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This study is concerned with the near-wall flow structure over a NACA 0025 aerofoil
at a constant chord-based Reynolds number of 100 000 across various angles of attack,
where an array of 12 circular-orifice synthetic jet actuators (SJAs) was used to reattach the
flow under conditions of flow separation. The SJAs were operated in burst-mode at two
distinct momentum coefficients, a 50 % duty cycle and a modulation frequency of 200 Hz,
targeting the separated shear layer frequency. Particle image velocimetry was conducted
using three side-by-side cameras to capture the velocity fields along the aerofoil surface
at the centreline. At zero angle of attack, the velocity profiles exhibited characteristics
of a turbulent boundary layer, following the law of the wall in the inner layer while
deviating from the logarithmic law in the outer layer. At higher angles of attack, while
some logarithmic behaviour could still be detected close to the wall, a wide region of the
velocity profiles became predominantly linear, exhibiting a behaviour differing from both
a canonical turbulent boundary layer and a turbulent wall jet. The entire shear flow was
decomposed into three regions: the boundary layer, the jet layer and the mixing layer that
extended between the two. The mixing layer was analysed by applying several scaling laws
to the time-averaged velocity components, where it was revealed that the characteristic
velocity of the two velocity components is different. An asymptotic solution was obtained
under a low spreading rate at infinite Reynolds number, providing a theoretical basis for
the experimental observations.
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1. Introduction
Flow separation is generally defined as the breakaway or detachment of fluid from a
bounding surface, caused by an adverse pressure gradient, a geometrical aberration or
other means (Gad-el Hak & Bushnell 1991). Flow separation is marked by an increase
in the normal velocity component and an abrupt thickening of the rotational flow region
adjacent to the surface (Gad-el Hak & Bushnell 1991). In many engineering applications,
flow separation is undesirable as it can lead to reduced lift, increased drag, elevated noise
levels and potential structural vibrations. This issue is particularly relevant in applications
involving aerofoils, such as low-pressure turbine blades, micro air vehicles and unmanned
aerial vehicles (Hodson & Howell 2005; Shkarayev et al. 2007; Yang & Hu 2008; Savaliya,
Kumar & Mittal 2010). Hence, separation control, now part of the broader field of flow
control, has been a key research focus for over a century. Flatt (1961) defined the term
boundary layer control as any mechanism or process that alters the natural behaviour of
the boundary layer. A more general definition for flow control was presented by Gad-el
Hak (2000) as any attempt to drive the character or disposition of a flow field to a more
favourable one. Flow control devices are classified as either passive or active. Passive
devices, such as vortex generators, delay flow separation without requiring external energy
input. In contrast, active flow control devices rely on an external power source. Among
active methods, fluidic jets have been extensively studied and implemented, with various
forms, including steady, pulsed, synthetic and plasma jets, used to inject momentum into a
retarded boundary layer. The present work focuses specifically on boundary layer control
over an aerofoil using synthetic jets, which will be addressed in detail in the following
sections. Given the historical precedence of steady jets in boundary layer control and their
conceptual relevance to synthetic jets, the authors deem it necessary to provide a brief
review of their key features as a precursor to the discussion on synthetic jets.

1.1. The turbulent wall jet
A shear layer is a thin region of flow characterised by a significant tangential velocity
gradient. Both boundary layers and jets fall under the category of shear flows: the former
develops near a solid surface due to frictional forces, while the latter emerges when a high-
momentum fluid stream exits a nozzle, aperture or an orifice into a surrounding medium.
A common analytical approach involves order-of-magnitude estimates to approximate the
governing equations, enabling the derivation of analytical solutions within a limited scope.
In the study of semibounded and free shear layers, assessing whether the flow exhibits self-
preserving behaviour is of both fundamental and practical interest. Self-similar solutions
provide insight into the intermediate asymptotic behaviour of a broader class of flow
phenomena (Gratton 1991). Additionally, these solutions help minimise the need for
extensive experiments or simulations and serve as benchmarks for validating experimental
or numerical data (Djenidi & Agrawal 2024).

A turbulent round jet issued into a quiescent environment becomes self-preserving
a few diameters downstream of the nozzle at high Reynolds numbers (Wygnanski &
Fiedler 1969). In this self-similar state, the jet grows linearly at a constant spreading
rate, which is generally considered independent of the jet Reynolds number (Rodi 1975;
Panchapakesan & Lumley 1993; Hussein, Capp & George 1994). Turbulent jets can
generate supercirculation on lifting surfaces, aiding in applications such as separation
control over slotted flaps (Neuendorf & Wygnanski 1999). The flow field due to a turbulent
jet along a wall is no longer a simple boundary layer but rather a hybrid of a free jet
and a boundary layer, known as a wall jet. The term wall jet was first used by Glauert
(1956) who studied the evolution of a two-dimensional jet exiting a wide nozzle along a
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Figure 1. A schematic drawing showcasing the encountered tangential velocity profiles for (a) a turbulent free
jet, (b) a turbulent boundary layer and (c) a turbulent wall jet.

flat plate. Launder & Rodi (1983) defined a wall jet as a shear flow directed along a wall
where, by virtue of the initially supplied momentum, at any station, the streamwise velocity
over some region within the shear flow exceeds that of the free stream. The injection of
high-momentum fluid along the wall creates two shear layers that strongly interact with
each other as they grow in the streamwise direction. Typical profiles of the time-averaged
tangential velocity u for a free jet, a boundary layer and a wall jet are shown in figure 1.
The half-width of a free jet is defined as the normal distance from the jet centreline to
the location where u = (u1 + U∞)/2. For a turbulent wall jet, n1 represents the normal
distance from the wall to the point of maximum mean velocity. Similarly, the lengths n3/2
and n1/2 are defined as the normal distances to the locations where u = (u1 + U∞)/2 and
u = u1/2, analogous to the half-width of a free jet.

A complete self-similarity in a semibounded flow, such as a turbulent boundary layer
or a turbulent wall jet, is not expected due to the different characteristic scales in the
inner and outer regions (Glauert 1956; Wygnanski, Katz & Horev 1992). In a turbulent
boundary layer, the gross characteristics of the turbulence in the outer layer resemble those
of a free shear flow, with the mean tangential velocity u following the velocity defect law
(von Kármán 1930). In contrast, the inner region is governed solely by viscous scales
(Prandtl 1925). At sufficiently high Reynolds numbers, there is an overlap between the
inner and outer layers, leading to the emergence of the logarithmic law of the wall (von
Kármán 1930; Millikan 1938). It is established that the outer layer may be described by
power laws in the limit of an infinite Reynolds number (Barenblatt 1993). A turbulent
wall jet exhibits characteristics of both a turbulent boundary layer and a free jet (Dakos,
Verriopoulos & Gibson 1984). Near the wall, the law of the wall generally applies,
though the constants in the logarithmic law may differ from those observed in turbulent
boundary layers (Banyassady & Piomelli 2014). The profile is conventionally divided into
the inner and outer layers as the regions below and above the maximum velocity location,
respectively. These two layers are alternatively referred to as the boundary layer and the
jet layer. The inner layer may be scaled similarly to a turbulent boundary layer, using
the friction velocity and maximum velocity position n1 as the characteristic velocity and
length scales, whereas the outer layer scaling is similar to a free jet (Wygnanski et al.
1992). Still, Gee & Bradshaw (1960) argued that the defect law for the inner layer of the
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Figure 2. Schematic representations and pertinent parameters for (a) a SJA and (b) flow over an aerofoil.

turbulent wall jet is no longer the simple form proposed by von Kármán (1930). George
et al. (2000) proposed power-law solutions for both inner and outer layers in the limit
of an infinite Reynolds number. However, the power-law exponents are not definitive for
finite Reynolds numbers (Banyassady & Piomelli 2014; Naqavi, Tyacke & Tucker 2018).
Currently, no broad consensus exists on the scaling approach for the Reynolds stresses
(George et al. 2000; Hao & di Mare 2023; Djenidi & Agrawal 2024).

