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Abstract

Nutation is one of the most striking and ubiquitous examples of the rhythmic nature of
plant development. Although the consensus is that this wide oscillatory motion is driven by
growth, its internal mechanisms remain to be fully elucidated. In this work, we study the
specific case of nutation in compound leaves of the Averrhoa carambola plant. We quantify the
macroscopic growth kinematics with time lapse imaging, image analysis and modelling. Our
results highlight a distinct spatial region along the rachis—situated between the growth and
mature zones—where the differential growth driving nutation is localised. This region coincides
with the basal edge of the growth zone, where the average growth rate drops. We further show
that this specific spatiotemporal growth pattern implies localised contraction events within the
plant tissue.

1. Introduction

Plants move. This overlooked truth has come to light again thanks to the recent study of spec-
tacular ultra-fast motions (Forterre et al., 2016). For example, the snapping of the Venus flytrap
(Forterre et al., 2005; Sachse et al., 2020) and the catapulting of fern spores (Noblin et al., 2012)
both require high speed cameras to be recorded. At the opposite side of the timescales spectrum,
plants move through their growth. The observation of these slow observation necessitates time-
lapse imaging. After Darwin (Darwin, 1897), they started to be historically investigated with the
development of photography (Gaycken, 2012). But we are still evidencing nowadays a variety
of exciting new motions (Derr et al., 2018; Rivière et al., 2017, 2020). They can either be
nastic motions, or tropisms, depending on whether the direction of the motion is imposed by
factors internal or external to the plant, respectively. The movement is defined as autonomic
(respectively, paratonic) depending on whether the triggering signal is internal to the plant or
not. They can finally be reversible or linked to irreversible growth. These three dichotomies define
the traditional classification of slow plant motions (Rivière et al., 2017). Within this framework,
the status of one remarkable movement called nutation is still undecided (Baskin, 2015; Mugnai
et al., 2015; Rivière et al., 2017; Stolarz, 2009)

Nutation is the phenomenon that causes the orientation of the long axis of an elongated
growing plant to vary over time in a pseudo-periodical way. It was already observed for climbing
plants by British botanists of the 17th century (Webster, 1966) and began to be studied by Hugo
von Mohl and Ludwig Palm in the first part of the 19th century (Baillaud, 1957). To the best
of our knowledge, the term ‘nutation’ was first mentioned by Charles Bonnet (Bonnet, 1754)
although he acknowledges that this term had been named before him, by physicists who knew
the phenomenon. They probably saw this motion as a botanical analog to the astronomical
nutation.

Darwin later introduced the idea that nutation had an endogenous origin and many plant
motions were actually modified nutations (Darwin, 1897). The very origin of nutation was a
source of debate at the time nonetheless (Baillaud, 1957), and it remains so up to this date
(Brown, 1993; Migliaccio et al., 2013; Mugnai et al., 2015). Part of the community backs up
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Darwin’s idea of an internal oscillator (Brown et al., 1990; Johnsson
et al., 1999). Others ascribe this oscillating behaviour to inertial
overshooting of the plant occurring during its straightening process
(Agostinelli et al., 2020; Gradmann, 1922; Israelsson & Johnsson,
1967; Johnsson & Israelsson, 1968). Finally, the compromise solu-
tion calling for a combination of these two hypotheses gathers
more and more support (Agostinelli et al., 2021; Johnsson, 1997;
Johnsson et al., 1999; Orbović & Poff, 1997; Stolarz, 2009). The
one thing making consensus is that nutation is a macroscopic
manifestation of multicellular microscopic growth.

