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Abstract
We present EvolutionaryMap of the Universe Search Engine (EMUSE), a tool designed for searching specific radio sources within the exten-
sive datasets of the Evolutionary Map of the Universe (EMU) survey, with potential applications to other Big Data challenges in astronomy.
Built on a multimodal approach to radio source classification and retrieval, EMUSE fine-tunes the OpenCLIP model on curated radio galaxy
datasets. Leveraging the power of foundation models, our work integrates visual and textual embeddings to enable efficient and flexible
searches within large radio astronomical datasets. We fine-tune OpenCLIP using a dataset of 2 900 radio galaxies, encompassing various
morphological classes, including FR-I, FR-II, FR-x, R-type, and other rare and peculiar sources. The model is optimised using adapter-based
fine-tuning, ensuring computational efficiency while capturing the unique characteristics of radio sources. The fine-tuned model is then
deployed in the EMUSE, allowing for seamless image and text-based queries over the EMU survey dataset. Our results demonstrate the
model’s effectiveness in retrieving and classifying radio sources, particularly in recognising distinct morphological features. However, chal-
lenges remain in identifying rare or previously unseen radio sources, highlighting the need for expanded datasets and continuous refinement.
This study showcases the potential of multimodalmachine learning in radio astronomy, paving the way formore scalable and accurate search
tools in the field. The search engine is accessible at https://askap-emuse.streamlit.app/ and can be used locally by cloning the repository at
https://github.com/Nikhel1/EMUSE.
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1. Introduction

The Evolutionary Map of the Universe (EMU; Hopkins et al.
2025) survey, conducted with the Australian Square Kilometre
Array Pathfinder (ASKAP; Johnston et al. 2007; DeBoer et al. 2009;
Hotan et al. 2021), highlights the transformative role of modern
radio interferometers in cosmic exploration. Over its five-year
duration, the survey aims to detect more than 20 million com-
pact and extended radio galaxies, providing an unprecedented
dataset that will significantly enhance our understanding of galaxy
evolution and the Universe’s history. Additionally, such exten-
sive data are expected to unveil new astrophysical phenomena and
offer deeper insights into the origins of radio emissions. However,
achieving these scientific objectives requires moving beyond con-
ventional data mining techniques. Instead, innovative approaches
are needed to analyse, organise, and classify the vast amounts
of radio galaxy data, leveraging multiwavelength observations to
unlock the survey’s full potential.

In recent years, machine learning has become a powerful tool
for analyzing data from the next generation of radio telescopes
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(e.g. Mostert et al. 2021; Gupta et al. 2022; Walmsley et al. 2022;
Segal et al. 2023; Alegre et al. 2022; Gupta et al. 2023; Lochner
et al. 2023; Gupta et al. 2023; Slijepcevic et al. 2024; Mohale &
Lochner 2024; Gupta et al. 2024a; Lastufka et al. 2024; Gupta et al.
2024b; Riggi et al. 2024; Lochner & Rudnick 2025; Mostert et al.
2024; Lao et al. 2025; Gupta et al. 2025). These techniques have
significantly accelerated both the discovery of new radio mor-
phologies and the detection, classification, and cataloguing of
radio sources. Beyond the approaches employed in these studies,
emerging models with multimodal capabilities offer new oppor-
tunities to enhance the analysis of Big Data from radio telescopes.
For instance, foundation models, which are large-scale deep learn-
ing architectures pre-trained on diverse datasets, can be adapted
for radio astronomy tasks. These models, such as Generative
Pre-training Transformer (GPT; Brown et al. 2020), Contrastive
Language-Image Pre-training (CLIP; Radford et al. 2021), and
vision-language models like Gemini (Team et al. 2023), have
demonstrated remarkable capabilities in cross-modal understand-
ing and pattern recognition. By leveraging foundation models, we
can further improve the detection, classification, and retrieval of
radio sky data. Their ability to integrate information frommultiple
data modalities (e.g. radio, infrared, optical) enables more robust
source identification and classification (e.g. Jia et al. 2021; Alayrac
et al. 2022; Radford et al. 2021; Ramesh et al. 2022; Rombach
et al. 2022). Additionally, their adaptability through fine-tuning
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and zero-shota learning (e.g., Bommasani et al. 2021; Yu et al.
2022; Touvron et al. 2023) allows for more efficient exploration
of large-scale surveys, making them valuable tools for future radio
astronomy research.