In a turbulent wall jet, the point of zero Reynolds shear stress no longer coincides
with the position of the zero velocity gradient and instead lies closer to the wall due
to the interaction of the inner and outer shear layers. A qualitative explanation based
on the memory of turbulent structures is that, since the streamlines intersect with the
location of the maximum velocity, they convey the properties of the outer layer into the
inner layer (Alcaraz, Charnay & Mathieu 1977). Wall jets flowing along convex surfaces
have a tendency to adhere to the nearby wall, a phenomenon commonly referred to as
the Coanda effect (Danon, Gregory & Greenblatt 2016). The Coanda cylinder, which
is a two-dimensional circular cylinder, is the most common set-up used to study the
development of wall jets over convex surfaces. Based on the inviscid stability criterion
(Rayleigh 1916), a curved wall jet may undergo centrifugal instability (Joshi & Tumin
2004). Experimental observations and flow visualisations have confirmed the presence of
streamwise vortices due to centrifugal instability (Likhachev, Neuendorf & Wygnanski
2001; Cullen et al. 2002; Joshi & Tumin 2004), which are also believed to be the reason
for the wall jet to spread outward to a greater extent compared with a flat surface (Alcaraz
et al. 1977; Neuendorf & Wygnanski 1999). For convex surfaces, the position of zero
shear stress moves farther from the position of the maximum velocity compared with a
flat plate. In general, a convex curvature has a stabilising effect on the turbulent intensities
in the inner layer and a destabilising effect in the outer layer (Alcaraz et al. 1977; Dakos
et al. 1984).

1.2. The interaction of synthetic jets with the cross-flow over an aerofoil
A synthetic jet actuator (SJA) is a fluidic device typically consisting of a vibrating
diaphragm or piston that alters the fluid volume within a cavity to eject a quasisteady
jet through a nozzle, aperture or an orifice. The periodic oscillation of the actuator
leads to a cycle of ingestion and expulsion of the working fluid. If the momentum of
the fluid exiting the aperture is high enough to escape the suction cycle, a synthetic jet
is formed that propagates away from the origin (Glezer & Amitay 2002). A schematic
representation of an SJA is presented in figure 2(a), where fj is the diaphragm excitation
frequency, d is the aperture width or diameter and Vj is the time-averaged jet centreline
velocity at the exit. Synthetic jets are sometimes referred to as zero-net mass-flux jets as
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they are formed entirely from the working fluid within the flow system where they are
employed.

The flow field of a synthetic jet in quiescent conditions is generally divided into three
regions: the near, transitional and far-field. The transitional region is typically ignored
for simplicity (Smith & Glezer 1998; Cater & Soria 2002). The near-field region is
dominated by the time-periodic formation and advection of the vortex structures (Smith &
Glezer 1997, 1998). Hence, the flow characteristics differ from that of a steady jet that
has negligible temporal variations. In fact, periodic forcing provided by SJAs has been
observed to offer greater entrainment of ambient fluid in the near-field compared with
steady jets (Smith & Swift 2001; Cater & Soria 2002). Experiments have confirmed that
the far-field behaviour of synthetic jets is comparable to steady jets, and the time-averaged
velocity eventually becomes self-similar, although with a higher spreading rate and decay
constant due to the increased entrainment in the near-field (Smith & Swift 2001; Cater &
Soria 2002; Shuster & Smith 2007).

There is a relatively extensive body of work on the use of synthetic jets for separation
control over an aerofoil. This surge in research interest is partially due to the unique
features of SJAs, primarily no requirement for external fluid supply or ducting that
significantly reduces the mechanical complexity and weight of the flow control system
(Glezer & Amitay 2002; Zhong et al. 2007). Another reason is the complex interactions
of synthetic jets with the cross-flow over an aerofoil, which depend on a large number
of geometrical and operational parameters. Consider the flow over an aerofoil, as shown
in figure 2(b), where (X, Y ) are the global coordinates, α is the angle of attack, c is the
chord length and U∞ is the free stream velocity. The chord-based Reynolds number is
defined as Rec = U∞c/ν, where ν is the fluid kinematic viscosity. Depending on the
angle of attack α and Reynolds number Rec, three flow regimes are observed: fully
attached flow, separated and reattached flow and separated flow (Winslow et al. 2018).
Compared with the Reynolds number Rec, the angle of attack α has a similar but inverse
effect on the state of the flow (Yang & Hu 2008; Winslow et al. 2018). A comprehensive
summary of the flow phenomenon for Reynolds numbers ranging from 1000 to 200 000 is
reported by Carmichael (1981). Generally, when the Reynolds number decreases below
106, particularly if Rec < 50 000, separation may occur near the leading edge of the
aerofoil (Carmichael 1981; Lissaman 1983). If the Reynolds number is sufficiently low,
the separated shear layer fails to reattach to the aerofoil surface, forming a wide turbulent
wake. Over an intermediate range, the turbulent separated shear layer may reattach to the
aerofoil surface and form a laminar separation bubble.

Synthetic jet actuators have been found to be most effective when the actuation
frequency fj is set to a value close to an instability frequency of the baseline flow
(Greenblatt & Wygnanski 2000; Amitay & Glezer 2002b). This principle was reinforced
by the direct numerical simulations of Palumbo et al. (2022), who conducted a parametric
study over a range of actuation frequencies for a flat plate. Their results showed that the
control authority of an SJA, in terms of promoting early transition, does not increase
monotonically with frequency. Instead, optimal performance is achieved when fj is
near the frequency of the most spatially amplified Tollmien–Schlichting wave. For an
aerofoil, the SJA forcing frequency is normalised as f ∗ = fj c/U∞, called the reduced
frequency. The value of the reduced frequency may be set to f ∗ ∼ O(1) or f ∗ ∼ O(10),
corresponding to the wake and separated shear layer frequencies, respectively. Both cases
have been shown to be effective in restoring aerodynamic performance. However, forcing
at f ∗ ∼ O(1) results in unsteady reattachment, whereas forcing at f ∗ ∼ O(10), which is
decoupled from the unsteady baseline frequencies, leads to the damping of global flow
oscillations (Amitay & Glezer 2002b; Glezer, Amitay & Honohan 2005). The interaction

1022 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
75

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10756


A. Shirinzad, K. Xu, M. Kheiri and P.E. Sullivan

of high-frequency synthetic jets with a cross-flow leads to a local modification of the
apparent aerodynamic shape, often referred to as the virtual aeroshaping effect.

Synthetic jet actuators should ideally be operated at an optimal frequency, typically
identified under quiescent conditions, which maximises the momentum output. However,
targeting the natural flow instabilities may require the SJAs to operate at a suboptimal
excitation frequency. A solution proposed by Amitay & Glezer (2002a) is to use
burst modulation, allowing the SJA to be driven at a carrier frequency that maximises
momentum, while the modulation frequency fj is used to specifically target the desired
flow instabilities. The initiation of actuation over a convex surface is known to cause a
Coanda-like attachment of the separated shear layer (Amitay & Glezer 2002a), a similar
behaviour to that of the wall jets. According to Greenblatt & Wygnanski (2000), curvature
does not have a significant effect on the optimum reduced frequencies for separation
control.

Another crucial factor in flow control effectiveness is the strength of the synthetic
jets with respect to the cross-flow, which is often characterised by the blowing ratio
Cb = Vj/U∞ or the momentum coefficient Cμ. The blowing ratio is simply defined as
the ratio of the time-averaged jet centreline velocity to the free stream velocity. The
momentum coefficient Cμ is generally defined as the ratio of the time-averaged expelled
momentum by the operating SJA to the momentum of the free stream. While both of
these parameters are frequently used by researchers, the momentum coefficient Cμ may
be more appropriate for finite-span SJAs as it also accounts for the difference between the
total jet area and the reference cross-flow area, though the exact mathematical definition
of Cμ is not consistent in the literature (Greenblatt & Wygnanski 2000; Glezer et al. 2005;
Sahni et al. 2011). Overall, the existing works show that there is a lower threshold for
the momentum coefficient Cμ, below which actuation is essentially ineffective as the jets
do not have enough momentum to penetrate the cross-flow (Goodfellow, Yarusevych &
Sullivan 2013).

1.3. Objectives
The interaction of synthetic jets and the cross-flow over an aerofoil has been a subject of
research for several decades, with numerous studies examining the near-field region, the
formation and advection of flow structures and the influence of geometric and operational
parameters on separation control. Of particular interest are the similarities between
synthetic jets and conventional steady jets in the far-field region. While these similarities
have been explored for synthetic jets in quiescent conditions, as discussed in § 1.2, an
intriguing question remains: Does the far-field region of this flow have any resemblance to
a turbulent wall jet over a convex surface? If so, can it be scaled similarly, perhaps using
the scaling laws described in § 1.1? The objective of this study is to address these questions
and provide deeper insight into the far-field behaviour of these flows. The remainder of the
paper is organised as follows: the experimental set-up, methodology and postprocessing
procedure are described in § 2; the main results and discussion are presented in § 3; the
major findings and conclusions are summarised in § 4.

