,r(n) := cardNν,α,r(n), Nν,α,r(n) := {
Q ∈Dn : Jν,r(Q) ≥ 2−αn} ,
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Quantization dimensions of negative order 7

and set

Fν,r(α) := lim sup
n

log+ (Nν,α,r(n)
)

log 2n
and Fν,r(α) := lim inf

n

log+ (Nν,α,r(n)
)

log 2n
,

with log+ (x) := max{0, log (x)}, x ≥ 0. Following [10], we refer to the quantities

Fr := Fν,r := sup
α>0

Fν,r(α)

α
and Fr := Fν,r := sup

α>0

Fν,r(α)

α

as the (ν, r)-upper, resp. lower, optimised coarse multifractal dimension. We know from
general consideration obtained in [11] that we always have Fr = qr = hr ≥ hr ≥ Fr, see
Proposition 2·1.

1·4. Main results

In our main theorem we combine the main result in [12] for positive r with our new
results on negative r. Note that our assumption in [12], that supx∈(0,1) βν(x) > 0, is implied
by our stronger assumption dim∞ (ν) > 0. It is important to note that under this stronger
assumption r > 0 implies 0 < qr < 1, just as − dim∞ (ν) < r < 0 implies qr > 1 (see (1·4)
and (1·3)). Finally, we set

dimH (ν) := inf {dimH (A) : ν(A) > 0}
with dimH (A) referring to the Hausdorff dimension of A ⊂R

d. The proof of our main
theorem is postponed to the last section.

THEOREM 1·5. For a compactly supported probability measure ν on R
d we have:

(i) for r ∈ (0, +∞),

rFr

1 − Fr
≤ Dr(ν) ≤ rhr

1 − hr
≤ rhr

1 − hr
= Dr(ν) = rqr

1 − qr
= rFr

1 − Fr
;

(ii) for r ∈ (− dim∞ (ν), 0),

(a)
rFr

1 − Fr
= rqr

1 − qr
= Dr(ν) = rhr

1 − hr
,

(b)
rhr

1 − hr
≤ rhr

1 − hr
≤ Dr(ν) ≤ rFr

1 − Fr
under the assumption Fr > 1;

(iii) for r = 0, and under the assumption that dim∞ (ν) > 0 and r 
→ qr is differentiable at
0, we have βν is differentiable at 1 and

D0(ν) = −β ′
ν(1) = dimH (ν).

Remark 1·6. It should be noted that in [12], the notion of the (upper) generalised Rényi
dimension of ν [1] was employed. In our context, it is necessary to replace the concept
of the Lq-spectrum with the more general concept of the τJν,r -partition function, where for
r > − dim∞ (ν), we set

Rν(q) :=
{

τJν,r (q)/ (1 − q) , for q ∈R≥0 \ {1},
lim supn

(∑
C∈Dn

ν(C) log ν(C)
)
/ log

(
2−n

)
, for q = 1.
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8 M. KESSEBÖHMER AND A. NIEMANN

In this manner, we derive for both positive and negative values of r the remarkable
identity

Rν (qr) = rqr

1 − qr
,

which can be applied to Theorem 1·5 (i) and (ii), providing an alternative expression for
Dr(ν) whenever r is positive and for Dr(ν) whenever r is negative.

The connection between the derivatives of r 
→ qr and βν becomes apparent in the proof
at the beginning of Section 2, where we show that β ′

ν is differentiable at 1 with β ′
ν(1) =

1/∂rqr|r=0. This fact is contingent on the monotonicity of r 
→ Dr(ν) on (− dim∞ (ν), 0],
which we establish in Lemma 1·7.

1·5. Fractal-geometric bounds and basic properties

For a compactly supported probability measure ν on R
d, we let dimM(ν) :=

dimM (supp(ν)), where dimM(A), denotes the upper Minkowski dimension of the bounded
set A ⊂R

d.
The fact that τJ is proper, convex with βν(0) = τJ(0) = dimM(ν), τJ(q) ≥ βν(q) − rq for

q ≥ 0, and that its asymptotic slope limq→∞ τJ(q)/q is equal to −r − dim∞ (ν) plays a
crucial role in many fundamental properties of the quantization dimension. To begin this
investigation, we first observe a simple fact that is well known for positive r.

LEMMA 1·7. If dim∞ (ν) > 0, then the functions r 
→ Dr(ν) and r 
→ Dr(ν) are both
monotonically increasing on the interval (− dim∞ (ν), 0].

Proof. Note that for − dim∞ (ν) < s < r < 0 and A ∈An we have by Hölder’s inequality
(assuming without loss of generality that ν is normalised)∫

d (x, A)r dν ≤
(∫

d (x, A)s dν

)r/s

≤ (
Vn,s(ν)

)r/s =⇒
(∫

d (x, A)r dν

)1/r

≥ en,s(ν)

and by Jensen’s inequality, to cover the case r = 0,∫
log d (x, A)r dν ≤ log

∫
d (x, A)r dν

=⇒ exp
∫

log d (x, A) dν ≥
(∫

d (x, A)r dν

)1/r

≥ en,r(ν).

Taking in both cases the infimum over all A ∈An, gives

en,s(ν) ≤ en,r(ν) ≤ en,0(ν)

and the claim follows.

Let us now discuss the behaviour of the quantization dimension at the relevant boundary
points − dim∞ (ν) and +∞. The case +∞ follows from [12] and by observing

lim
r↗+∞ Dr(ν) = lim

q↘0
βν(q) ≤ βν(0) = dimM(ν) = D∞(ν), (1·5)
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Quantization dimensions of negative order 9

where the last equality can be found in [4, theorem 11·7, Proposition 11·9]. To discuss the
boundary point − dim∞ (ν) we need the following auxiliary quantity

aν := sup {qr : r ∈ (− dim∞ (ν), 0)} .

LEMMA 1·8. For a compactly supported probability measure ν on R
d with dim∞ (ν) > 0,

dim∞ (ν) ≤ lim
r↘− dim∞ (ν)

Dr(ν) = aν

aν − 1
dim∞ (ν), (1·6)

where we set aν/ (aν − 1) = 1 whenever aν = +∞.

The proofs will be given at the end of Section 2·3, where we also show that aν is strictly
greater than 1. See also [12, proposition 1·7] for the corresponding upper bounds for the
upper quantization dimension of order r > 0.