Plant growth results from a subtle balance between the strong
internal osmotic pressure and the resisting rheology of the cell
wall (Tomos et al., 1989). Although growth and plasticity are very
distinct processes, and growth doesn’t involve viscosity (Goriely,
2017), Lockhart used a Bingham plastic framework to formalise
plant growth (Lockhart, 1965). Lockhart’s model received good
experimental support at the single cell level (Cosgrove, 1985; Green
et al., 1971; Zhu & Boyer, 1992). Still, some shortcomings need
to be addressed (Jordan & Dumais, 2010), and the origin of the
cell wall-loosening mechanism remains unclear (Höfte et al., 2012;
Kroeger et al., 2011; Micheli, 2001; Palin & Geitmann, 2012).
The cell wall is considered here to be an inactive gel but it was
demonstrated that elements of the cell wall, the homogalacturo-
nans (HG) can transform chemical modification into mechanical
expansion through cell controlled enzymatic demethylesterifica-
tion (Haas et al., 2020). The precise role of elasticity that was added
to Lockhart model later on by Ortega (Ortega, 1985) is then subject
to debate (Haas et al., 2020; Kierzkowski et al., 2012). Finally,
the multi-cellular aspect of the biophysics of growth remains to
be understood (Boudon et al., 2015). In particular, dynamical
aspects related to water fluxes between cells have just started to
be taken into account, either numerically (Cheddadi et al., 2019)
or even more recently theoretically with the development of a
hydromechanical field theory for plant morphogenesis (Oliveri &
Cheddadi, 2025). These new theoretical concepts will be key to
understand the complex spatio-temporal behaviour observed in
plant nutation.

The seminal work on the spatio-temporal characterization
of nutation has been performed by Berg and Peacock (Berg &
Peacock, 1992) where they evidenced strong fluctuations and
traveling waves of the axial elongation rate in the sunflower
hypocotyl. They even measured negative rates, suggesting local
contractions. At the time, they acquired data with a single camera,
and their growth measurements were necessarily biased by strong
projection artifacts due to the three-dimensional nature of the
motion.

Here, we aim to revisit in detail the phenomenon of nutation. By
carefully quantifying the motion of nutation (taking into account
the 3D nature of the motion), we will gain knowledge on the nature
of this puzzling mechanism. In this article, we focus on the plant
Averrhoa carambola, a plant known for exhibiting ample nutation
(see Figure 1a, b) and other growth motions (Rivière, 2017; Rivière
et al., 2017, 2020).

The manuscript is organised as follows. We start by character-
ising the kinematics of nutation at the scale of the whole leaf, and
emphasise the spatial organisation of growth. Our measurements
allow to characterise the growth law of nutation and highlight
a relationship between mean growth and differential growth. We
then zoom in on the bending zone and, thanks to a kinematics
model, analyse contraction events. Finally, we put our results in per-
spective with the microscopic properties (elasticity and chemical
content) of the plant cell wall.

2. Materials and methods

2.1. Growth conditions of plants

Averrhoa carambola seeds were directly obtained from commer-
cially available fruits and sown into all-purpose compost. Young
seedlings were first kept inside a small lab greenhouse. Older plants
(> 6 months) were then moved to the experimentation room. There,
plants were submitted to a 12/12 light cycle under ORTICA 200W
2700K culture lamps. The temperature and relative humidity rate
were monitored with a DHT22 sensor. Temperature was usually
comprised between 20oC and 24oC. The relative humidity rate was
around 60%. All methods were performed in accordance with the
relevant guidelines and regulations.

2.2. Kinematics: sample preparation

The rachis of interest was carefully coated with fluorescent pig-
ments with a brush. For curvature and coarse elongation measure-
ments, the top of the rachis was coated homogeneously with orange
pigments. Small blue fluorescent dots were added to mark the nodes
and the petiole. For fine measurements of local growth, the orange
pigments were deposited on the face of a few interfoliolar segments
so that they form highly textured and contrasted patterns. In both
cases, because of growth, pigments needed to be added manually on
a regular basis to compensate the dilution of the signal over time.

2.3. Kinematics: image acquisition

The kinematics of nutation were captured using time-lapse pho-
tography with a DSLR camera controlled with the open-source
software gPhoto2. The camera was firmly fixed to a rigid struc-
ture to avoid any displacement or rotation. The built-in flash of
the camera was covered with LEE Moss green filter and set to
the lowest intensity to keep light input minimal during nights.
For curvature and coarse growth kinematics, top-views were taken
every 2.5 min. For local growth measurements, side-views were
taken every minute.

2.4. Kinematics: data analysis

The midline, or skeleton, of the rachis was obtained by first
thresholding the red channel of the pictures. A cloud of points
was obtained and then reduced to a smooth line with a moving
median filter. The curvature of the rachis κ� in the plane of interest
was obtained by locally fitting the midline to a circle. The position
of the leaflets was retrieved by thresholding the blue channel.
Because of growth, blues dots dilated, lost intensity in time and
sometimes even split. The global unfurling motion of the rachis
sometimes resulted in a temporary occlusion of some blue dots.
Simple rules on the conservation of these dots, distance between
consecutive dots and displacements values could overcome a
majority of tracking failures. Manual correction was still needed
in some special cases. Finally, the presented spatiotemporal graphs
were smoothed with 2D averaging and median filters.