2. Experimental procedure

2.1. Wind tunnel facility
The experiments were conducted in a closed return low-speed wind tunnel located in
the Turbulence Research Laboratory at the Department of Mechanical and Industrial
Engineering, University of Toronto. A schematic showing the main components of the
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Screens 9 : 1 Contraction

Fan Turning vanes

Test section

Figure 3. A schematic showing the various components of the wind tunnel facility.

wind tunnel facility is shown in figure 3. The test section of the wind tunnel is 5000 mm
long with an octagonal cross-section 1220 mm high and 910 mm wide. The corners of the
octagonal cross-section have a constant angle but decrease in width along the test section
length to increase the cross-sectional area and compensate for boundary layer growth.
The ceiling and one of the sidewalls of the test section are fabricated from clear acrylic
plates to facilitate optical access. The flow in the tunnel is driven by a six-bladed axial
fan, powered by a REEVES MotoDrive 500 series motor located outside the wind tunnel
on an isolating concrete pad. The fan housing is connected to the wind tunnel by flexible
couplings to minimise the transfer of vibrations from the fan to the tunnel structure. The
free stream velocity in the test section is adjustable from 2.5 to 18.0 m s−1, monitored
using a Pitot-static tube installed at the test section inlet with an uncertainty estimated
to be less than ±1 %. The flow entering the test section passes through a conditioning
unit consisting of seven screens and a 9 : 1 converging section to minimise the turbulence
and homogenise the flow. The free stream is mostly uniform with a turbulence intensity
generally less than 0.1 %. The flow exiting the test section is redirected by four 90◦ corners
of the wind tunnel through a turning vane system for flow recirculation.

2.2. Aerofoil model and instrumentation
The aerofoil model used in the present study is a NACA 0025 profile with an open trailing
edge. The aerofoil model, machined from aluminium, has a chord length of c = 300 mm
and a spanwise extent of 885 mm. The selection of the NACA 0025 profile was primarily
driven by geometric constraints associated with integrating the SJA array near the leading
edge. Approximately one third of the middle section of the model is hollow to permit
the installation of the SJAs and pressure sensors. The model was fitted with two circular
acrylic end plates to suppress edge effects. The end plates were fixed to the ends of the
model and positioned 15 mm from the tunnel walls to isolate the model from the tunnel
sidewall boundary layers. There was no gap between the model and the end plates. It
has been verified experimentally that end effects do not influence flow development over
at least 50 % of the aerofoil span within the domain of interest (Yarusevych, Sullivan &
Kawall 2009). The model with the attached end plates was installed 400 mm downstream
of the entrance to the test section. A rotation lock and bearing housings attached to
the end plates were used to adjust the pitch angle of the aerofoil. A digital protractor
was employed to adjust the angle of attack to the desired values with an uncertainty
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of ±0.1◦. The aerofoil model was equipped with 64 pressure taps, each 0.8 mm in
diameter, which were located at the aerofoil centreline and were connected to a Scanivalve
pressure scanner through pneumatic tubing. The pressure could then be measured by an
MKS Baratron 226A pressure transducer, with a range of ±26.66 Pa, in conjunction with
the Scanivalve pressure scanner. The maximum uncertainty associated with the surface
pressure measurements is ±2 %. The aerofoil was sprayed black to minimise reflection,
and no further antireflection material could be applied due to the presence of the pressure
taps.

An array of 24 Murata MZB1001T02 microblowers was mounted near the leading
edge, housed within a rectangular cavity measuring 317 mm in width and 58 mm in
length, located inside the hollow section of the aerofoil. The microblowers were arranged
symmetrically about the aerofoil centreline in two equal rows, with none positioned
directly on the centreline. The upstream row of the array was located at Xj/c = 0.1
in the vicinity of the separation point. The SJA array was wired such that each row
was powered independently. Only the upstream row was activated in the present study
to investigate the flow structures induced by a single actuator array, without the added
complexity of interactions between multiple synthetic jets. Each SJA had a circular orifice
of diameter d = 0.8 mm the centre of which was 25 mm apart from the centre of the nearest
microblowers. The microblowers operational range was between 5 V to 30 V, capable
of providing 24.0 kHz to 27.0 kHz of excitation frequency. Using a Rigol DG1022Z
function generator, the microblowers were burst modulated at a carrier wave frequency
of 25.5 kHz, a 50 % duty cycle and a modulation frequency of fj = 200 Hz. The output
signal was amplified by a YAMAHA HTR5470 amplifier to a peak-to-peak voltage within
the microblower operational range.

2.3. Velocity measurements
The NACA 0025 aerofoil is symmetric and, consequently, the distribution of the time-
averaged pressure coefficient on the suction and pressure sides are expected to be almost
identical at a zero degree angle of attack. The free stream static pressure p∞ was measured
from the static side of the pitot tube used to measure the free stream velocity at the test
section inlet. At each pressure port, a total of 30 000 samples were collected at a frequency
of 1000 Hz to resolve the time-averaged surface pressure distribution along the aerofoil.
The pressure coefficient was then obtained according to C p = (p − p∞)/(0.5ρU 2∞),
where p is the time-averaged pressure and ρ is the air density. The results for the optimal
position, used as the reference for angle of attack measurement, are plotted in figure 4.

The experiments involved eight controlled cases across four angles of attack and two
momentum coefficients and the baseline case at zero angle of attack. The chord-based
Reynolds number was set to Rec = 105 throughout the entire experiment by adjusting
the free stream velocity. The excitation frequency was also kept constant at fj = 200 Hz
to yield a reduced frequency of f ∗ ∼ O(10) over all cases, targeting the separated
shear layer frequency. For the controlled cases, the investigated angles of attack were
α = 0, 7.5◦, 12.5◦ and 15.0◦, where the free stream velocity was U∞ = 5.22 m s−1,
5.22 m s−1, 5.28 m s−1 and 5.28 m s−1, respectively. These slight differences in the
measured free stream velocity were due to variations in atmospheric pressure across the
datasets. A measurement of the boundary layer profile on the tunnel wall at the location
corresponding to the end plate leading edge showed that the boundary layer was 12 mm
thick at U∞ = 5.20 m s−1. Hence, no significant interaction exists between the model and
the tunnel sidewall boundary layer (Feero 2018). At each angle of attack, the peak-to-peak
voltage of the input signal to the SJA array was set to two distinct values, Vpp = 10V
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Figure 4. The mean pressure coefficient along the aerofoil at zero angle of attack.

and 20 V, corresponding to Cμ = 0.25 × 10−3 and 1.25 × 10−3 (Xu 2025). At an angle
of attack of α = 17.5◦, the separated flow could no longer be attached with the current
settings. The baseline flow at α = 0 was examined separately, and the free stream velocity
for this case was 5.30 m s−1. The Mach number for all test conditions was relatively low
(Ma � 0.3) and, hence, the flow could be considered incompressible.

A two-dimensional two-component particle image velocimetry (PIV) system was
employed to measure the instantaneous velocity fields at the spanwise centreline of the
aerofoil model. The flow was seeded by a SAFEX 2010F fog generator with SAFEX-
Inside-Nebelfluid, which is a mixture of diethylene glycol and water. A circular laser
beam was generated by a Litron Bernoulli neodymium-doped yttrium aluminium garnet
(Nd:YAG) laser capable of emitting green light up to a maximum pulse energy of 200
mJ per pulse at a wavelength of 532 nm. The laser beam was redirected over the test
section ceiling, where it was spread into a light sheet by concave and convex THORLABS
cylindrical lenses with a focal length of −13.7 and 1000 mm to illuminate the seeding
particles. The laser light sheet had a thickness of approximately 1 mm, and was carefully
aligned at the aerofoil centreline. Three 12-bit complementary metal oxide semiconductor
JAI SP-5000M-USB cameras were fitted with Azure 7526ML12M 1.1” 75 mm lenses
and positioned side-by-side to capture the far-field flow region spanning the range 0.35 �
X/c < 1.03, or (X − Xj )/d > 93 if normalised by the orifice diameter. All three cameras
had a resolution of 2560 pixels × 2048 pixels, and a pixel density of 34.2 pixels mm−1

after calibration. The resulting fields of view for the three cameras were 75 mm long and
60 mm high, overlapping by 10 mm in the chordwise direction. A schematic showing
the aerofoil model, SJA array and the PIV arrangements is provided in figure 5. The
image acquisition was timed by an NI PCIe-6323 data acquisition card at a sampling
frequency of 10 Hz to obtain statistically independent samples. Following Scharnowski,
Bross & Kähler (2019), the time delay between the two frames in an image pair was set to
60 µs to obtain an appropriate in-plane particle displacement. For the controlled cases, the
image recording was synchronised to the start of the actuation cycle to allow for phase-
locked data acquisition. For each phase-locked case, starting at φ = 0◦ and ending with
φ = 315◦ with an increment of φ = 45◦, 1000 image pairs were collected, resulting in a
total of 8000 image pairs. For the baseline flow, 8000 image pairs were acquired without
a particular reference event in the flow. The images from the three cameras were stitched
using a linear combination of the intensities in the two overlapping regions. All images
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JAI SP 5000M NACA 0025 aerofoil Fields of view

SJA array insert

Laser sheet

Optomechanical

components

Figure 5. A schematic showing the aerofoil model, the three JAI cameras, the resulting fields of view and
other optomechanical components.

were processed with the open-source software OpenPIV-Python-GPU, which utilises a
window deformation iterative multigrid algorithm. The PIV process comprised of an initial
iteration at a window size of 64 pixels × 64 pixels, two iterations at 32 pixels × 32 pixels
and two iterations at a final window size of 16 pixels × 16 pixels. Median validation
with a kernel size of three and a threshold of two was applied at every iteration to filter
and replace the outliers. The percentage of outliers generally remained below 0.5 %. The
resulting vector spacing was around 0.23 mm (0.00078c) for all test cases.