Remark 1·9. It is easy to construct an absolutely continuous measure with a density that
has one singularity, such that βν is piecewise linear, which gives rise to the above described
behavior with aν < ∞, see Example 2·12.

The above observation and lemma demonstrate that the boundary behavior is only par-
tially encoded by τJ. Equation (1·5) shows that continuity of r 
→ Dr(ν) in r = +∞ if and
only if the Lq-spectrum βν is continuous from the right in 0 or, equivalently, the same holds
for τJν,r for all r > 0. In general, continuity of r 
→ Dr(ν) in r = − dim∞ (ν) from the right
cannot be derived from τJ alone. In point of fact, Proposition 1·1 together with Theorem 1·5
covers all values of r except the critical value r = − dim∞ (ν). We would like to point out
that the behaviour at this critical value is not easily accessible and depends very much on
the measure under consideration:

For instance, as we have already observed in Theorem 1·3, for the uniform distribution �

we have dim∞ (�) = d, while

Dr(�) =
{

d, r ∈ ( − dim∞ (�), ∞),

0, r ≤ − dim∞ (�).

That is to say, r 
→ Dr(�) is discontinuous and continuous from the left in r = − dim∞ (�).
On the other hand, in Example 2·12 we construct an absolutely continuous measure ν

with d > dim∞ (ν) > 0 such that

lim
r↘− dim∞ (ν)

Dr(ν) = D− dim∞ (ν)(ν) = d,

that is, r 
→ Dr(ν) is this time discontinuous and continuous from the right in
r = − dim∞ (ν).

1·6. Regularity results

As a second main result we find necessary conditions for the upper and lower quantization
dimension to coincide, which are easy to check in many situations.

Definition 1·10. We define two notions of regularity for a compactly supported probability
measure ν on R

d such that dim∞ (ν) > 0.

(1) The measure ν is called multifractal-regular at r (r-MF-regular) if Fν,r = Fν,r.
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10 M. KESSEBÖHMER AND A. NIEMANN

1

dim∞( )

( )

0( )

2 dim ( )

( )

Figure 1. For the Lq-spectrum of the self-similar measure ν supported on a dyadic
Menger sponge in R

3 with four contractions and with probability vector (0.66, 0.2, 0.08, 0.06)

we have βν(q) = τJν,r
(q) + qr, βν(0) = 2 and dim∞ (ν) = log 0.66/ log 2 < −0.599. For

r = −0.5 > − dim∞ (ν) the intersection of the graph of βν and the dashed line determines qr.
The (solid) line through the points (qr, βν (qr)) and (1, 0) intersects the vertical axis in Dr(ν).
The (dash-dotted) tangent to βν in 1 intersects the vertical axis in D0(ν). Also the lower bound
Dr(ν) ≥ dim∞ (ν) becomes obvious.

(2) The measure ν is called partition function regular at r (r-PF-regular)

a. τJ(q) = lim infn τJ,n(q) ∈R for all q ∈ (qr − ε, qr), for some ε > 0, or
b. τJ (qr) = lim infn τJ,n (qr) and τJ is differentiable at qr.

The following theorem, which is a direct consequence of [11, theorem 1·12], shows that
the spectral partition function is a valuable auxiliary concept to determine the quantization
dimension for a given measure ν.

THEOREM 1·11. The following regularity implications hold for r ∈ ( − dim∞ (ν),
+∞) \ {0}:

ν is r-PF-regular =⇒ ν is r-MF-regular =⇒ Dr(ν) = Dr(ν) = rqr

1 − qr
.

We would like to point out that all examples discussed in [12] for which the quanti-
zation dimension exists (self-similar measure, inhomogeneous self-similar measure, Gibbs
measures with possible overlap) remain literally valid for r ∈ (− dim∞ (ν), 0) as well.

Example 1·12. We briefly discuss one particularly regular example. We consider the self-
similar measure ν supported on a dyadic Menger sponge in R

3 with the four defining
contractions
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Quantization dimensions of negative order 11

{ϕk : z 
→ 1/2 · z + k : k ∈ {(0, 0, 0) , (1/2, 0, 0) , (0, 1/2, 0) , (0, 0, 1/2)}}
and probability vector (0.66, 0.2, 0.08, 0.06). In this example, we have that τJν,r (q) =
βν(q) − qr even for r < 0 and the Lq-spectrum exists as a limit and is differentiable on
R>0. Furthermore, we have βν(0) = dimM(ν) = 2. Therefore, our second main result (see
Theorem 1·11) on regularity applies and we can read off the value of qr and, as a con-
sequence of Theorem 1·5 also of Dr(ν), directly from βν for all values r > − dim∞
(ν) = log2 0.66 ≈−0.599 as demonstrated in Figure 1 on page 10.

2. Proof of main theorems

In this section, we only give a proof for the upper and lower bounds of the quantiza-
tion dimension of order r ∈ (− dim∞ (ν), 0) as stated in Theorem 1·5 (ii) and the proof of
part (iii). This is sufficient for proving Theorem 1·5, since part (i) is fully covered by [12].
We conclude this section by outlining the proof of the theorem on absolutely continuous
measures, Theorem 1·3.

2·1. Optimal partitions and partition entropy

We make use of some general observations from [11] which are valid for arbitrary
set functions J : D →R≥0 on the dyadic cubes D, which are monotone, dim∞ (J) > 0
(in particular uniformly vanishing) and locally non-vanishing with J(Q) > 0 and such
that lim infn τJ,n(q) ∈R for some q > 0. Here, uniformly vanishing means limk→∞
supQ∈⋃n≥k Dn

J(Q) = 0 and locally non-vanishing means J(Q) > 0 implies that there exists

Q′ ∈D(Q) \ {Q} with J
(
Q′)> 0. It is important to note that all these conditions on the

set function are fulfilled for our particular choice J= Jν,r whenever r > − dim∞ (ν) since
dim∞ (Jν,r) = dim∞ (ν) + r.

We also recall the closely connected dual problem, where we consider

γJ,n := inf
P∈
,card(P)≤n

max
Q∈P

J(Q)

and convergence rates

αJ := lim sup
n→∞

log
(
γJ,n

)
log (n)

and αJ := lim inf
n→∞

log
(
γJ,n

)
log (n)

.