2.5. Kinematics: fine measurements

We obtained the skeleton of the rachis by a simple geometric
transformation of the upper contour which is less altered by
leaflet motions. We measured the elongation field along the
rachis by using a previously published image-to-image correlation
algorithm (Bastien et al., 2016). The time-frequency analysis of
the elongation signals was done by using MATLAB’s continuous
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Figure 1. Nutation movement of an Averrhoa carambola compound leaf. (a) Side view, 30 minutes between pictures from top to bottom. The hook shape gradually comes out of

the plane towards the observer. The scale bar indicates 3 cm which is the typical length scale between mature leaflets (b) Top view, 15 min between pictures (nutation period

usually varies between 1.5 and 4 hours). The distal end of the leaf oscillates in a pendulum-like fashion, orthogonal to the rachis’ axis. After a full period, the leaf has elongated.

(c) Geometrical parameters describing the rachis and nutation: arclengths s and sa (from the base or the apex, respectively), local angle φ, local curvature κ� and radius R. The

direction of motion defines the outer and inner faces of the rachis. (d) Spatiotemporal diagram of the curvature κ�(s,t) along the rachis obtained from a top-view time lapse

movie. Oscillations of κ�(s,t) are visible close to the apex. Dashed white lines mark the position of leaflets.

wavelet transform toolbox. We used the ‘cgau2’ mother wavelet
(second-order derivative of the complex Gaussian). For each
location of the rachis, ε̇(t) was wavelet-transformed. From the
resulting complex coefficients Ca,b we extracted information on
the weight of each scale/frequency in the signal by computing
an ‘energy’: E(a) = ∑b ∣Ca,b∣

2/∑a∑b ∣Ca,b∣
2, where a and b are

the scale and shift parameters of the wavelet transform. This
information was then re-aggregated and re-arranged to build

kymographs displaying the weight of frequencies in the elongation
signal along the rachis.

2.6. Kinematic model of nutation

The rachis is modelled by a two-dimensional beam of width 2R (see
Figure S1 in the Supplementary Material) and of total length Ltot .
The geometry of the midline is then described with the same
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quantities than the actual leaf (see Figure 1c). The model contains
only a few essential ingredients:
1. We define the elongation rate ε̇ as the relative local growth

rate of an element. For example, at arclength s, an element of
size δs as the following local relative growth rate:

ε̇(s) = 1
δs

dδs
dt

. (1)

The lateral faces of the beam can have different elonga-
tion rates ε̇L and ε̇R, giving rise to differential elongation δ̇.
We assume that the profile of elongation is linear in the bulk
of the rachis:

⎧⎪⎪⎨⎪⎪⎩

ε̇ = (ε̇R+ ε̇L)/2
δ̇ = (ε̇R− ε̇L)/2.

(2)

2. An apical growth zone of length Lgz of constant length. The
elongation rate of the midline ε̇ is thus independent of time
and given by

ε̇(sa) =
ε̇0

2
(1− tanh(

sa−Lgz

ΔL
)), (3)

where sa is the arc length starting from the apex, and ΔL the
typical length scale of variation of ε̇.

3. Differential elongation occurs where the mean elongation
rate drops, within a bending zone of length 2ΔL (for justifi-
cation, see Results). Because nutation is a periodic oscillatory
motion, differential elongation is modulated by a sine of
period 2π/ω:

δ̇(sa,t) = δ̇0(1− tanh2(
sa−Lgz

ΔL
))sinωt. (4)

4. We assume differential elongation is the unique driver of the
bending of the rachis. In our case, since the period of nuta-
tion is much smaller than the typical time scale of elongation,
we furthermore neglect the advection of curvature. In this
case, differential elongation rates (δ̇) and the rate of change of
curvature (dκ/dt) have been shown to be equivalent (Jensen
& Forterre, 2022; Silk, 1984). Their relationship is purely
geometric and can be simplified in the case Rκ⊥≪ 1 (for us,
Rκ⊥ ∼ 10−2). We follow the kinematic calculation provided by
Bastien (equation A.43 in Bastien (2010)) with second-order
correction in Rκ⊥to write