2.4. Data postprocessing
The PIV processing yields two velocity components in a local Cartesian coordinate
system. The nature of this study demands the velocity to be decomposed in directions
that are tangent and normal to the aerofoil surface. In this study, three coordinate systems
are adopted: the global Cartesian coordinates (X, Y ) already shown in figure 2(b), the
local Cartesian coordinates (x, y, z) with its origin at the bottom left-hand corner of
the captured field (Xo/c = 0.35), and the curvilinear coordinates (s, n, z) that use the
aerofoil profile as its reference curve to locate any point in the measurement plane
using the arclength s and the wall-normal distance n. The terminology, as well as the
local Cartesian and curvilinear coordinate systems are shown in figure 6. The origin
of the curvilinear coordinates lies on the y-axis, exactly on the surface of the aerofoil.
The arclength s and surface curvature � = 1/r0 are measured using the open-trailing-
edge NACA 0025 aerofoil profile. The three velocity components along the axes of
each coordinate system are denoted by the corresponding axis as a subscript. The only
exception is the tangential velocity, denoted by the subscript t instead of s. The velocities
in the curvilinear coordinate system may then be obtained by transforming the measured
velocities through the following relations:
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Figure 6. Schematics illustrating (a) Frenet–Serret frame for an arbitrary two-dimensional curve and (b)
adopted coordinate systems for the NACA 0025 aerofoil, with the n- and s-contour lines designated in blue
and orange colours, respectively.

ut = ux cos(β) + vy sin(β), (2.1)
vn = vy cos(β) − ux sin(β), (2.2)

where β is the slope of the surface with respect to the chord. Equations (2.1) and (2.2) are
also applicable to the time- and phase-averaged velocities. We adopt the typical notations
for the time-averaged, phase-averaged and fluctuating characteristics: (·), 〈·〉 and (·)′. In
addition to the symbols already defined in § 1, we use the following terminology for shear
flow analyses. The mean tangential velocity on the wall is designated by u0, where u0 = 0
at finite Reynolds numbers and u0 
= 0 at infinite Reynolds number. For 0 � ε � 1, we
define the cross-stream location nε as the point where the mean tangential velocity reaches
a value of ut = (1 − ε)u0 + εu1. The values at the cross-stream location nε are denoted
by an ε subscript. All other symbols shall be defined explicitly. The post-processing,
data analysis and visualisation were accomplished using MATLAB and the commercial
software Origin.

3. Results and discussion

3.1. The dissimilar scaling of the velocity
In this section, we consider the applicability of the scaling laws discussed in § 1.1 to the
mean velocities. For convenience, we non-dimensionalise the time-averaged velocities by
the free stream velocity according to the following expressions:

u∗ = ut

U∞
, v∗ = vn

U∞
. (3.1)

We begin by examining the near-wall flow region at zero angle of attack, which is expected
to resemble a boundary layer as the synthetic jets are inactive. In this scenario, the mean
velocity should follow the logarithmic law in the overlap region for sufficiently high
Reynolds numbers. We define the characteristic thickness as δ ≡ n0.99, which aligns with
the conventional boundary layer definition. Profiles of the dimensionless mean tangential
velocity u∗ for the baseline case are shown in figure 7, where the point at n0.99 is marked
by a closed symbol. Evidently, the profiles of u∗ in this case closely resemble that of
a turbulent boundary layer, with the semilogarithmic plots indicating the presence of a
logarithmic region near the wall. Now, let us examine the profiles of u∗ at α = 15.0◦ and
Cμ = 1.25 × 10−3, as shown in figure 8. In controlled cases, the tangential velocity profile
may exhibit a peak near the wall, similar to turbulent wall jets. Nevertheless, we continue to
use δ ≡ n0.99 instead of n1 for our analyses as the precise determination of n1 is uncertain
in experiments (George et al. 2000).
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Figure 7. Sectional profiles of the dimensionless mean tangential velocity in linear and semilogarithmic
scales for α = 0 and Cμ = 0 test case (baseline) at three locations: (a) s/c = 0.45 (×), (b) s/c = 0.55 ( ) and
(c) s/c = 0.65 (+).
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Figure 8. Sectional profiles of the dimensionless mean tangential velocity in linear and semilogarithmic scales
for α = 15.0◦ and Cμ = 1.25 × 10−3 test case at three locations: (a) s/c = 0.40 (×), (b) s/c = 0.50 ( ) and
(c) s/c = 0.60 (+).
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Figure 9. Scatter of the mean tangential velocity due to an improper scaling approach, collected from
α = 12.5◦ and Cμ = 1.25 × 10−3 test case at locations s/c = 0.40 (�), s/c = 0.50 (◦) and s/c = 0.60 ( ).

A first glance at figure 8 reveals a significant departure from classical behaviour.
Although some logarithmic behaviour remains present near the wall, the remainder of the
profile appears predominantly linear, a shape that is distinct from both turbulent boundary
layers and wall jets. The shape of the velocity profiles suggest that the flow should be
divided into three distinct shear layers, as proposed by Barenblatt, Chorin & Prostokishin
(2005) for a plane turbulent wall jet. In their study, Barenblatt et al. (2005) scaled the inner
and outer layers using power laws and noted that the data in a middle region beneath the
maximum velocity location could not be collapsed onto a single curve. Following their
approach, we scale the shear flow twice, first using n1/2 and then n0.99 as characteristic
length scales, with u0.99 as the characteristic velocity scale. The resulting scaled velocity
profiles for α = 12.5◦ and Cμ = 1.25 × 10−3 are presented in figure 9. While the overall
pattern is similar to that observed by Barenblatt et al. (2005), with data scattering in
the middle region, the middle region in this case is considerably wider and exhibits a
pronounced linear behaviour. Following Barenblatt et al. (2005), we also refer to this
middle layer as a mixing layer, a term that shall become more meaningful in § 3.2, § 3.3
and § 3.4.

In general, this scaling approach for turbulent wall jets, as also implied by the works
of George et al. (2000) and Barenblatt et al. (2005), is effective only at high enough
Reynolds numbers. The dispersion of the tangential velocity data in the middle layer is
unsurprising since the Reynolds number Reδ = U∞δ/ν was at most an order of O(104)
in these experiments. We now adopt an alternative scaling approach for the tangential
velocity based on a modified form of von Kármán’s defect law,

Û

(
n

n1

)
= u∗ − u∗

1
u∗

s
, (3.2)

where u∗
s is the tangential characteristic velocity. Overall, with a correct choice of u∗

s , (3.2)
effectively collapses the mean tangential velocity profiles onto a single curve across all test
cases. The present experimental data suggests that u∗

s may not necessarily be identical to
the friction velocity. For clarity, consider the scaling applied to the test case with α = 15.0◦
and Cμ = 0.25 × 10−3. In this case, the tangential velocity profiles align well on a single
curve when the velocity defect u∗ − u∗

0.99 is scaled by u∗
s = u∗

0.99. However, when the slope
of the logarithmic layer, was used for scaling, a pronounced data dispersion was observed,
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Figure 10. Scatter of the mean tangential and normal velocity defects due to improper scaling parameters,
collected from α = 15.0◦ and Cμ = 0.25 × 10−3 test case at locations s/c = 0.10 (�), s/c = 0.20 (◦), s/c =
0.30 ( ) and s/c = 0.40 (×).

as shown in figure 10(a). This behaviour was mostly observed for α = 12.5◦ and α = 15.0◦
cases, and not for the α = 7.5◦ test case.