Pre-training multimodal foundation models requires vast
image-text datasets and significant computational resources. The
lack of open-source models in this domain further hinders
progress. Recently, Parker et al. (2024) pre-trained a multimodal
model on galaxy data using optical imaging and spectral informa-
tion, applying it to downstream tasks. Similarly, Riggi et al. (2025)
pre-trained a small vision language model on radio images and
image-caption pairs with a focus on downstream generative tasks.
However, research on multimodal model pretraining suggests that
while pretraining strategies influence downstream performance,
the primary objective of pre-training should be to develop robust,
generalisable features rather than domain-specific ones. Domain
adaptation is generally more effective when achieved through
fine-tuning on task-specific datasets (see, e.g., Fayou et al. 2024;
Manzoor et al. 2023). Notably, Tanoglidis & Jain (2024) employed
GPT-4o and LLaVA-NeXT pre-trained models for zero-shot clas-
sification of low-surface-brightness galaxies and artifacts, as well
as for morphological galaxy classification. Their findings indi-
cate that, with natural language prompts, these models achieved
high classification accuracy (typically above 80%) without addi-
tional fine-tuning. Thus, leveraging a pre-trained model trained
on general real-world data is a promising approach for fine-
tuning domain-specific tasks while eliminating pre-training costs.
In a recent work, Cherti et al. (2023) trained CLIP using the
public LAION dataset (Schuhmann et al. 2022), which includes
an English image-text subset of 2.32 billion real-world samples,
to produce OpenCLIP – a large, publicly available image-text
model – using approximately 1 520 NVIDIA A100 GPUs. This
enables the design of downstream tasks using OpenCLIP as a
foundation model pre-trained on a vast image-text dataset.

In this work, we develop a framework to fine-tune the
OpenCLIP model on the RadioGalaxyNET dataset (Gupta et al.
2024a) derived from the Evolutionary Map of the Universe first
pilot survey (EMU-PS1 Norris et al. 2021a) using a single H100
GPU. We then leverage the fine-tuned model to develop EMUSEb

(Evolutionary Map of the Universe Search Engine), an applica-
tion that performs similarity search on the first-year observations
of the EMU main survey (Hopkins et al. 2025). EMUSE enables
users to explore data and identify similar radio sources through
image or text-based queries, allowing for rapid searches of specific
radio source classes. This capability is crucial for building statis-
tically robust samples of well-known categories, such as FR-I and
FR-II galaxies, as well as for discovering additional examples of
rare and peculiar systems. Such samples are essential for investi-
gating population properties, analysing the distribution of mor-
phological types, and tracing their evolution across cosmic time.
Additionally, EMUSE lays the groundwork to develop advanced
tools for rapidly extracting meaningful insights and discovering
new phenomena from the Big Data produced by next-generation
multiwavelength surveys.

The paper is organised as follows. In Section 2, we provide
details on the EMU survey, infrared observations and object
detection-based EMU catalogues. Section 3 is dedicated to the

aAn approach where a model is trained to recognise or classify objects, concepts, or
tasks it has never seen during training.

bhttps://github.com/Nikhel1/EMUSE.

foundation models and our fine-tuning approach. Section 4 pro-
vides comprehensive information about the EMUSE application.
Our findings are summarised in Section 5, where we also outline
directions for future research.

2. Data

This section presents an overview of the EMU survey, infrared
observations, and the catalogues generated through object detec-
tion used in this study.