∂κ�
∂t
≃ 1−R2κ2

�

R
δ̇. (5)

Interestingly, equation 5 does not display the dilution of
curvature due to average growth. Chavarría showed that
the dilution effect is compensated by curvature creation
(Chavarría-Krauser, 2006).
The model was implemented numerically with discretised ver-

sions of the kinematic equations 3, 4 and 5. When and where
ε̇ < ∣δ̇∣, local contractions will occur along the lateral faces of the
rachis – i.e., either ε̇R < 0 or ε̇L < 0 over a finite spatial extent
(see Figure S1 in the Supplementary Material). This depends on
the relative values of δ̇0 and ε̇0 and the exact threshold depends on
the spatial functions chosen to describe ε̇ and δ̇. Here, a sufficient
condition for contractions is ε̇0 ≤ ε̇c = 4δ̇0. Finally, the apparent

elongation ε̇� observed by a camera is obtained by measuring the
orthogonal projection of the simulated rachis onto the plane of
observation (see Figure S2 in the Supplementary Material).

3. Results

3.1. Characterizing nutation

As they grow, Averrhoa carambola compound leaves exhibit
pronounced growth motions. Putting aside the leaflets, the motion
of the rachis can be broken down into two different motions,
depending on their plane of occurrence (for anatomical terms,
see Figure S3 in the Supplementary Material). The unfurling
motion of the rachis of Averrhoa carambola mostly takes place in
a principal plane (Rivière et al., 2017). The rachis unfolds steadily
while propagating a hook shape (Rivière et al., 2020). This hook
shape is visible in Figure 1a. This motion is also accompanied by
out-of-plane curvature variations. The rachis bends and unbends in
a pseudo-periodical way, as if it were oscillating around a rectilinear
state. The oscillations can already be seen in Figure 1a. In Figure 1b,
we see the same motion from the top and on a slightly longer
time range. The period of oscillation varies greatly between 1.5
and 4 hours, typically between 2 and 3 hours, while the typical
amplitude is of the order of 25 degrees. Supporting movie 1 in
the Supplementary Material shows a time-lapse movie of a typical
nutation motion, seen from both sides. To properly describe the
nutation motion, we define: the base-to-apex arc length s, and sa
its apex-to-base counterpart; φ the local angle with respect to the
average direction of the rachis; and the curvatureκ� (see Figure 1c).
Figure 1d shows the quantification of κ� in both time and space.

3.2. Elongation and bending are localised

We measured the average elongation rate Ė of each of the successive
interfoliolar segments by tracking the position of the successive
nodes. The spatiotemporal diagram of Ė shows that only the apical-
most region of the rachis elongates, defining a growth zone near the
apex (see Figure 2a).

We then estimated the profile of differential elongation δ̇
along the rachis from the transverse curvature κ� measurement,
thanks to the several hypotheses described in the Material and
Methods section. Its envelope was estimated via a method based
on the Hilbert transform (Kincaid, 1966) (for more details, see
Supplementary Material). The evolution in time and space of
the envelope of δ̇ is displayed in Figure 2b. We see that the
differential growth – hence the bending – is spatially limited to
a zone downstream of the apex. Similarly to what is done for the
elongation, it is thus possible to define a bending zone.

This bending zone is at a roughly constant distance from the
apex, similarly to the constant length of elongation zone from the
apex (see 2B). Finally, going a step further in the description of
nutation, we notice that the amplitude of the differential elongation
– or of the bending – varies in time, reaching a maximum of
3× 10−2 h−1. These slow amplitude modulations of nutation are,
however, not in the scope of the present study.

3.3. Differential elongation peaks where elongation drops

Because the growth spatial profile is almost steady in the frame
of reference attached to the apex, we can average the measured
quantities in time. The averaged quantities Ė and Ḋ corresponding
to mean elongation and differential elongation rates of interfoliolar
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a

b

Figure 2. Elongation and estimated differential elongation during nutation.