Despite the success of the defect law in capturing the behaviour of the mean tangential
velocity, the mean normal velocity could not be scaled using the same characteristic
velocity u∗

s . Attempts to scale the mean normal velocity or its defect using u∗
s and length

scale δ resulted in data scattering around one end of the profiles. An example is presented
in figure 10(b), where the normal velocity defect v∗ − v∗

0.99 is scaled by u∗
s = u∗

0.99. The
scatter in the mean normal velocity upon scaling by u∗

s suggests a dissimilar scaling of the
time-averaged velocity components. In other words, though the consecutive profiles could
still be aligned, the appropriate scaling parameter for the normal velocity may not be the
same as that for the tangential velocity. We now propose the following scaling law for the
normal velocity:

V̂

(
n

n1

)
= v∗ − v∗

1
v∗

1
. (3.3)

For the α = 12.5◦ and α = 15.0◦ cases, only over a finite arclength along the aerofoil,
scaling the data using (3.2) and (3.3) with u∗

s = u∗
1 led to a remarkable collapse of

both velocity components onto a single curve. The results for the four test conditions at
α = 12.5◦ and α = 15.0◦ are presented in figure 11. More discussion on the choice for u∗

s
and similarity of the velocity components shall be presented in §§ 3.3 and 3.4.

3.2. The formation of the mixing layer
So far, we have established that the two velocity components in the middle layer may
not scale with the same characteristic velocity. However, a physical explanation for this
behaviour is still needed. This dissimilar scaling may be linked to the normal free
stream velocity. To illustrate this, consider the aerofoil at two angles of attack, as shown
in figure 12. From the wall’s perspective, the free stream actually has two velocity
components u∗∞ and v∗∞. For all angles of attack within 0 � α � 90◦, the normal free
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Figure 11. The dissimilar scaling of the mean velocity components at locations s/c = 0.10 (�), s/c = 0.20
(◦), s/c = 0.30 ( ), s/c = 0.40 (×) and s/c = 0.50 ( ) for four controlled cases: (a) α = 12.5◦ and Cμ =
1.25 × 10−3, (b) α = 12.5◦ and Cμ = 0.25 × 10−3, (c) α = 15.0◦ and Cμ = 1.25 × 10−3, (d) α = 15.0◦ and
Cμ = 0.25 × 10−3.
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Figure 12. A schematic showing the sign of the tangential and normal free stream velocity, as observed from
the wall, for two angles of attack.

stream velocity v∗∞ switches signs from positive to negative at the zero surface-slope
location. For a NACA 0025 aerofoil, this reversal occurs within 0 � X/c � 0.3. Upstream
of this point, the free stream pushes the synthetic jet towards the wall. Conversely,
downstream of the reversal point, the free stream tends to pull the synthetic jet away from
the wall. As the angle of attack increases, the reversal point shifts farther upstream, while
the magnitude of the normal free stream velocity also increases. Hence, downstream of the
reversal point, the normal velocity on the upper edge of the synthetic jet may eventually
become comparable to the tangential velocity. The relative strength of the normal to
tangential velocity decides the formation of the mixing layer, which depends on both the
angle of attack α and the momentum coefficient Cμ.

Now, let us examine figures 13 and 14 to understand how the previous discussion
relates to the present experiments. The coherent structures for various angles of attack and
momentum coefficients were identified using the triple decomposition method (Hussain &
Reynolds 1970), expressed by the following relation:

ũx = 〈ux 〉 − ux . (3.4)

The synthetic jet coherent structures initially appear as pairs of counter-rotating vortices, as
illustrated by the vector plots superimposed on the streamwise coherent velocity contours
ũx in figures 13(a) and 13(b). As the flow evolves, differences between the high- and
low-momentum actuation cases become evident. In the high-momentum case, the upper
portion of the coherent structures penetrates the cross-flow, whereas the lower portion
adheres to the wall. For the low-momentum case, on the other hand, the upper and lower
portions of the coherent structures remain closer together and dissipate earlier than in the
high-momentum case.

Generally, there exists a strong shear between the wall and the core of these structures,
which themselves act as a significant source of cross-stream perturbations. Still, the
mixing layer does not appear unless these structures are sufficiently distant from the
wall since the wall significantly dampens the wall-normal velocity fluctuations. Hence, at
low angles of attack and high momentum coefficients, as the normal velocity component
remains relatively weak, the structures are highly organised and their core adheres to
the wall. As the angle of attack increases or the momentum coefficient decreases, the
free stream eventually manages to pull the coherent structures away from the wall. The
substantial normal velocity fluctuations caused by the synthetic jet structures combined
with the high resident shear near the wall leads to the emergence of the mixing layer,
extending between the boundary layer and the central core of the jet structures. Farther
downstream, these structures gradually lose momentum, becoming disorganised and
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Figure 13. Contour plots of the coherent streamwise velocity at a phase angle of φ = 0◦ and an angle of attack
of α = 12.5◦ for two momentum coefficients: (a) Cμ = 1.25 × 10−3 and (b) Cμ = 0.25 × 10−3.

dispersing throughout the mixing layer and jet layer before ultimately dissipating. This
behaviour is particularly evident in the cases for α = 12.5◦ and α = 15.0◦, as shown in
figures 14(c) and 14(d). Overall, the angle of attack and the momentum coefficient exhibit
similar yet inverse effects on the development of the mixing layer. Increasing the angle of
attack or decreasing the momentum coefficient enhances the normal velocity magnitude
relative to the tangential velocity, pushing the onset of the mixing layer upstream and
increasing its spreading rate.

3.3. The asymptotic solution
This section introduces an analytical solution for the mixing layer under asymptotic
conditions. Let us consider a quasi-two-dimensional turbulent flow along a convex wall
with a surface curvature of �, where the tangential and normal velocity components are
both significant. The flow has evolved over an arclength of λ from its onset at s = s0,
reaching a characteristic thickness of δ and a Reynolds number of Reδ = U∞δ/ν, as
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Figure 14. Contour plots of the coherent streamwise velocity at a phase angle of φ = 0◦ and a momentum
coefficient of Cμ = 0.25 × 10−3 for four angles of attack: (a) α = 0, (b) α = 7.5◦, (c) α = 12.5◦ and
(d) α = 15.0◦.

  
(a)

Free stream

Infinite Reynolds number

(b)
U∞ U∞

u0

s0

u1

δ
λ

Figure 15. A schematic showing the mean tangential velocity profile at finite and infinite Reynolds numbers.

illustrated in figure 15. We seek a solution in the limit of δ/λ� 1 at infinite Reynolds
number, where δ/λ is the spreading rate. The curvature ratio �δ, which was introduced by
Dean (1927) for flow inside a toroidal pipe, quantifies the ratio of centrifugal to inertial
forces.

To begin the analysis, we conduct an order of magnitude examination of the velocities.
The time-averaged tangential velocity has a magnitude comparable to the free stream
velocity U∞. Since the contribution of the normal velocity gradient to flow continuity
may become comparable to that of the tangential velocity gradient, the order of the
normal velocity can be estimated using ∂vn/∂n ∼ ∂ut/∂s. The order of magnitude and
the dimensionless form of the velocities and length scales are summarised as follows:

s − s0 ∼ O(λ), n ∼ O(δ), ut ∼ O(U∞), vn ∼ O

(
U∞δ

λ

)
, (3.5)

s∗ = s − s0

λ
, n∗ = n

λ
, u∗ = ut

U∞
, v∗ = vn

U∞
.

For an incompressible flow, the time-averaged continuity equation in the curvilinear
coordinates (s, n) is expressed by (3.6). The dimensionless form of this equation is derived
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by substituting the corresponding dimensionless variables. The result, normalised by the
highest-order velocity gradient U∞/δ, is (3.7),

∂ut

∂s
+ ∂(1 + �n)vn

∂n
= 0, (3.6)

δ

λ

∂u∗

∂s∗︸ ︷︷ ︸
O( δ
λ )

+ δ

λ

∂v∗

∂n∗︸ ︷︷ ︸
O( δ
λ )

+ �δ
∂n∗v∗

∂n∗︸ ︷︷ ︸
O
(
�δ δ
λ

)
= 0. (3.7)

Our objective here is to determine the velocity profiles at infinite Reynolds number,
where the viscous sublayer has vanished, and the inner, middle and outer flow regions are
essentially decoupled. The boundary condition for the normal velocity at the wall remains
v∗(s∗, n∗ = 0) = 0 as there is no suction or blowing. Expanding the normal velocity about
the wall by Taylor series, and considering the limit δ/λ� 1, the series can be truncated at
first order,

v∗ = v∗(s∗, 0) + n∗ ∂v∗

∂n∗ (s∗, 0) + O
(
n∗2) ∂v∗

∂n∗ (s∗,0)=F(s∗)−−−−−−−−−−→
n∗∼O

(
δ
λ

) v∗ = F(s∗)n∗ + O

(
δ2

λ2

)
.