2.1. EMU observations

The Evolutionary Map of the Universe (EMU) (EMUc; Hopkins
et al. 2025) is a large-scale radio survey being conducted with
the Australian Square Kilometre Array Pathfinder (ASKAP;
Hotan et al. 2021) to map the southern sky. ASKAP, located at
Inyarrimahnha Ilgari Bundara, MRO, consists of 36 antennas,
with most within a 2.3 km diameter and six extending to 6.4 km
baselines. The survey includes 853 tile footprints from 1 014
observations, with 692 tiles having 10-h integrations and 161 tiles
observed twice for 5-h integrations. EMU covers declinations from
−11◦.4 to the south celestial pole and selected equatorial regions
up to δ = +7◦.0, observing in the 800–1 088 MHz band, centred
at 944 MHz. The RMS noise ranges from 25 to 55~µJy/beam,
with a 13′′ × 11′′ beamwidth. By 2028, EMU aims to detect up
to 20 million radio sources over 2π sr of the sky. This study
uses data from EMU’s first-year observations (see Gupta et al.
2025, for details), covering 160 tiles (4 500 square degrees). Data
collection commenced in late 2022, with validated data arriving
between February 2023 and March 2024. The dataset, accessed
via the CSIRO Data Access Portal (CASDAd), consists of image
tiles and Selavy-based catalogues (Whiting & Humphreys 2012)
with Scheduling Block IDs (SBID) from 45 638 to 59 612. We
use restored images at a uniform 15′′ resolution per beam (iden-
tified by the ‘conv’ filename suffix in CASDA). For the 160 tiles
in the first-year dataset, this amounts to approximately 3 million
detected radio sources. Each tile is analysed independently rather
than combined into super mosaics, which may lead to duplicate
detections in overlapping regions.

2.2. Infrared observations

In addition to the EMU observations, we generate correspond-
ing 160 tiles for the AllWISE dataset from the Wide-field Infrared
Survey Explorer (WISE) (Wright et al. 2010; Cutri et al. 2021)
using the Montage image mosaic software.e WISE conducted an
all-sky infrared survey across four bands–W1, W2, W3, and W4–
at wavelengths of 3.4, 4.6, 12, and 22 µm, respectively. This study
focuses on theW1 band from AllWISE, which provides a 5σ point
source detection limit of 28 µJy and an angular resolution of 8.5′′.

2.3. Catalogues from RG-CAT pipeline

We use the RG-CAT catalogue construction pipeline (Gupta et al.
2024b), which integrates the Gal-DINOf object detection frame-
work (Gupta et al. 2024a) to catalogue radio sources systemati-
cally. Gal-DINO is designed to detect radio galaxies and identify

chttps://emu-survey.org/.
dhttps://research.csiro.au/casda/.
eImplementation available at: https://github.com/Nikhel1/wise_mosaics.
fhttps://github.com/Nikhel1/Gal-DINO.
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Figure 1. Overview of EMUSE (Evolutionary Map of the Universe Search Engine). Starting with the open-source OpenCLIP model, which is pre-trained on approximately 2.3
billion image-text pairs from the LAION dataset, we further fine-tuned it using an image-text dataset of extended radio sources in the EMU-PS1 survey. The fine-tuned model is
then used to generate image embeddings of EMU sources based on PNG images from the EMU and AllWISE surveys at the positions of extended radio sources identified in the
RG-CAT catalogue. The fine-tuned model, along with the generated image embeddings and catalogue metadata – which includes sky position, integrated flux, and host galaxy
information – is integrated into the EMUSE application framework to retrieve similar sources. EMUSE facilitates the search of the embedding database and outputs a table of EMU
survey radio sources that are similar to a given image or text prompt. The search engine is accessible at https://askap-emuse.streamlit.app/ and can be used locally by cloning
https://github.com/Nikhel1/EMUSE.

their probable infrared hosts. It is trained on 5 000 radio galax-
ies, including 2 800 from the RadioGalaxyNET dataset (Gupta
et al. 2024a), spanning FR-I, FR-II, FR-x, and R-type classifica-
tions based on peak separation and total extent (Fanaroff & Riley
1974). FR-I galaxies have a peak-to-extent ratio below 0.45, FR-
II above 0.55, FR-x between 0.45 and 0.55, and R-type sources
show resolved double jet emission with a single visible central
peak (ratio= 0; Norris et al. submitted). The dataset is further
expanded in Gupta et al. (2024b) with 2 100 compact/unresolved
galaxies and 100 rare morphologies, including bent-tailed galax-
ies, cluster halo emissions, and Odd Radio Circles (ORCs; Norris
et al. 2021b). Gal-DINO refines bounding box and keypoint pre-
dictions for identifying radio sources and their infrared hosts.
The performance evaluation yields an average precision with 50%
intersection over union (IoU), i.e., AP50, of 73.2% for bounding
boxes and 71.7% for keypoints, with 99% of central bounding
boxes achieving IoU> 0.5 and 98% of keypoints located within
< 3′′ of their true host positions (see Gupta et al. 2024b). We
extend RG-CAT from EMU PS1 to the first-year EMU main sur-
vey tiles, generating 8′ × 8′ cutouts for approximately 3 million
Selavy-based sources. Each cutout is analysed with Gal-DINO to
extract bounding boxes, categories, and confidence scores, assem-
bling a catalogue per tile. Compact sources are catalogued individ-
ually, while extended galaxies are grouped. A detailed catalogue of
radio sources and host galaxies will be presented in Gupta et al. (in
preparation), while this study focuses on extended radio sources
including rare morphologies.