(a) Spatiotemporal diagram of the elongation rate Ė of each interfoliolar segment

estimated from the leaflets’ trajectories (white dotted lines). The black crosses show

the position of the leaf apex estimated from side-view pictures. The red dashed line is

a linear fit of the apex position. (b) Spatiotemporal diagram of the envelope of

differential elongation δ̇ estimated from the curvature diagram (nutation amplitude).

segments are plotted in Figure 3. Both profiles confirm the existence
of a localised growth zone. The typical length scale is about 50 mm,
and beyond 100 mm growth is not detectable at all. The mean
elongation rate looks like a sigmoid function. In the growth zone
the typical elongation rate is of the order of 10−2h−1, consistently
to typical averaged values found in the literature (Lambers &
Poorter, 1992; Poorter & Remkes, 1990), and then decays to zero.
Interestingly, the differential elongation rate behaves differently.
It is non-monotonic and its maximum coincides with the edge of
the growing zone, where the mean elongation rate drops. A simple
mathematical description of these sigmoid and peaked shapes is
well fitted with the hyperbolic functions as in equations 3 and 4. The
results are displayed in Figure 3. In this case the derivative of the fit
of the longitudinal elongation rate matches well our experimental
measurements of the differential elongation rate, with its amplitude
remaining a free parameter (see Supplementary Material).

3.4. The elongation profile in the growth zone is compatible with
local contractions

We used techniques inspired from digital image correlation (see
Materials and Methods) to quantify the elongation profile within
the bending zone. However, as the nutation moves the rachis
towards or away from the camera, we can only measure an apparent
elongation rate ε̇� (see Figure S4 in the Supplementary Material
and associated text). Strong projection artifacts indeed affect our

Figure 3. Average spatial profiles of elongation rate and differential elongation rate.

The two profiles were fitted, respectively, to a sigmoid (red line) and to its derivative

(green line). The complete profiles cannot be measured from a top-view because of

the hook shape of the leaf.

measurements: we see oscillations and even negative values of ε̇�
(see Figure 4a).

Strikingly, the period of oscillation depends on position (see
Figure 4a). Oscillations are faster at the apical end of the sample (top
on graph), and slower at its basal end (bottom on graph). A wavelet
transform evidences two distinct dominant modes with periods
in a 2:1 ratio (see Figure 4b). We measured τf ≈ 2.1h at the basal
end – corresponding to the nutation period – and τ2f ≈ 1.2h at the
apical end. In an attempt to rationalise these artifacts, and to work
around them, we built a simple model based on the experimental
kinematic features of nutation and also accounting for projection
effects (see Materials and Methods). This model first provides an
order of magnitude for differential growth. Indeed, it can be shown
that

Δφ = 2ΔL δ̇0

ωR
. (6)

This can be understood as δ̇0/ω being the total differential
growth over one period of nutation, which divided by the radius
R gives the local curvature of the rachis, and integrated over the
bending zone length 2ΔL, gives the final deviation of the apex
(see Supplementary Material for formal derivation). By injecting
estimations in this relationship (ΔΦ ∼ π/6, 2π/ω ∼ 2 h, R ∼ 0.25
mm and ΔL ∼ 50 mm), we find δ̇0 ∼ 7.5 × 10−3h−1 ∼ 10−2h−1

matching the order of magnitude of the measured average growth,
thus confirming the possibility of contractions.

Second, simulations of our model reproduce the observed pat-
tern of ε̇� (see Figure 4c,d). Our model indeed shows that the
two main oscillating contributions to ε̇� are brought by: (i) projec-
tion (geometrical) effects, with frequency double that of nutation,
maximum at the apical end of the rachis; and (ii) the differential
elongation itself, with frequency equal to that of nutation, peaking
around sa = Lgz (see Supplementary Material for more details).
While oscillations of ε̇� at τ2f are expected in any case (see Figure
S4 in the Supplementary Material), oscillations with period τf are a
direct signature of differential elongation.

Finally, we fit the wavelet transform spatiotemporal diagram
as a way to estimate the unknown experimental parameters. The
best fit is presented in Figure 4c,d. The corresponding parameters
δ̇0 = 4.5× 10−3h−1 and ε̇0 = 1.4× 10−2h−1 indicate that the rachis
must locally contract to explain our experimental measurements.
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a c

b d

Figure 4. (a) Spatiotemporal diagram showing an experimental measurement of the apparent local elongation rate ε̇ in the bending zone from a side-view time lapse movie.