(3.8)
The asymptotic form of the normal velocity can be determined through similarity, in
contrast to plane shear flows, where the cross-stream velocity must be obtained from
continuity. By defining the similarity variable ξ = n∗/n∗

1 and enforcing self-similarity on
the normal velocity defect, we have

Ṽ (ξ) = v∗ − v∗
1

v∗
1

= F(s∗)
(
n∗ − n∗

1
)

F(s∗)n∗
1

−→ Ṽ (ξ) = ξ − 1. (3.9)

Hence, under the given conditions, the normal velocity must collapse onto a linear profile
described by Ṽ (ξ) = ξ − 1, a trend that is already evident in figure 11. Next, by applying
flow continuity and imposing self-similarity on the tangential velocity defect, we derive
the asymptotic form of the tangential component,

∂u∗

∂s∗ + ∂(1 + �λn∗)v∗

∂n∗ = 0 −→ u∗ = −
∫ s∗

0
F(ς)dς − 2λn∗

∫ s∗

0
�(ς)F(ς)dς + G(n∗),

u∗ − u∗
1 =

(
−2λ

∫ s∗

0
�(ς)F(ς)dς

) (
n∗ − n∗

1
)+ G(n∗) − G

(
n∗

1
) G(n∗)=An∗+C−−−−−−−−−→

Ũ (ξ) = u∗ − u∗
1

u∗
s

=

(
A − 2λ

∫ s∗

0
�(ς)F(ς)dς

) (
n∗ − n∗

1
)

u∗
s

u∗
s =

(
A − 2λ

∫ s∗

0
�(ς)F(ς)dς

)
n∗

1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
−→ Ũ (ξ) = ξ − 1.

(3.10)

Equation (3.10) conveys two key messages. First, when the Reynolds number reaches
infinity and the spreading rate remains sufficiently low, the tangential velocity also follows
the linear profile Ũ (ξ) = ξ − 1. Second, at infinite Reynolds number, the characteristic
velocity required for scaling is given by u∗

s = (A − 2λ
∫ s∗

0 �(ς)F(ς)dς)n∗
1, which
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generally differs from the maximum velocity u∗
1 or the friction velocity. Nonetheless, in

this limit, the viscous sublayer will perish, and the tangential velocity boundary condition
at the wall becomes u∗

0 = − ∫ s∗
0 F(ς)dς + C . Thus, the characteristic velocity can be

rewritten as u∗
s = u∗

1 − u∗
0 = (A − 2λ

∫ s∗
0 �(ς)F(ς)dς)n∗

1.
It can be proven that the velocities can be scaled relative to any arbitrary cross-stream

location nε, a property reminiscent of a plane mixing layer. This scaling property can be
established by following the steps outlined here

u∗
ε = εu∗

1 + (1 − ε)u∗
0 −→ u∗

ε − u∗
1

u∗
s

= ε − 1 = Ũ

(
n∗

ε

n∗
1

)
= n∗

ε

n∗
1

− 1 −→ nε

n1
= ε,

u∗ − u∗
ε

u∗
s

= u∗ − u∗
1

u∗
s

− u∗
ε − u∗

1
u∗

s
= ξ − ε

v∗ − v∗
ε

v∗
s

= v∗ − v∗
1

v∗
s

− v∗
ε − v∗

1
v∗

s
= ξ − ε

⎫⎪⎪⎬⎪⎪⎭
ζ=ξ− nε

n1
=ξ−ε

−−−−−−−−→
Ũε(ζ ) = u∗ − u∗

ε

u∗
s

= ζ

Ṽε(ζ ) = v∗ − v∗
ε

v∗
s

= ζ

. (3.11)

In the first line, it is shown that the tangential velocity achieves a value of uε at the cross-
stream position nε/n1 = ε. The subsequent steps reveal that the velocity deficits, when
scaled about ξ = ε by u∗

s and v∗
s , assume the forms Ũε(ζ ) = ζ and Ṽε(ζ ) = ζ , where −ε �

ζ � 1 − ε. The asymptotic solution of the velocity is summarised as follows:

v∗ = F(s∗)n∗, (3.12)

u∗ = −
∫ s∗

0
F(ς)dς +

(
A − 2λ

∫ s∗

0
�(ς)F(ς)dς

)
n∗ + C. (3.13)

3.4. The incomplete similarity
In § 3.3, we derived an asymptotic solution for the flow at infinite Reynolds number. In
this limit, the flow behaves as an equilibrium mixing layer, both velocities scale with their
respective velocity differences, and the shape of the velocity profile remains unchanged
across all locations. At finite Reynolds numbers, however, two overlap regions appear at
the edges of the middle layer. In this case, the flow is no longer purely a mixing layer
or a boundary layer, but instead exhibits characteristics of both. Since the 1930s, two
principal models have been proposed to describe the overlap regions: the logarithmic law
(von Kármán 1930) and the power law (Barenblatt 1993). Although both are derived with
comparable rigour, the logarithmic law relies on the assumption that molecular viscosity
is negligible. In this context, the logarithmic and power laws are expressed as follows:

L̃(ξ) = ln(ξ), (3.14)

L̃(ξ) = ξε − 1. (3.15)

The extent to which the flow resembles either a boundary layer or a mixing layer strongly
depends on the local Reynolds number Reδ . To initiate our analysis, we examine a
relatively low Reynolds number case with α = 7.5◦ and Cμ = 0.25 × 10−3. Our results
show that at these lower Reynolds numbers, especially during the early stages of mixing
layer development, both overlap regions conform to the logarithmic law. This behaviour is
illustrated in the scaled velocity profiles shown at four representative locations in figure 16.
Notably, at s/c = 0.1, the velocity profile can be entirely described by the logarithmic law.
As the local Reynolds number increases, a transition occurs, and the mixing layer emerges
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Figure 16. Evolution of the mixing layer for α = 7.5◦ and Cμ = 0.25 × 10−3 test case compared with the
logarithmic law (solid line) at four locations: (a) s/c = 0.10 (�), (b) s/c = 0.20 (◦), (c) s/c = 0.30 ( ) and (d)
s/c = 0.40 (×).

at some streamwise location. However, since the characteristic velocity remains close to
the friction velocity, the logarithmic law continues to provide a reasonable description of
both overlap regions. The profile shape gradually evolves with increasing local Reynolds
number, incorporating a linear segment associated with the mixing layer. Consequently,
the tangential velocity profile remains Reynolds-number-dependent, and its similarity is
incomplete.

At high Reynolds numbers, such as in cases with α = 12.5◦ and 15.0◦, the scaling
becomes largely insensitive to variations in the local Reynolds number as these cases are
relatively close to the equilibrium mixing layer. In these cases, the characteristic velocity
required to align successive profiles closely approximates the mixing layer velocity
difference u∗

1 − u∗
0. However, the inner overlap region lies much closer to the wall, where

the molecular viscosity can no longer be neglected. As a result, the power law is required
to achieve consistent scaling across both overlap regions. Unlike the low Reynolds number
regime, where the overlap region shape remains fixed, the shape in this high Reynolds
number regime varies with the Reynolds number, due to the Reynolds number dependence
of the power-law exponent. Figure 17 shows the velocity profiles at four selected locations
for the case with α = 15.0◦ and Cμ = 1.25 × 10−3. The profiles are overlaid with both
power law fits and the asymptotic mixing layer line, highlighting the increasing linearity
of the profiles and the proximity of the flow to the equilibrium mixing layer.