3. Foundationmodels and fine-tuning

Foundation models capture broad, transferable knowledge and
can be fine-tuned to perform specific tasks in astronomy using rel-
atively small amounts of labelled data. In this work, we fine-tune
OpenCLIP, a multimodal foundation model, using radio source
images and their corresponding textual descriptions. This enables
the model to learn the unique visual and semantic features of
radio sources. As a result, it can support downstream tasks such
as retrieving similar images based on a query image or a text
prompt. In this section, we discuss multimodal foundationmodels
and provide details on fine-tuning OpenCLIP for the radio source
dataset. Figure 1 provides an overview of our framework.

3.1. Multimodal foundationmodels

Foundation models have recently gained significant attention for
their ability to integrate and process multiple modalities, such as
images and text, within a unified framework. Multimodal image-
text foundation models, in particular, have demonstrated remark-
able capabilities in bridging the gap between vision and language,
enabling applications like image captioning and visual question
answering (e.g., Ramesh et al. 2022; Rombach et al. 2022). These
models are typically pre-trained on large-scale datasets containing
paired image-text data, such as captions or descriptions, using self-
supervised learning techniques (e.g., Wang et al. 2021; Cherti et al.
2023). The self-supervised training paradigm leverages the inher-
ent alignment between images and their corresponding textual
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descriptions to learn rich, joint representations without requiring
explicit human annotations for every task. For instance, mod-
els like CLIP (Contrastive Language–Image Pre-training; Radford
et al. 2021) and ALIGN (Jia et al. 2021) employ contrastive learn-
ing objectives, where the model learns to maximise the similarity
between embeddings of matching image-text pairs while minimis-
ing it for non-matching pairs.

In contrast, GPT-based multimodal models extend the autore-
gressive language modelling paradigm of GPT to incorporate
visual inputs (e.g., Alayrac et al. 2022). These models are trained
to predict the next token in a sequence, enabling them to
generate coherent text conditioned on both textual and visual
inputs. Unlike CLIP, which focuses on alignment, GPT-based
models emphasise the generation of text based on multimodal
inputs. Gemini represents a unified architecture that aims to
seamlessly integrate multiple modalities into a single cohesive
model (Team et al. 2023). Unlike CLIP, which separates vision
and language encoders, and GPT-based models, which primar-
ily extend language models to handle visual inputs, Gemini is
designed to natively process multiple modalities (e.g., text, images,
audio, video) within a single architecture. Similarly, models
like MultiMAE (Multi-modal Multi-task Masked Autoencoders
Bachmann et al. 2022) use masked reconstruction tasks, where
parts of the input (e.g., patches of an image or words in a sentence)
are masked, and the model is trained to reconstruct them based on
the remaining context.

3.2. Fine-tuning foundationmodel

The success of multimodal image-text foundation models lies in
their ability to generalise across diverse tasks and domains by
leveraging the complementary information in both modalities.
By pre-training on vast amounts of image-text pairs, these mod-
els capture intricate cross-modal relationships, enabling them to
excel in downstream tasks with minimal fine-tuning (e.g., Yu et al.
2022; Cherti et al. 2023; Touvron et al. 2023). Furthermore, the
self-supervised nature of their training allows them to scale effec-
tively with increasing data and computational resources, leading
to emergent capabilities such as zero-shot or few-shot generalisa-
tion (e.g., Bommasani et al. 2021; Jia et al. 2021; Wang et al. 2021;
Alayrac et al. 2022). Despite their successes, several challenges per-
sist. These include the need for high-quality, diverse datasets for
pre-training and the substantial computational resources required
to train and deploy large-scale models. The limited availabil-
ity of open-source multimodal foundation models has also hin-
dered their adoption in specialised fields like astronomy. However,
recent collaborative efforts have led to the release of open-source
multimodal pre-trained models, making them accessible to the
broader research community.