With this at hand, we can state the crucial results used in the proofs of our main theorem as
follows.

PROPOSITION 2·1 ([11, theorems 1·4, 1·8 and section 1·3]). We have

FJ = hJ = −1

αJ
= qJ and FJ ≤ hJ = −1

αJ

.

For the proof of the main theorem, we divide the problem into upper and lower bounds.

2·2. Upper bounds

We first prove the upper bounds, which are somewhat less demanding than the lower
bounds discussed thereafter. In this section, the underlying norm on R

d is assumed to be
euclidean.
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12 M. KESSEBÖHMER AND A. NIEMANN

PROPOSITION 2·2. For r ∈ (− dim∞ (ν), 0), we have

Dr(ν) ≤ rFr

1 − Fr
= rhr

1 − hr
= rqr

1 − qr

and, if Fr > 1,

Dr(ν) ≤ rFr

1 − Fr
.

Proof. The second and third equalities follow from Proposition 2·1. For fixed α > 0
define cα,n := card

(Nν,α,r(n)
)
. We begin with the upper bound for the lower quantization

dimension. For each Q ∈Nν,α,r(n) we consider Q′ ∈D(Q) such that

ν
(
Q′)�

(
Q′)r/d = max

C∈D(Q)
ν (C) � (C)r/d = Jν,r(Q)

and let A denote the set of all centers of the elements Q’ for Q ∈Nν,α,r(n). Then,

sup
x∈Q′

d(x, A) ≤ √
d�

(
Q′)1/d

keeping in mind that r is negative,

ecα,n,r(ν) ≤
(∫

d(x, A)r dν(x)

)1/r

≤
⎛⎝ ∑

Q∈Nν,α,r(n)

∫
Q′

d(x, A)r dν(x)

⎞⎠1/r

≤ √
d

⎛⎝ ∑
Q∈Nν,α,r(n)

�
(
Q′)r/d

ν
(
Q′)⎞⎠1/r

= √
d

⎛⎝ ∑
Q∈Nν,α,r(n)

Jν,r(Q)

⎞⎠1/r

≤ √
dc1/r

α,n2−αn/r.

Since Fr = qr > 1 we consider only α in A := {
α > 0 : Fr(α)/α > 1

} 
=∅. For such α ∈ A,

take a subsequence (nk) such that limk log cα,nk/nk = Fr(α) > α > 0 and c1/r
α,nk 2−αnk/r < 1.

Then

log cα,nk

− log ecα,nk ,r(ν)
≤ r log cα,nk

−r/2 log d − log cα,nk + αnk
≤ r log cα,nk/ (αnk)

1 − r log (d) / (2αnk) − log cα,nk/ (αnk)

and therefore

Dr(ν) = lim inf
n→∞

log n

− log en,r(ν)
≤ lim

k→∞
log cα,nk

− log ecα,nk ,r(ν)
≤ rFr(α)/α

1 − Fr(α)/α
.

Taking the infimum over α ∈ A and, keeping in mind that r < 0, yields

Dr(ν) ≤ inf
α∈A

rFr(α)/α

1 − Fr(α)/α
= r supα>0 Fr(α)/α

1 − supα>0 Fr(α)/α
= rFr

1 − Fr
= rqr

1 − qr
.

Finally, we show the upper bound for the upper quantization dimension under the
assumption Fr > 1. Let Q ∈ Eα,n, Q′ ∈D(Q) and A be given as above. Then for α > 0
such that Fr(α) > 0 and every ε ∈(0, Fr(α)

)
and n large, we have cα,n ≥ 2n(Fr(α)−ε). With
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Quantization dimensions of negative order 13

nk := ⌊
log2 (k) /

(
Fr(α) − ε

)⌋
, k ∈N, we find

ek,r(ν) ≤ ecα,nk ,r(ν) ≤ √
dc1/r

α,nk
2−αnk/r.

Since Fr > 1 we have α ∈ A := {
α > 0 : Fr(α)/α > 1

} 
=∅ and
√

dc1/r
α,nk 2−αnk/r < 1 for k

large. Hence, we find

log k

− log ek,r(ν)
≤ r log k

−r/2 log d − log cα,nk + αnk log (2)

≤ r log k

−r/2 log d − log k + α log (k) /
(
Fr(α) − ε

) .

Taking the upper limit and since Fr(α)/α > 1 we find

Dr(ν) ≤ rFr(α)/α

1 − Fr(α)/α
.

Taking the infimum over α ∈ A yields

Dr(ν) ≤ inf
α∈A

rFr(α)/α

1 − Fr(α)/α
= r supα>0 Fr(α)/α

1 − supα>0 Fr(α)/α
= rFr

1 − Fr
.

2·3. Lower bounds

In this section we give the proof of the following lower bounds.

PROPOSITION 2·3. If r ∈ (− dim∞ (ν), 0), then qr > 1 and we have

rqr

1 − qr
≤ Dr(ν) and lim

ε↓0

rhr−ε

1 − hr−ε

≤ Dr(ν).

For convenience in this section we choose the maximum norm on R
d. For any Q ∈D, we

let |Q| denote the side length of Q. Before we proceed, we need the following two elementary

lemmas. For Q̃ ∈D we let Bn(Q̃) := ⋃{
Q ∈Dn−1 : Q̃ ∩ Q 
=∅

}
denote the 2−n+1-parallel

set of Q̃.

LEMMA 2·4. For Q̃ ∈D, a finite set A ⊂R
d, and an integer n >

∣∣log2

∣∣Q̃∣∣∣∣, we have

card
{
Q ∈Dn(Q̃) : d (Q, A) ≥ |Q| &∀Q′ ∈Dn−1(Q̃) : Q′ ⊃ Q, d

(
Q′, A

)
<
∣∣Q′∣∣}

≤ 6dcard
(
A ∩ Bn

(
Q̃
))

.

Proof. First we show that for any a ∈R
d we have

card
{
Q ∈Dn(Q̃) : d (Q, a) ≥ |Q| &∀Q′ ∈Dn−1(Q̃) : Q′ ⊃ Q, d

(
Q′, a

)
<
∣∣Q′∣∣}

≤ 6d1Bn(Q̃) (a) .