The preceding discussions, particularly figures 16 and 17, demonstrate that, regardless
of the specific law used to describe the overlap regions, the entire velocity profile may
be interpreted as a boundary layer influenced by contributions from the mixing layer.
Following Coles (1956), we propose an analogue of the law of the wake to represent the
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Figure 17. Evolution of the mixing layer for α = 15.0◦ and Cμ = 1.25 × 10−3 test case compared with the
power law (solid line) at four locations: (a) s/c = 0.20 (◦), (b) s/c = 0.40 (×), (c) s/c = 0.50 ( ) and (d)
s/c = 0.60 (+).

effect of the mixing layer embedded within a turbulent boundary layer,

Û (ξ) = L̃(ξ) − Π M̂(ξ). (3.16)

By analogy with Coles’ law of the wake, we refer to the parameter Π in (3.16) as the
mixing strength. Using the current experimental data, we aim to investigate the shape of
the mixing function M̂(ξ) for finite values of Π . The most direct approach to determining
the shape of the mixing function is to subtract the equilibrium mixing layer profile from a
boundary layer profile that is infinitesimally close to it. Mathematically, this limiting state
corresponds to the power-law exponent ε approaching unity. In this asymptotic state, the
mixing function M̂(ξ) takes the following form:

Π̃ = max
(
L̃(ξ) − Ũ (ξ)

)= ε
ε

(1−ε) − ε
1

(1−ε) , (3.17)

M̃(ξ) = lim
ε→1

L̃(ξ) − Ũ (ξ)

Π̃
= lim

ε→1

ξε − ξ

Π̃
= −ξ ln(ξ). (3.18)

The asymptotic shape of the mixing function, along with the variation of mixing strength
as ε → 1, is illustrated in figure 18. Evidently, while the mixing strength approaches zero
in this limit, the mixing function itself converges to a well-defined shape. Specifically, it
tends towards M̃(ξ) = −ξ ln(ξ), as shown in figure 18(a).

If the mixing function remains self-similar, we would expect the shape observed in
figure 18(a) to be preserved, regardless of the law used to describe the base boundary
layer. To investigate this, we examine the contribution of the mixing layer for both cases
presented earlier in figures 16 and 17. The results, obtained by subtracting either the
logarithmic law or the power law from the velocity profiles, are shown in figures 19 and 20,
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Figure 18. The asymptotic shape of the mixing function and the variations of the mixing strength with respect
to the power-law exponent.
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Figure 19. Distribution of the mixing function for α = 7.5◦ and Cμ = 0.25 × 10−3 test case compared with
the asymptotic shape (solid line) at two locations: (a) s/c = 0.20 (◦) and (b) s/c = 0.40 (×).
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Figure 20. Distribution of the mixing function for α = 15.0◦ and Cμ = 0.25 × 10−3 test case compared with
the asymptotic shape (solid line) at two locations: (a) s/c = 0.20 (◦) and (b) s/c = 0.60 (+).

respectively. These figures confirm our earlier hypothesis. Irrespective of the boundary
layer description, the subtraction yields the same shape observed in figure 18(a). A notable
feature of the mixing function is its asymmetry, which distinguishes it from the wake
function observed by Coles (1956). Consequently, the sine-squared function, commonly
employed to represent the wake function, is not well-suited for describing the mixing
function. Overall, using any smooth empirical function Q̃(ξ) that accurately captures the
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Figure 21. Distribution of the scaled normal velocity compared with the asymptotic shape (solid line) at
locations s/c = 0.20 (◦), s/c = 0.30 ( ), s/c = 0.40 (×) and s/c = 0.50 ( ) for two test cases: (a) α = 7.5◦
and Cμ = 0.25 × 10−3 and (b) α = 15.0◦ and Cμ = 1.25 × 10−3.

shape shown in figure 18(a), we can express the tangential velocity profile as follows:

Û (ξ) = L̃(ξ) − Π Q̃(ξ). (3.19)

We conclude this section by comparing the distribution of the normal velocity with
its asymptotic shape, as shown in figure 21. In contrast to the tangential velocity, the
normal velocity can be consistently scaled using the velocity difference v∗

1 , with the data
closely following the asymptotic line across the range of Reynolds numbers tested. A more
detailed discussion of the normal velocity is deferred to § 3.5.

3.5. Curvature effects
In this section, we examine whether the surface curvature influences the velocity gradients
∂v∗/∂n∗ and ∂u∗/∂n∗, focusing on regions with high local Reynolds numbers where the
flow behaves more like a mixing layer. The effect of surface curvature on the normal
velocity is inherently complex. As discussed in § 3.2, the normal free stream velocity,
which drives the gradient ∂v∗/∂n∗, is non-zero and, according to (2.2), depends on both
the angle of attack and the local slope of the aerofoil, with v∗∞ = sin(α − β). As a result,
it is not possible to decouple the curvature effects from those of the pressure gradient.
Therefore, our interest here lies in understanding the combined influence of these effects
on the normal velocity gradient ∂v∗/∂n∗. The experimental data indicate that, for cases
with lower angles of attack and higher momentum coefficients, specifically up to α =
12.5◦ and Cμ = 1.25 × 10−3, the slope of the normal velocity gradient remains largely
unchanged. In contrast, for the remaining cases where the combined effect of curvature
and pressure gradient is more pronounced, the gradient slope gradually decreases along
the aerofoil. For illustration, two representative cases are compared in figure 22.

To further investigate this behaviour, we expand the slope of the normal velocity
gradient in the asymptotic solution F(s∗) about the onset of the mixing layer using the
Taylor series,

F(s∗) = F(0) + dF

ds∗ (0)s∗ + 1
2

d2 F

ds∗2 (0)s∗2 + O
(
s∗3). (3.20)

In general, near the onset, F(s∗) can be approximated by its zeroth-order term.
Experimental observations show that when the mixing layer is allowed to develop
naturally, which is under minimal combined effects of pressure gradient and surface
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Figure 22. The s-contours of the dimensionless mean normal velocity at locations s/c = 0.20 (◦), s/c = 0.30
( ), s/c = 0.40 (×), s/c = 0.50 ( ) and s/c = 0.60 (+) for two test cases: (a) α = 12.5◦ and Cμ = 1.25 × 10−3

and (b) α = 15.0◦ and Cμ = 1.25 × 10−3.
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Figure 23. The n-contours of the dimensionless mean normal velocity at locations n/c = 0.02 (�), n/c = 0.04
(◦), n/c = 0.06 ( ), n/c = 0.08 (×), n/c = 0.10 ( ) and n/c = 0.12 (+) for two test cases: (a) α = 12.5◦ and
Cμ = 1.25 × 10−3 and (b) α = 15.0◦ and Cμ = 0.25 × 10−3.

curvature, the function F(s∗) remains approximately constant over the full development
length. This implies that the normal velocity gradient ∂v∗/∂n∗ is preserved. Such
behaviour was observed in three previously discussed cases, that is both α = 7.5◦
configurations, as well as the α = 12.5◦ and Cμ = 1.25 × 10−3 case. In contrast, when
the combined influence of surface curvature and pressure gradient increases, F(s∗) can no
longer be truncated at the zeroth order and begins to exhibit higher-order behaviour. For
example, in the α = 12.5◦ and Cμ = 0.25 × 10−3 and α = 15.0◦ and Cμ = 1.25 × 10−3

cases, the function F(s∗) exhibits a linear decrease. In the most extreme case, that
is α = 15.0◦ and Cμ = 0.25 × 10−3 with the highest angle of attack and the lowest
momentum coefficient, even a first-order approximation proved insufficient, and F(s∗)
exhibited a parabolic decay. The n-contours of the dimensionless mean normal velocity
for two representative cases are shown in figures 22 and 23, illustrating both the invariance
of the normal velocity profile and the parabolic decay observed under strong curvature and
pressure gradient conditions. Figure 23 highlights the need for higher-order Taylor series
truncations at increased angles of attack and reduced momentum coefficients.
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Figure 24. The spreading of the boundary layer for four test conditions: (a) α = 7.5◦ and Cμ = 0.25 × 10−3

(�), (b) α = 12.5◦ and Cμ = 0.25 × 10−3 (◦), (c) α = 15.0◦ and Cμ = 1.25 × 10−3 ( ), (d) α = 15.0◦ and
Cμ = 0.25 × 10−3 (×).

A similar argument can be made for the spreading rate. It is well known that the
spreading rate of turbulent wall jets is nonlinear and smaller than that of free jets. While
the exact comparison between the spreading rate of this flow and a turbulent wall jet for
a given momentum input remains unclear, the flow appears to spread at the very least
linearly, when it is not disturbed. The spreading rate generally becomes nonlinear as the
angle of attack increases or the momentum coefficient decreases, as shown in figure 24.
The maximum spreading rate for the extreme case with α = 15.0◦ and Cμ = 0.25 × 10−3

was around 25 %.
Unlike the normal velocity, surface curvature directly affects the tangential velocity

gradient ∂u∗/∂n∗. The s-contours of the dimensionless mean tangential velocity for two
test cases are shown in figure 25. According to the asymptotic solution, the tangential
velocity gradient is given by ∂u∗/∂n∗ = A − 2λ

∫ s∗
0 �(ς)F(ς)dς , indicating a clear

dependence on curvature, even under conditions where the flow evolves naturally and
F(s∗) = F(0) = B. To isolate the effect of curvature, we consider two cases in which
the normal velocity remains nearly constant along the streamwise direction, as shown
in figure 25. In fact, looking at figure 26, we observe that the slope of the profiles
changes more rapidly upstream, where the curvature magnitude is larger. Eventually, as
the curvature diminishes closer to the trailing edge, the slope gradually stabilises and
approaches a constant value.