In this study, we use the OpenCLIP (Cherti et al. 2023),
an open-source multimodal foundation model, trained on 2.32
billion real-world image-text pairs sourced from the publicly
accessible LAION dataset (Schuhmann et al. 2022). OpenCLIP is
based on the CLIP architecture (Radford et al. 2021). OpenCLIP
employs a Contrastive-Captioning (CoCa; Yu et al. 2022) frame-
work that combines contrastive learning and generative caption-
ing into a single unified model. Contrastive learning aligns image
and text embeddings in a shared latent space. Generative caption-
ing produces descriptive captions for images. This dual-objective
approach allows OpenCLIP to serve as a strong foundation model
for both discriminative and generative multimodal tasks. LAION

is one of the largest open datasets for vision-language research,
containing diverse and noisy web-scraped data that enable the
model to learn robust cross-modal representations. By leverag-
ing this vast amount of paired data, OpenCLIP achieves strong
performance across a variety of tasks, including zero-shot image
classification, cross-modal retrieval, and visual question answer-
ing. Fine-tuning OpenCLIP for specific downstream tasks is facil-
itated by its modular architecture and compatibility with widely
used deep learning frameworks such as PyTorch. Users can refine
the model by updating all parameters or employing parameter-
efficient approaches, such as linear probing or adapter-based fine-
tuning. In linear probing, only a task-specific classification head
is trained while keeping the pre-trained weights fixed. This makes
it a computationally efficient strategy, particularly for applications
with limited labelled data. Formore complex tasks, full fine-tuning
enables the model to adapt its learned representations to the spe-
cific characteristics of the target domain. Furthermore, OpenCLIP
allows for customisation through modifications to its training
pipeline, providing flexibility to explore alternative objectives,
optimisers, and data augmentation techniques.

We use the RadioGalaxyNET dataset (Gupta et al. 2024a) to
fine-tune the pre-trained OpenCLIP model. The dataset includes
2 800 FR-I, FR-II, FR-x, and R-type radio galaxies, along with
their corresponding infrared hosts. Following (Gupta et al. 2024b),
we incorporate an additional category containing 100 peculiar
sources and other rare morphologies. For each of these radio
sources, we generate 4′ × 4′ image cutouts from the EMU-PS1 sur-
vey and corresponding cutouts from the AllWISE survey. The host
galaxy position is used as the cutout centre, ensuring that the full
extent of the radio emission is captured. These cutouts are saved as
PNG (Portable Network Graphics) images, with the first two chan-
nels containing radio cutouts. Data clipping is applied between
the 50th percentile level and the maximum values of the 99th
and 99.9th percentiles for the first and second channels, respec-
tively. The third channel contains the AllWISE W1 band image.
We expand the labels for these radio galaxies by incorporating
morphological descriptions and textual variations (see examples
in Table A5), and by adding additional information based on
their subcategories (Norris et al. submitted). For instance, an FR-
II radio galaxy that exhibits a bent-tailed structure is labelled as:
‘An image of an FR-II or Fanaroff-Riley type II radio galaxy with
edge-brightened lobes bent at an angle.’ Similarly, an ORC, an
extragalactic, edge-brightened ring-like radio structure surround-
ing a distant host galaxy, typically lacks detectable emission at
other wavelengths beyond its host but can exhibit diffuse radio
emission within the bright ring structure (Norris et al. 2025), and
is labelled as: ‘An image of a peculiar radio galaxy classified as an
Odd Radio Circle.’ Additional sub-categories include HyMORS
(hybrid morphology radio sources), which exhibit an FR-I appear-
ance on one side of the core and an FR-II appearance on the
other; DDRGs (double-double radio galaxies), often interpreted
as ‘restarted’ radio galaxies; resolved star-forming radio galaxies;
as well as core-dominated radio galaxies where the radio emission
associated with the host galaxy is significantly brighter than the
lobes.