The case a /∈ Bn
(
Q̃
)

follows by observing that n >
∣∣log2

∣∣Q̃∣∣∣∣ implies that for every Q ∈
Dn

(
Q̃
)
, there exists Q′ ∈Dn−1

(
Q̃
)

with Q′ ⊃ Q and d
(
Q′, a

)≥ d
(
Q̃, a

)≥ 2−n+1 = ∣∣Q′∣∣
and the relevant set is therefore empty.
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14 M. KESSEBÖHMER AND A. NIEMANN

For the case a ∈ Bn
(
Q̃
)
, observe that we have at most 3d cubes Q′ ∈Dn−1

(
Q̃
)

such that
d
(
Q′, a

)
<
∣∣Q′∣∣ and in each such cube there are at most 2d subcubes from Dn. This gives

the upper bound for the cardinality in question of 2d · 3d.
Now the claim follows from

card
{
Q ∈Dn(Q̃) : d (Q, A) ≥ |Q| &∀Q′ ∈Dn−1(Q̃) : Q′ ⊃ Q, d

(
Q′, A

)
<
∣∣Q′∣∣}

≤
∑
a∈A

card
{
Q ∈Dn(Q̃) : d (Q, a) ≥ |Q| &∀Q′ ∈Dn−1(Q̃) : Q′ ⊃ Q, d

(
Q′, a

)
<
∣∣Q′∣∣} .

LEMMA 2·5. For A ⊂R
d and P ⊂⋃n−1

k=1 Dk, n ∈N a finite disjoint family of sets we have∑
Q̃∈P

card
(
A ∩ Bn

(
Q̃
))≤ 3dcard(A).

Proof. Since for all Q̃ ∈ P we have
∣∣Q̃∣∣≥ 2−n+1 we find∑

Q̃∈P

card
(
A ∩ Bn

(
Q̃
))=

∑
Q̃∈P

∑
Q∈Dn−1,Q̄∩ ¯̃Q 
=∅

card (A ∩ Q)

=
∑

Q∈Dn−1

∑
Q̃∈P,Q̄∩ ¯̃Q 
=∅

card (A ∩ Q)

≤
∑

Q∈Dn−1

∑
Q̃∈Dn−1,Q̄∩ ¯̃Q 
=∅

card (A ∩ Q)

≤
∑

Q∈Dn−1

3dcard (A ∩ Q) = 3dcard(A).

Proof of Proposition 2·3. For k ∈N choose A ∈Ak, and ε > 0 such that r − ε > − dim∞ (ν).
Let tk := γJν,r−ε ,k be as in Proposition 2·1 and P ∈ 
 an optimal partition realis-
ing γJν,r−ε ,k that is card(P) ≤ k and Jν,r−ε

(
Q̃
)≤ tk for all Q̃ ∈ P (see [11]). Let us

define

P1 := {
Q̃ ∈ P, d

(
Q̃, A

)≥ ∣∣Q̃∣∣} and P2 := P \ P1.

This allows us to estimate

∫
d(x, A)r dν(x) =

∑
Q̃∈P1

∫
Q̃

d(x, A)r dν(x) +
∑

Q̃∈P2

∫
Q̃

d(x, A)r dν(x)

≤
∑

Q̃∈P1

�
(
Q̃
)r/d

ν
(
Q̃
)︸ ︷︷ ︸

≤tk

+
∑

Q̃∈P2

∫
Q̃

d(x, A)r dν(x)

≤ tkcard(P) +
∑

Q̃∈P2

∫
Q̃

d(x, A)r dν(x).

Further, for n ∈N, and Q̃ ∈ P2 we set

En
(
Q̃
)

:= {
Q ∈Dn(Q̃) : d (Q, A) ≥ |Q| &∀Q′ ∈Dn−1(Q̃) : Q′ ⊃ Q, d

(
Q′, A

)
<
∣∣Q′∣∣} .
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Quantization dimensions of negative order 15

Note that for 2−n >
∣∣Q̃∣∣ we have Dn

(
Q̃
)=∅ and therefore En

(
Q̃
)=∅. For 2−n <

∣∣Q̃∣∣ and
Q ∈Dn

(
Q̃
)

there is exactly one Q′ ∈Dn−1
(
Q̃
)

with Q′ ⊃ Q. Finally, if d
(
Q̃, A

)
<
∣∣Q̃∣∣= 2−n

we again have En
(
Q̃
)=∅. Since ν has no atoms,⋃

n∈N

⋃
Q̃∈P2

En
(
Q̃
)=

⋃
Q̃∈P2

Q̃ \ A,

i.e.
(
En

(
Q̃
))

n∈N,Q̃∈P2
is a countable ν-almost sure infinite partition of

⋃
Q̃∈P2

Q̃. With this
at hand, we find for the second summand in the above estimate

∑
Q̃∈P2

∫
d(x, A)r dν(x) ≤

∞∑
n=0

∑
Q̃∈P2

∑
Q∈En(Q̃)

∫
Q

d (x, A)r dν(x)

≤
∞∑

n=0

∑
Q̃∈P2

∑
Q∈En(Q̃)

�(Q)(r/d−ε/d)ν(Q)︸ ︷︷ ︸
≤tk

�(Q)ε/d︸ ︷︷ ︸
=2−nε

≤ tk

∞∑
n=0

2−εn
∑

Q̃∈P2,|Q̃|>2−n

6dcard
(
A ∩ Bn

(
Q̃
))

≤ tk

∞∑
n=0

2−εn6d
∑

Q̃∈P2,|Q̃|>2−n

card
(
A ∩ Bn

(
Q̃
))

≤ 18d

1 − 2−ε
tk card(A), (2·1)

where for the third inequality we used Lemma 2·4 and for the fifth inequality we used
Lemma 2·5. Combining the above then gives∫

d(x, A)r dν(x) ≤
(

1 + 18d

1 − 2−ε

)
tkk.

With (2·1) this gives

er,k(ν) ≥
((

1 + 18d

1 − 2−ε

)
tkk

)1/r

.

Now, using qr−ε + ε ≥ log (n)/ (− log (tn)) for all n large and Proposition 2·1, gives

Dr(ν) ≥ lim inf
k→∞

r log k

− log k − log tk
= r lim supk→∞ log (k) / log (1/tk)

1 − lim supk→∞ log (k) / log (1/tk)
≥ r (qr−ε + ε)

1 − (qr−ε + ε)
.