Because of the oscillatory motion of the rachis, the elongation rate measured is affected by projection effects. (b) Wavelet decomposition of the experimental spatiotemporal

diagram of apparent elongation rate. The decomposition shows that two dominant modes in the signal: τ2f ≈ 1.2h and τf ≈ 2.1h, respectively, close to the apical and basal ends

of the observed section of the rachis. (c) and (d): Best fit of the kinematics model to the experimental data; Δφ = 8○,Lgz = 20.6 mm, ΔL = 12.2mm, δ̇0 = 4.5×10−3h−1

(ε̇0 = 1.4×10−2 h−1,R = 0.26 mm were measured and fixed before fitting). This set of parameters allows local contractions.

4. Discussion

4.1. The nutation zone is spatially linked to the growing zone and
undergoes ‘stop and go’ phenomena

The kinematics of nutation presented here are consistent with our
previous study on the same system and confirm the presence of
a steady growth zone, extending from the apex over a constant
length (Rivière et al., 2020). This is also in agreement with growth
spatial profiles observed in roots (Chavarría-Krauser et al., 2008;
Quiros et al., 2022; Silk et al., 1989; Walter et al., 2002), and several
cylindrical aerial organs (Bastien et al., 2018; Peters & Tomos, 2000;
Silk, 1992).

We also show that the basal end of the growth zone coin-
cides with the nutation zone – i.e., fluctuations of the differential
elongation rate. The spatial coincidence of the maximum of the
differential elongation rate with the region of steepest decrease of
the average elongation rate is consistent with previous observations
on Arabidopsis thaliana roots (Chavarría-Krauser et al., 2008). This
phenomenon could be compatible with the existence of a maxi-
mum value for the elongation rate, likely set by a combination of
environmental factors and inner physiological constraints. Close
to the apex, growth-regulating signals could be so strong that the
elongation saturates by far. Small perturbations of these signals in
space or time would not affect the saturated elongation rate and
would get edged out. Conversely, when and where they are not
strong enough to saturate elongation anymore, any perturbation on

the growth-regulating signals could directly affect the elongation
rate and would eventually translate into oscillations. The basal end
of the growth zone would then be the location most prone to such
variations. The same interpretation could apply to oscillations dur-
ing the gravitropic straightening of wheat coleoptiles (Bastien et al.,
2018): as the coleoptile bends towards the vertical, the differential
growth signal is at its maximum, and no oscillation is observed. On
the contrary, when the coleoptile approaches a vertical posture, the
signal decreases, and nutation of the tip becomes visible again.

Quantitatively, when and where the differential elongation rate
is maximum, its amplitude is also comparable to the local aver-
age elongation rate (see Figure 3) making the total growth of
one side close to zero or even possibly negative. This could be
schematized as a ‘stop and go’ phenomenon, where each side of
the rachis grows alternately, before growth and motions cease alto-
gether. This alternate growth behavior was already apparent in pea’s
epicotyls observation (Baskin, 1986).

4.2. Contraction events during plant growth

In all generality, the spatial arrangement of the average elonga-
tion rate ε̇ and the differential elongation rate δ̇ can lead to local
contractions within the bending zone depending on their relative
amplitudes (see Figure 3d). Our local measurements of ε̇ in the
bending zone (see Figure 4a,b), interpreted by taking projection
effects into account, indirectly revealed that nutation in Averrhoa
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carambola rachis is compatible with local contraction events – i.e.,
negative elongation rates over finite spatial extent – (see Figure 4).
These results are in line with previous reports of contraction events
in the circumnutating stems of several other species (Baskin, 1986;
Berg & Peacock, 1992; Caré et al., 1998; Stolarz et al., 2008), both at
the cell and tissue levels. It was also observed that contractions are
circumscribed to either the basal end of the growth zone – where
the average elongation rate decays – (Berg & Peacock, 1992), or to
the bending zone (Caré et al., 1998), consistently with our findings.

Reports of contractions and negative growth rates go beyond
the sole context of nutation. They have indeed been observed
during shoot apical meristem morphogenesis (Kwiatkowska,
2006; Kwiatkowska & Dumais, 2003; Kwiatkowska & Routier-
Kierzkowska, 2009; Long et al., 2020) and the growth of simple
leaves (Armon et al., 2021), both at the cellular and organ scales.