Using the radio and infrared image cutouts of sources along
with the expanded text descriptions, we fine-tune the pre-trained
OpenCLIP model on a single NVIDIA H100 GPU for 100 epochs,
which takes approximately 1.5 h. We employ adapter-based fine-
tuning, which allows the model to adapt its learned representa-
tions to the characteristics of radio sources. Given that OpenCLIP
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Figure 2. Model accuracy evaluated on the test set after each epoch. Error bars rep-
resent the variance, calculated by fine-tuning and testing the model 10 times with
randomly drawn training and test sets.

combines both the contrastive and generative sides into a single
unified architecture, we focus solely on the contrastive side during
fine-tuning. This approach encourages embeddings of matching
image-text pairs to be close together while pushing non-matching
pairs apart, thereby enabling zero-shot retrieval tasks for EMU
data. To evaluate the model’s performance, we split the radio
source dataset into an 80:20 ratio for training and testing. The
training and testing data are randomly sampled from the full
set 10 times, and the OpenCLIP model is trained separately on
each iteration of the randomly selected training data. The trained
models are then tested on independently selected test data, also
drawn randomly 10 times. Figure 2 presents the accuracy over 100
training epochs. The error bars reflect the variance in test results
across the 10 training iterations. The figure indicates that accu-
racy exceeds 50% after a single epoch and gradually increases to
84± 3% after 100 epochs. Notably, while the model is trained on
images paired with their expanded text descriptions, we assess its
accuracy using only the main categories – FR-I, FR-II, FR-x, R,
and Peculiar – during testing. Top panel of Figure 3 shows the
confusion matrix for these main categories. The values shown
are averaged across 10 training iterations. The results demon-
strate that the fine-tunedmodel predicts these categories with high
accuracy overall, although there is greater confusion between FR-
I and FR-x sources. This is expected, as the primary distinction
between these two categories lies in the peak-to-extent ratio (as
described in Section 2.3). In contrast, confusion is much lower
for the Peculiar category, despite it having the smallest train-
ing sample size. Bottom panel of Figure 3 displays the Uniform
Manifold Approximation and Projection (UMAP,McInnes, Healy,
&Melville 2018) projection of image embeddings from the model,
with points representing sources in test sets across all 10 training
runs. This highlights how different ground truth categories form
distinct clusters, while also revealing overlaps that align with the
patterns seen in the confusion matrix. Additionally, although the

Figure 3. The top panel shows the confusion matrix comparing ground truth labels to
predicted labels for each main category. The displayed values are averaged over 10
training iterations. The bottom panel shows the UMAP projection generated from the
image embeddings produced by the model’s image encoder, illustrating that different
ground truth categories cluster in distinct regions. The plotted points include test sets
from all 10 training iterations.

accuracy and confusion matrix evaluations are based on training
with 80% of the data, we fine-tune the final model using 100% of
the radio source dataset. This ensures that all available image-text
pairs are utilised to train the final model used for the EMU search
engine.

4. EMUSE application

We develop EMUSE (Evolutionary Map of the Universe Search
Engine), a tool that employs similarity search using the fine-tuned
model described in the previous section. We use catalogues gen-
erated by the RG-CAT pipeline (see Section 2.3), which employs
the Gal-DINO object detection model to process each EMU tile.
We filter extended radio sources classified as FR-I, FR-II, FR-x,
R, and Peculiar from the catalogues. From the 160 tiles observed
during the first year of the EMU survey, we identify approxi-
mately 170 000 such extended radio sources where the prediction
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confidence score exceeds the minimum estimated threshold of
the Gal-DINO model. Using the sky positions from the cata-
logues, we generate cutouts from the EMU and AllWISE surveys,
which are saved as radio-radio-infrared channel PNG images.
The fine-tuned model is then used to generate image embed-
dings for each PNG. Additionally, we store the corresponding
catalogue metadata for each image embedding, including source
positions, integrated radio flux, and the potential host name from
the CatWISE catalogue (Marocco et al. 2021), as provided by the
RG-CAT pipeline. Note that the potential host details provided
here are based on estimates from the Gal-DINO model within
the RG-CAT pipeline and have not been verified through visual
inspection.