Letting ε tend to zero and by the continuity of a 
→ qa, a ∈ ( − dim∞ (ν), 0) the first
inequality follows.

For the second inequality, recall that by our assumption and Proposition 2·1 we have
1 < FJ ≤ hJ. For the second inequality we consider P ∈ 
 with card(P) =Mν,r−ε (1/t).
This time (2·1) gives

er,Mν,r−ε(1/t)(ν) ≥
(

18d

1 − 2−ε
tMν,r−ε (1/t)

)1/r
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16 M. KESSEBÖHMER AND A. NIEMANN

and hence using hr−ε + ε ≥ log
(Mν,r−ε (1/tn)

)
/ log (1/tn) on a subsequence tn ↘ 0,

Dr(ν) ≥ lim sup
t→0

r log Mν,r−ε (1/t)

− log Mν,r−ε (1/t) + log (1/t)
= r lim inf log (n)/ log (1/tn)

1 − lim inf log (n)/ log (1/tn)

≥ r
(
hr−ε + ε

)
1 − (

hr−ε + ε
) .

Proof of Lemma 1·8. First note that aν := sup {qr : r ∈ (− dim∞ (ν), 0)} > 1, due to the fact
that q0 = 1 and r 
→ qr is strictly decreasing on (− dim∞ (ν), 0]. Since r 
→ qr is decreasing
we have

lim
r↘− dim∞ (ν)

qr = sup {qr : r ∈ (− dim∞ (ν), 0)} = aν ,

and therefore

lim
r↘− dim∞ (ν)

Dr(ν) =

⎧⎪⎪⎨⎪⎪⎩
lim

r↘− dim∞ (ν)
r

qr

1 − qr
= aν

aν − 1
dim∞ (ν), aν < ∞,

lim
r↘− dim∞ (ν)

r

1/qr − 1
= dim∞ (ν), aν = ∞.

2·4. Quantization via geometric mean error

In this subsection we settle the quantziation problem for the geometric mean error as
stated in Theorem 1·5 (iii).

Proof of Theorem 1·5 (iii). Part (iii) follows by combining Lemma 1·7 with [7, 25] and our
results from part (ii) by noting, on the one hand,

−1

∂rqr|r=0
= lim

r↑0

r

1 − qr
qr ≤ lim

r↑0

rqr

1 − qr
= lim

r↑0
Dr(ν) ≤ D0(ν), (2·2)

where we used limr↑0 qr = 1. Using βν (qr) ≤ τν,r (qr) + rqr = rqr, this also shows

−1

∂rqr|r=0
≤ lim

r↑0

βν (qr)

1 − qr
= −β ′

ν (1+) . (2·3)

On the other hand, using βν (qr) = rqr for r > 0, as established in [12] and the monotonicity
of r 
→ Dr(ν) on r ≥ 0 obtained e. g. in [6, lemma 3·5], we have that

D0(ν) ≤ lim
r↓0

Dr(ν) = lim
r↓0

βν(qr) − βν(1)

1 − qr
= −β ′

ν (1−)

= lim
r↓0

r

1 − qr
qr = −1

∂rqr|r=0
. (2·4)

Combining −β ′
ν (1+) ≤ −β ′

ν (1−), (2·3), and (2·4) shows that βν is differentiable at
1 with β ′

ν(1) = 1/∂rqr|r=0. Combining (2·2) and (2·4) −1/∂rqr|r=0 ≤ D0(ν) ≤ D0(ν) ≤
−1/∂rqr|r=0. This proves the claim.
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Quantization dimensions of negative order 17

2·5. Absolutely continuous case

We start with the following lemma, which has been stated in a similar context in
[10, lemma 3·15].

LEMMA 2·6. Let ν be a non-zero absolutely continuous measure with Lebesgue den-
sity f ∈ Ls

� for some s ≥ 1. Then, for all q ∈ [0, s], the Lq-spectrum is linear with
lim infn→∞ βν,n(q) = βν(q) = d(1 − q) and τJν,r (q) = βν(q) − rq for r ≥ d/s − d.

Proof. First, we remark that, βν(1) = 0 and βν(0) = d. Hence, the convexity of βν implies
βν(q) ≤ d(1 − q) for all q ∈ [0, 1] and βν(q) ≥ d(1 − q) for q > 1. Moreover, by Jensen’s
inequality, for all q ∈ [0, 1] and n large, we have

∑
Q∈Dn

ν(Q)q =
∑

Q∈Dn

(∫
Q f d�

�(Q)

)q

�(Q)q ≥
∑

Q∈Dn

�(Q)q−1
∫

Q
f q d� ≥ �(Q)q−1

∫
Q

f q d�,

implying lim infn→∞ βν,n(q) ≥ d(1 − q). Further, Jensen’s inequality, for all q ∈ [1, s],
yields

∑
Q∈Dn

ν(Q)q =
∑

Q∈Dn

(∫
Q f d�

�(Q)

)q

�(Q)q ≤ �(Q)q−1
∑

Q∈Dn

∫
Q

f q d� ≤ �(Q)q−1
∫
Q

f q d�.

Hence, we obtain lim supn→∞ βν,n(q) ≤ d(1 − q). To prove the last equality we again use
Jensen’s inequality, for Q ∈Dn, r ≥ d/s − d and q = s:

ν(Q)q =
(∫

Q
f �(Q)−1 d�

)q

�(Q)q ≤
(∫

Q
f q d�

)
�(Q)q−1,

implying ν(Q)q�(Q)qr/d ≤
(∫

Q f q d�
)

�(Q)q(1+r/d)−1. Note that

q(1 + r/d) − 1 =
(

d + r

d

)
q − 1 ≥ q

s
− 1 = 0

and since have that Q 
→
(∫

Q f q d�
)

�(Q)q(1+r/d)−1 is monotonic. Therefore, we get the

following upper bound:∑
Q∈Dn

max
Q′∈D(Q)

ν
(
Q′)�

(
Q′)r ≤

∑
Q∈Dn

(∫
Q

f q d�

)
�(Q)q(1+r/d)−1

≤ ‖f ‖q
Lq

�(Q)
2−q(d+r)+d

showing

τJν,r (q) ≤ d(1 − q) − rq.