The interpretation of negative growth rates is still a matter of
debate in the community. In 1992, Berg and Peacock, attributed
tissue contractions to a purely elastic behaviour (Berg & Peacock,
1992). In 1998, Care et al. showed that tissue contractions were
not artifacts but instead due to local cell contraction driven by
osmotic changes (Caré et al., 1998). Only recently, theories describ-
ing both elasticity and osmotic water fluxes between cells in plants
(Cheddadi et al., 2019; Oliveri & Cheddadi, 2025) have shown that
effects due to water transport are central in plant morphogenesis: a
growing tissue acts as a sink and extracts water from neighbouring
cells which acts like a source. In our case, during the nutation
movement, the growing side could get water from the opposite side,
leading to contractions of the latter.

4.3. A window on the physiological implications of nutation and
growth

We believe that growth motions, and nutation in particular, offer an
experimental framework to probe growth at the microscopic scale.
Its oscillatory nature combined with a clear spatial pattern allow
to probe a variety of cell wall mechanics, cell wall chemical status
and macroscopic growth rates combinations. A full microscopic
investigation goes beyond the scope of this article, but we provide
in Supplementary Material a set of preliminary experiments con-
stituting a proof of concept.

The first possible experiment is to use our nutating system to
probe cell wall elasticity in growing or not growing tissue. Our pre-
liminary experiments seem to indicate a strong correlation between
elasticity and growth: the growing side is found softer than the non-
growing side (see Figure S4 in the Supplementary Material, and
corresponding text). This belongs to a long series of observations
correlating growth with changes in cell wall elasticity, by suggesting
that growth is faster where the Young’s modulus is lower. This
phenomenon was evidenced in growing pollen tips (Zerzour et al.,
2009), maize roots elongation zone (Abeysekera & McCully, 1994;
Kozlova et al., 2019), Arabidopsis shoot meristem before primordia
formation (Milani et al., 2011; Peaucelle et al., 2011). Similarly,
we can probe the changes in chemical status during growth, and
our preliminary experiments seem to indicate a change in the
methylesterification status of the pectins if the tissue is growing or
not (see Figure S5 in the Supplementary Material and associated
text).

In our system it is difficult to disentangle the reversible and
irreversible contributions to growth as it was done by Proseus et al.
for the single-cell algae Chara (Proseus et al., 1999). It has also
been shown in the case of the shoot apical meristem that elastic
inhomogeneities (or differences in stress stiffening) could lead to

differential growth (Kierzkowski et al., 2012). Therefore, to discuss
the missing link between the observed microscopic properties and
the macroscopic contractions, we propose two different hypothetic
scenarios.

First, one should consider the reversible processes as they have
already been found to be involved in nutation and growth. As men-
tioned before, Cheddadi et al. recently formalised the water fluxes
coupling in multicellular organs. They showed in particular that
new types of lateral inhibitory mechanisms could amplify growth
heterogeneities (Cheddadi et al., 2019): softer tissues are favored to
become sinks for water at the expense of the neighbouring cells. In
order to investigate this scenario further, one will need to extend the
model to incorporate mechanical aspects. Recently, Moulton et al.
generalised the analytical results of Timoshenko about the growth
of 2D bimetallic strips (Timoshenko, 1925) to filaments in 3D
(Moulton et al., 2020a). This new framework, which already proved
successful to reproduce plant tropism (Moulton et al., 2020b), is an
exciting new line of investigation for nutation.

From our preliminary observations, one could also propose
a second hypothetical scenario for the temporal events: on the
growing side, HG are actively addressed to the cell wall in their
native methylated way. Then growth turns to the other side of the
rachis following an external or internal signal, and HG are sparsely
degraded or recycled by endoglucanase explaining the reduction in
staining observed in methylated and demethylated pectins. Here we
can indicate that the time scale could be as fast as 30 minutes. Haas
et al. (2020) proposed that the expansion part could be solely due
to HG filament expansion following the de-methylesterification.
In addition, the partial removal of the highly charged polymers
following their recycling could as well lead to cell wall compaction
in link with the observed tissue contraction.

5. Conclusion

To sum up, we provided on a new biological model case
(Averrhoa carambola), a complete kinematic description of the
nutation motion paying especially attention to the 3D effects.
Thanks to a kinematic model we could disentangle the projection
artifacts, and prove that contractions really happen during
nutation. Nutation is found to occur as a steady propagation spatial
growth pattern showing co-localisation of the peak of differential
growth with the onset of the growing region. Finally, we showed
that this macroscopic behaviour can be used as a tool to investigate
microscopic properties of the dynamically alternating growing
tissues.
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