Next, we examine the rotation of the fluid elements around the wall using the mean
spanwise vorticity for the cases where F(s∗) = F(0) = B. The time-averaged vorticity
equation in curvilinear coordinates (s, n) is stated by (3.21). The dimensionless form of
this equation, normalised by the highest-order velocity gradient U∞/δ, is presented in
(3.22) below,

1022 A2-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
75

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10756


Journal of Fluid Mechanics

(a)

0.08

0.06

0.02

0.07

0.05

0.04

0.03

0.01

0

n/c

(b)

0.14

0.10

0.02

0.12

0.08

0.06

0.04

0

n/c

0.4 0.60.2 0.8 1.0 1.2

u∗
0.4 0.60.2 0.8 1.0 1.2

u∗

Figure 25. The s-contours of the dimensionless mean tangential velocity at locations s/c = 0.10 (�), s/c =
0.20 (◦), s/c = 0.30 ( ), s/c = 0.40 (×), s/c = 0.50 ( ) and s/c = 0.60 (+) for two test cases: (a) α = 7.5◦ and
Cμ = 0.25 × 10−3 (�) and (b) α = 12.5◦ and Cμ = 1.25 × 10−3 (◦).
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Figure 26. Distribution of the curvature parameters with respect to the arclength for a NACA 0025 aerofoil.

∂vn

∂s
− ∂(1 + �n)ut

∂n
= (1 + �n)Ωz, (3.21)

δ

λ

∂u∗

∂n∗︸ ︷︷ ︸
O(1)

+ �δ
∂n∗u∗

∂n∗︸ ︷︷ ︸
O(�δ)

− δ

λ

∂v∗

∂s∗︸ ︷︷ ︸
O
(

δ2

λ2

)
= −(1 + �λn∗)Ωzδ

U∞
. (3.22)

Under the conditions δ/λ� 1, �δ � 1 and F(s∗) = B, the time-averaged vorticity can be
determined by neglecting terms of order δ2/λ2 and �2δ2 and substituting the asymptotic
velocity expressions into (3.22),

u∗ =
(

A − 2Bλ
∫ s∗

0
�(ς)dς

)
n∗ − Bs∗ + C

v∗ = Bn∗

⎫⎪⎬⎪⎭
1

1 + �λn∗ =1−�λn∗+O(�2δ2)

−−−−−−−−−−−−−−−−−−→

Ωzλ

U∞
= �λ(Bs∗ − C)(1 − �λn∗) +

(
2Bλ

∫ s∗

0
�(ς)dς − A

)
(1 + �λn∗).

(3.23)
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Figure 27. The n-contours of the dimensionless mean spanwise vorticity at locations n/c = 0.02 (◦), n/c =
0.03 ( ), n/c = 0.04 (×), n/c = 0.05 ( ), n/c = 0.06 (+) and n/c = 0.08 ( ), demonstrating the clockwise
rotation of fluid elements inside the mixing layer for two test cases: (a) α = 7.5◦ and Cμ = 0.25 × 10−3 and (b)
α = 12.5◦ and Cμ = 1.25 × 10−3.

In the limit of �λ� 1, another simplification can be applied to the vorticity distribution
given in (3.23). Under this condition, the variations in the radius of curvature across
the entire length of the mixing layer λ become negligible. Consequently, we expect∫ s∗

0 �(ς)dς ≈ �s∗.
The conditions �δ � 1 and �λ� 1 are well satisfied over the second-half of the

aerofoil (s/c > 0.15), as shown in figure 26. Note that for the highest Reynolds
number cases, δ/c ∼ O(10−1), and therefore �δ ∼ O(10−2) within s/c > 0.15. With these
considerations, (3.23) simplifies to

Ω∗ = Ωz

�U∞
= (Bs∗ − C)(1 − �λn∗) +

(
2Bs∗ − A

�λ

)
(1 + �λn∗). (3.24)

Equation (3.24) carries significant implications regarding the effects of curvature on
the mixing layer. First, as �δ → 0, the vorticity behaves as Ω∗ = 3Bs − C − Ar0/λ,
suggesting that Ω∗ is expected to increase linearly along the surface. Second, fluid
elements rotate along the wall with a vorticity magnitude Ωz = �U∞Ω∗, which is
proportional to the local surface curvature �. As a result, the mixing layer tends to adhere
to the wall, with this adherence gradually weakening as the mixing layer develops along the
surface due to the positive normal velocity gradient F(0) = B. The asymptotic behaviour
of the vorticity is evident from the n-contour plots of the dimensionless vorticity for the
two test cases shown in figure 27. The tendency of the mixing layer to adhere to the wall
is also apparent in the contour plots presented earlier in figures 13(a) and 14(b).

4. Summary and conclusion
The development of the turbulent boundary layer over a NACA 0025 aerofoil at a constant
reduced frequency was investigated experimentally across four angles of attack and
two distinct momentum coefficients. The measured velocity field was decomposed into
normal and tangential components. By applying various scaling approaches from turbulent
boundary layer and wall jet literature, it was observed that the resulting boundary layer
differs notably from both canonical boundary layers and wall jets. In particular, a region
between the wall and the point of maximum velocity exhibited a distinct linear trend.
Following the terminology of Barenblatt et al. (2005), this region was referred to as a
mixing layer.
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The theory developed by George et al. (2000) for turbulent wall jets highlighted that the
characteristic velocity scale needed to collapse the Reynolds stresses may differ from that
required for scaling the mean velocities. The present study showed that such dissimilarity
in scaling is not limited to Reynolds stresses. Specifically, while each velocity defect could
be locally scaled over a limited extent, the characteristic velocity needed for collapse
varied between the normal and tangential components. This dissimilarity was attributed
to the prominence of the normal free stream velocity, which becomes more significant
as the angle of attack increases or the momentum coefficient decreases. A basic physical
explanation was proposed, linking the formation of the mixing layer to the magnitude of
the normal free stream velocity and the distance of the jet structures from the wall.

An asymptotic solution was introduced to describe the flow behaviour at infinite
Reynolds number, where the flow approaches an equilibrium mixing layer. Unlike
conventional turbulent boundary layers and turbulent wall jets, where the normal velocity
goes to zero, the asymptotic solution predicted a linear distribution of the normal velocity.
At the finite Reynolds numbers examined in this study, two overlap regions emerged above
and below the central layer, and the flow exhibited a hybrid character, combining features
of both boundary layers and mixing layers. At relatively low local Reynolds numbers,
the overlap regions followed the logarithmic law and the flow behaviour more closely
resembled that of a turbulent boundary layer. As the Reynolds number increased, the
overlap regions were better captured by Reynolds-number-dependent power laws, and the
flow transitioned towards mixing layer behaviour, with the velocity difference serving as
the appropriate characteristic scale.

The similarity of the tangential velocity was incomplete, as the shape of the velocity
profiles evolved with the local Reynolds number along the aerofoil. Regardless of whether
the logarithmic or power law was used to describe the overlap regions, the overall
profiles could be interpreted as a base boundary layer with an added contribution from
the mixing layer, reminiscent of Coles’ law of the wake. However, the residual function
observed here was asymmetric and differed from that of conventional turbulent boundary
layers. An analytical expression for the mixing function was derived from the asymptotic
analysis, and notably, its shape remained invariant across the range of Reynolds numbers
considered.

The effects of curvature were investigated for both the tangential and normal velocity
components. For the normal velocity, curvature and pressure gradient effects could not
be independently isolated. However, their combined influence was found to be minimal
at lower angles of attack and higher momentum coefficients, where the normal velocity
gradient remained nearly constant along the development length. At higher angles of attack
and lower momentum coefficients, the normal velocity exhibited a linear or parabolic
decay, which was explained by the Taylor series expansion of the normal velocity gradient
about the onset of the mixing layer. In contrast, curvature had a direct and measurable
impact on the tangential velocity gradient, leading to a gradual decrease in its magnitude.
Vorticity analysis revealed that fluid elements rotate along the surface with a strength
proportional to the local curvature.

As a final note, while this study confirms the effectiveness of low-momentum burst-
modulated control schemes, consistent with prior findings such as those by Amitay &
Glezer (2002a) and Palumbo et al. (2022). The results also indicate that flow reattachment
over an aerofoil becomes increasingly sensitive to the momentum coefficient at higher
angles of attack, where substantial differences in boundary layer thickness were observed
between high- and low-momentum cases. Therefore, the operational range of the control
system should be carefully considered to ensure optimal performance.
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