Further, τJν,r (0) ≤ d combined with the convexity of τJν,r , we conclude that for all
q ∈ [0, s]

τJν,r (q) ≤ d(1 − q) − rq.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S030500412510176X
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 21:31:16, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S030500412510176X
https://www.cambridge.org/core


18 M. KESSEBÖHMER AND A. NIEMANN

The lower bound follows from

d(1 − q) − rq ≤ lim inf
n→∞ βν,n(q) − rq ≤ lim inf

n→∞ τJν,r ,n(q) ≤ τJν,r (q).

We also need the following easy observation.

LEMMA 2·7. For any compactly supported probability measure ν we have for q ≥ 0,

βν(q) ≥ − dim∞ (ν) · q.

Proof. By the definition of dim∞ (ν) we have that for every ε > 0 there exists infinitely
many n ∈N with maxQ∈Dn ν(Q) ≥ 2(− dim∞ (ν)−ε)n and therefore

lim sup
n→∞

1

log 2n
log

∑
Q∈Dn

ν(Q)q ≥ (− dim∞ (ν) − ε) q.

Combining the previous two lemmas gives sh ≤ d/ (d − dim∞ (h�)), as claimed at the
beginning of Section 1·2.

For what follows, we take advantage of the fact that many basic inequalities for positive r
can simply be reversed to hold for negative r. To see this, recall from the introduction, that
for negative r,

Vn,r(ν) = en,r(ν)r =
{

infA∈An

∫
d (x, A)r dν(x), r > 0,

supA∈An

∫
d (x, A)r dν(x), r < 0.

For the reversed inequalities of the following lemma for the case r > 0 we refer to
[4, lemma 4·14].

LEMMA 2·8. For r < 0 and a linear combination ν := ∑
siνi, si ≥ 0, of finite measures νi

and n ∈N, we have

Vn,r(ν) ≤
∑

siVn,r (νi) .

Further, for n ≥∑
ni, ni ∈N, we have

Vn,r(ν) ≥
∑

siVni,r (νi) .

Proof. For A ∈An,∫
d (x, A)r dν(x) =

∑
si

∫
d (x, A)r dνi(x) ≤

∑
siVn,r (νi) .

Taking the supremum over A ∈An gives the first inequality.
For the second inequality, assume n ≥∑

ni and note that for Ai ∈Ani we have
A := ⋃

i Ai ∈An. Hence,

Vn,r(ν) ≥
∫

d (x, A)r dν(x) =
∑

si

∫
d (x, A)r dνi(x) ≥

∑
si

∫
d (x, Ai)

r dνi(x).

Now taking the supremum over all Ai ∈Ani gives the desired second inequality.
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Quantization dimensions of negative order 19

LEMMA 2·9. For r ∈ (−d, 0) we let Cr,d := 2−r + 18d/
(
2r − 2−d

)
. Then for all m ∈N and

A ∈Am we have ∫
d (x, A)r d�(x) ≤ Cr,dm−r/d.

Proof. Let us first consider the case m = 2nd for n ∈N. We follow the estimates in Section
2·3 for the lower bound of the quantization dimension with ν = �. Observe that for n ∈N

the optimal partition P of cardinality 2nd is in this situation given by Dn. As in the proof
Proposition 2·3 we partition P into P1, P2 and obtain∫

d(x, A)r d�(x) =
∑

Q̃∈P1

∫
Q̃

d(x, A)r d�(x) +
∑

Q̃∈P2

∫
Q̃

d(x, A)r d�(x)

≤ card(P) · � (
Q̃
)r/d

�
(
Q̃
)︸ ︷︷ ︸

=2−n(d+r)

+
∑

Q̃∈P2

∫
Q̃

d(x, A)r d�(x)

≤ m−r/d +
∑

Q̃∈P2

∫
Q̃

d(x, A)r d�(x).

Using Lemma 2·4 and Lemma 2·5 we estimate the second summand as follows:

∑
Q̃∈P2

∫
d(x, A)r d�(x) ≤

∞∑
k=0

∑
Q̃∈P2

∑
Q∈Ek(Q̃)

∫
Q

d (x, A)r d�(x)

≤
∞∑

k=0

∑
Q̃∈P2

∑
Q∈Ek(Q̃)

�(Q)r/d�(Q)︸ ︷︷ ︸
=2−k(d+r)

≤
∞∑

k=n+1

∑
Q̃∈P2,|Q̃|>2−k

6dcard
(
A ∩ Bk

(
Q̃
)) · 2−k(d+r)

≤ 18dcard(A)
∞∑

k=n

2−k(d+r) = 18d

1 − 2−(d+r)
m−r/d.

Combining the above, we obtain with C := (
1 + 18d/(1 − 2−(d+r))

)
∫

d(x, A)r d�(x) ≤
(

1 + 18d

1 − 2−(d+r)

)
m−r/d = Cm−r/d.

Now for m ∈N and A ∈Am arbitrary, there find n ∈N with 2nd < m ≤ 2(n+1)d. Using our
result on the special subsequence, we get∫

d (x, A)r d�(x) ≤ C2−(n+1)r = (
C2−r)m−r/d,

which proves our claim by setting Cr,d := 2−rC.

LEMMA 2·10. For the uniform distribution � on Q, the d-dimensional quantization coeffi-
cient Cr,d(�) of order r ∈R exists, is finite, and positive only for r ∈ (−d, +∞) ; otherwise,
it is equal to zero.
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20 M. KESSEBÖHMER AND A. NIEMANN

Proof. This statement is well known for r ≥ 1 (see e. g. [4]; the proof there also works for
r ∈ (0, 1]) and for r = 0 see [6, theorem 3·2]. Now for r ∈ (−d, 0), note that by an observation
from the introduction of [12] we know that for any subcube Q ⊂Q with side length a ∈ (0, 1)

and �Q denoting the normalised restriction of � to Q, we have

Vn,r
(
�Q

)= arVn,r(�)

Now, for k ∈N, let us divide Q evenly into kd axis-parallel subcubes
{
Qi,k : i = 1, . . . , kd

}
with side length 1/k. Then we have � =∑

k−d�Qi,k and hence by part (ii) of Lemma 2·8,
for m ∈N and n := kdm,

Vn,r(�) ≥
kd∑

i=1

k−dVm,r
(
�Qi,k

)= k−rVm,r(�).

Therefore,

nr/dVn,r(�) = krmr/dVn,r(�) ≥ mr/dVm,r(�).

This gives for each m ∈N

lim sup
n→∞

n1/den,r(�) ≤ m1/dem,r(�).

Hence, in the chain of inequalities

lim sup
n→∞

n1/den,r(�) ≤ inf
m

m1/dem,r(�) ≤ lim inf
n→∞ n1/den,r(�)

in fact equality holds and the claimed limit exists and is smaller than V1,r(�)1/r < ∞. The
limit is also positive by Lemma 2·9. The fact that Cr,d(�) = 0 for r ≤ −d follows from
Proposition 1·1.

Proof of Theorem 1·3. With ν := h�, the statement for positive r follows by [4, theorem
6·2] and r < − dim∞ (ν) is also clear from Proposition 1·1. For r ∈ ( − d, 0), we first follow
almost literally the proof of [4, theorem 6·2]:

First, let us consider only densities h that are constant on cubes from Dn. By using
Lemma 2·8 and Lemma 2·10 at the appropriate places and exchanging all relevant inequali-
ties with their inverses and limes superior with limes inferior we see that the theorem holds
for such densities. For example, for r negative [4, lemma 6·8] provides a unique max-
imiser (instead of minimiser for positive r) as required in the proof for the upper bound
of lim supn nr/dVn,r (h�). Namely, at the appropriate place we need the following general
observation, which is an immediate consequence of Hölder’s inequality: For m ∈N and
numbers si > 0, let B = {

(v1, . . . , vm) ∈ (0, ∞)m :
∑m

i=1 vi ≤ 1
}

and

ti = sd/(d+r)
i∑m

j=1 sd/(d+r)
j

, 1 ≤ i ≤ m.

Then the function F : B →R+, F(v1, . . . , vm) =∑m
i=1 siv

−r/d
i satisfies

F(t1, . . . , tm) =
(

m∑
i=1

sd/(d+r)
i

)(d+r)/d

= max
(v1,...,vm)∈B

F(v1, . . . , vm)

and (t1, . . . , tm) is the unique maximiser of F.
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Quantization dimensions of negative order 21

For all r ∈ (d/sh − d, 0) we have ‖h‖ d
d+r

< ∞ and, by Jensen’s inequality, we find that for

the conditional expectation hk := E (h |Dk) we have
∫

hd/(d+r)
k d� ≤ ∫

hd/(d+r) d� < ∞.
Since σ (Dk) ↗ σ (D) =B, by the martingale convergence theorem, we infer that the
sequence (hk) converges to h almost surely and, for all q ≤ d/ (d + r), also in Lq

�; in
particular, we have ‖hk‖q → ‖h‖q.

For the final step in the proof we argue as follows. For d/sh − d < r′ < r < 0, n ∈N, and
A ∈An we have by Hölder’s inequality∫

d ( · , A)r h d� =
∫

d ( · , A)r (h − hk + hk) d�

≤ Vn,r (hk�) +
∫

d ( · , A)r |h − hk| d�

≤ Vn,r (hk�) +
(∫

d ( · , A)−dr/r′
d�

)−r′/d

‖h − hk‖d/(d+r′)

≤ Vn,r (hk�) + (
Vn,−rd/r′(�)

)−r′/d ‖h − hk‖d/(d+r′) .

If we take the supremum over all A ∈An, multiply by nr/d and take the limes superior, we
obtain,

lim sup
n→∞

nr/dVn,r (h�) ≤ lim sup
n→∞

nr/dVn,r (hk�)

+ lim sup
n→∞

nr/dVn,−rd/r′(�)−r′/d ‖h − hk‖d/(d+r′)

= (
�r (hk) Cr,d(�)

)r + Crd/r′,d(�)−r′/d ‖h − hk‖d/(d+r′)
→ (

�r (hk) Cr,d(�)
)r for k → ∞.

Taking the rth root, this proves the lower bound on lim infn→∞ n1/den,r (h�).
Similarly,

Vn,r (h�) ≥
∫

d ( · , A)r h d� =
∫

d ( · , A)r (h − hk + hk) d�

≥
∫

d ( · , A)r hk d� −
∫

d ( · , A)r |h − hk| d�

≥
∫

d ( · , A)r hk d� −
(∫

d ( · , A)−dr/r′
d�

)−r′/d

‖h − hk‖d/(d+r′)

≥
∫

d ( · , A)r hk d� − (
Vn,−rd/r′(�)

)−r′/d ‖h − hk‖d/(d+r′) .

Again, if we take the supremum over all A ∈An —this time on the right-hand
side—, multiply by nr/d and take the limes inferior, we obtain,

lim inf
n→∞ nr/dVn,r (h�) ≥ lim inf

n→∞ nr/dVn,r (hk�)

− lim sup
n→∞

nr/dVn,−rd/r′(�)−r′/d ‖h − hk‖d/(d+r′)

= (
�r (hk) Cr,d(�)

)r − Crd/r′,d(�)−r/d′ ‖h − hk‖d/(d+r′)
→ (

�r(h)Cr,d(�)
)r for k → ∞.

This proves the upper bound on lim supn→∞ n1/den,r (h�).
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22 M. KESSEBÖHMER AND A. NIEMANN

To cover the case r = d/sh − d with ‖h‖sh
= ∞, we consider the truncated ver-

sion h ∧ s1, for s > 0, which gives lim sup n1/den,r (h�) ≤ lim sup n1/den,r ((h ∧ s1) �) =
Cr,d(�)�r (h ∧ s) → 0 for s ↗ ∞.

For r = 0 the claimed upper bound is contained in [6, theorem 3·4]. For the lower bound
we make use of our results for negative r together with the fact that r 
→ n1/d

(
Vn,r (h�)

)1/r,
n ∈N, is monotonically increasing on r ∈ (−d, 0] and that

lim
r↗0

�r(h) = lim
r↗0

(∫
h−r/(d+r)h d�

)−(d+r)/r
−d

= lim
t↘0

exp

(
−1/d · 1/t · log

∫
exp (t log (h)) h d�

)
= exp

∫ d
dt exp (t log (h)) |t=0h d�

−d
∫

exp (0 log (h)) h d�

= exp − (1/d)

∫
exp (0 log (h)) log (h)h d� = �0(h).

In the third equality we used that (exp (t log (h)) h) /t < h1+ε ∈ L1
� for all t ∈ (0, ε) and some

ε > 0 in tandem with Lebesgue’s dominated convergence theorem.

Example 2·11. We provide an example of an absolutely continuous measure ν on
Q := [0, 1] such that −d < − dim∞ (ν) < d/sh − d. For this we consider a disjoint family(
In,k : n ∈N, 1 ≤ k ≤ 2n

)
of pairwise disjoint subintervals of [0, 1] such that for each n ∈N

and k ∈ {1, . . . , 2n} we have
∣∣In,k

∣∣= 2−3n+1. We define a measure by

ν :=
∑

n∈N,k=1,...,2n

�
(
In,k

)−1/2
�|In,k .

Since ν
(
In,k

)= �
(
In,k

)1/2 and

ν ([0, 1]) =
∑

n∈N,k=1,...,2n

�
(
In,k

)1/2 =
∑
n∈N

2(−3n+1)/2+n < ∞

this measure is finite and absolutely continuous with density

h :=
∑

n∈N,k=1,...,2n

�
(
In,k

)−1/2
1In,k .

Then
∫⋃

k In,k
hsd� = 2n2s(n3/2−1/2)−3n+1 = 2n(s3/2−2)+1−s/2 and therefore

∫
hs d� =

∑
n∈N

2n(s3/2−2)+1−s/2 = 2−s/2+1
∑
n∈N

2(3/2s−2)n

{
= ∞, for s ≥ 4/3,

< ∞, for s < 4/3.

Hence, sh = 4/3. On the other hand, dim∞ (ν) = 1/2 and d = 1 giving

−d = −1 < − dim∞ (ν) = −1/2 < −1/4 = d/sh − d.
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Quantization dimensions of negative order 23

Example 2·12. Our second example concerns an absolutely continuous measure ν on
Q := [0, 1] this time with density

h(x) = x−1/2
(

log
( x

100

))−2
, x ∈ (0, 1] .

A straightforward calculation shows that dim∞ (ν) = 1/2 and sh = 2. This fact in combina-
tion with Lemma 2·6 and Lemma 2·7 gives

βν(q) =
{

1 − q, 0 ≤ q ≤ 2,

− (1/2) q, q > 2,

and consequently, τJν,r (q) = βν(q) − rq for q ∈ [0, 2], aν = 2, and Dt(ν) = 1 for all
−1/2 < t < 0. In particular, by right continuity (Lemma 1·8), monotonicity (Lemma 1·7)
and regularity (Theorem 1·11) we have

lim
t↘−1/2

Dt(ν) = 1 = aν

aν − 1
dim∞ (ν) ≥ D−1/2(ν).

It is more involved to show that D−1/2(ν) ≥ 1:

For I(A) := ∫ 1
0 (d(x, A))−1/2 h(x) d�(x) with A = {0 = a1 < a2 < · · · < an = 1} ⊂ [0, 1],

n ≥ 2, our claim is that for a universal constant C > 0,

I(A) ≤ C
√

n.

This implies that supA∈An
Vn,−1/2(ν) ≤ C

√
n and therefore D−1/2(ν) ≥ 1. Note that we have

made use of the observation that the assumption {0, 1} ⊂ A does not result in a loss of gen-
erality as a consequence of n 
→ Vn,−1/2(ν) being monotonically increasing. We proceed to
prove this claim as follows:

Partitioning the interval. For each 1 ≤ i ≤ n − 1, set Ji := [
ai, ai+1), a partition of [0, 1),

and define �i := ai+1 − ai. Then, I(A) =∑n−1
i=1 Ii with Ii := ∫

Ji
(d(x, A))−1/2 h(x) d�(x). We

derive two useful upper bounds for this last integral: Since on each cell Ji, the density h is
strictly positive and decreasing, we have

Ii =
ai+ai+1

2∫
ai

h(x)√
x − ai

d�(x) +
ai+1∫

ai+ai+1
2

h(x)√
ai+1 − x

d�(x) ≤ 2h(ai)
√

2�
1/2
i ≤ 3h (ai) �

1/2
i . (2·5)

The second bound considers the behavior for ai close to 0, for which we get

Ii ≤ 2
∫ �i/2

0

1

x( log (x/100))2
d�(x) = 2

| log (�i/200)| . (2·6)

Partition of the indices. We now partition the set of indices into three disjoint cases according
to the location and size of the intervals:

R :=
{

i : ai < e−√
n
}

, S := {i : �i > ai} \ R, T := {i : �i ≤ ai} \ R.

For each P ∈ {R, S, T}, define IP := ∑
i∈P Ii. Thus, I(A) = IR + IS + IT .
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Case 1: Small ai (i ∈ R). Using bound (2·6) above, and that for ai < e−√
n, we have

�i ≤ e−√
n by construction, so | log (�i/200)| ≥ √

n for large n. Therefore, IR ≤ n ·
maxi∈R (2/| log (�i/200)|) ≤ 2n/

√
n = 2

√
n.

Case 2: Large intervals (i ∈ S). For intervals where �i > ai, using bound (2·6) again,∫
Ji

h(x)|x − ai|−1/2 d�(x) ≤ 1, and the number of such intervals is controlled by

2card(S)−1e−√
n ≤ 1, so card (S) ≤ 3

√
n, hence IS ≤ 3

√
n.

Case 3: Small intervals away from 0 (i ∈ T). For these, applying Hölder’s inequality, the
bound (2·5), the fact that h(ai)2/h(ai + �i)2 ≤ 2 for i ∈ T , and using the integral comparison
criterion,

IT ≤ 3
∑
i∈T

h (ai)
√

�i ≤ 3
√

card (T)

(∑
i∈T

(h (ai))
2 �i

)1/2

≤ 3
√

n

(∑
i∈T

2 (h (ai + �i))
2 �i

)1/2

≤ 6
√

n

(∫
h2 d�

)1/2

︸ ︷︷ ︸
=1/

√
3·(log(100))−3/2

<
√

n.

Combining the above, we can conclude that the constant C can be chosen as 6.
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