EMUSE implements a zero-shot retrieval framework, enabling
the model to generalise its knowledge to unseen classes or tasks
without explicit training on those specific classes. In this work,
we use the fine-tuned OpenCLIP multimodal model, which has
been trained to produce aligned embeddings for images and text.
Specifically, we generate embeddings for approximately 170 000
EMU survey radio sources from PNGs with radio and infrared
channels, using the fine-tuned model. These embeddings replace
the original images, which require over 150 GB of storage and
are difficult to search efficiently for multiple queries. In contrast,
the embeddings occupy only a few hundred megabytes, mak-
ing the search engine viable. These embeddings are stored in a
database and can be queried using either text queries (e.g., ‘radio
galaxy with jets’) or image queries (e.g., a sample image of a
radio source). The zero-shot capability arises from the model’s
ability to retrieve similar sources based on the semantic align-
ment of embeddings in the shared latent space, without requiring
additional training on specific classes or queries.

For a given text query, the input is first tokenised using the
OpenCLIP tokeniser, and its embedding is obtained through
the fine-tuned model’s text encoder. For an image query, the
input image undergoes preprocessing using OpenCLIP’s standard
pipeline, which includes resizing to 224× 224 pixels, conver-
sion to RGB and then to Pytorch tensor, and normalisation with
the model’s predefined mean and standard deviation values. The
resulting image is then passed through the fine-tuned model’s
image encoder to generate its embedding. To search for similar
sources, we compute the similarity between the query embed-
ding (either derived from a text or an image query) and the
precomputed embeddings of the EMU survey source images as

S(q, ei)= q · ei
||q||~||ei|| , (1)

where:

• q ∈R
d: The embedding of the query (text or image) in the

shared latent space.
• ei ∈R

d: The embedding of the i -th image in the database
(i= 1, 2, . . . ,N).

• S(q, ei): The cosine similarity function measures the align-
ment between the query and image embeddings, nor-
malised between 0 and 1.

The top-kmost similar image embeddings are retrieved as

top-k= argmaxi∈{1,2,...,N}S(q, ei). (2)

The information corresponding to these top-k embeddings is
then fetched from the RG-CAT catalogue metadata. This includes

the EMU tile SBID where the source is located, its RA (deg),
Dec (deg), integrated flux density (mJy), and potential host galaxy
names from the CatWISE catalogue, along with the probability
describing the estimated similarity between the query embedding
q and the image embedding ei. The following sections discuss
examples of text and image queries.

4.1. Text queries

We evaluate the zero-shot retrieval capability of the fine-tuned
OpenCLIP model using various queries, presenting two exam-
ples for brevity. The application is publicly available, allowing
readers to submit their queries. For instance, we search for ‘A bent-
tailed radio galaxy’. Table A1 displays the EMUSE output, listing
the top 50 most similar radio sources along with their potential
host galaxies from RG-CAT. The number of displayed sources
can be adjusted by modifying the minimum probability thresh-
old and the desired number of results in the interface. Using the
positions in Table A1, we present all 50 corresponding images in
Figure A1, demonstrating that the fine-tunedmodel can efficiently
retrieve bent-tailed radio sources across the EMU survey. For the
second query, ‘Resolved star-forming radio galaxies’, the EMUSE
results are shown in Table A2 and Figure A2, further highlight-
ing the model’s ability to identify and classify such morphologies.
While these examples showcase the model’s capability to interpret
text queries and retrieve relevant image data, this performance is
directly attributed to the fine-tuning applied in this work. Sources
absent from the fine-tuning dataset – such as cluster relics and
supernova remnants – may not be retrieved effectively.

Additionally, text-based queries in EMUSE currently under-
perform compared to image-based queries. For example, a simple
search for ‘odd radio circle’ returns no results above a probabil-
ity threshold of 0.9, while a more descriptive prompt, such as
‘An image of a peculiar radio galaxy classified as an Odd Radio
Circle’, successfully retrieves relevant sources. Conversely, concise
text like ‘FR-II’ yields meaningful matches, whereas longer, more
complex phrases, such as ‘An image of an FR-II or Fanaroff-Riley
type II radio galaxy with edge-brightened lobes bent at an angle’,
often result in inconsistent or unrelated outputs. This inconsis-
tency stems from the sensitivity of the model to phrasing and its
reliance on the limited and sparse textual descriptions used during
fine-tuning. Since the alignment between text and image embed-
dings depends heavily on how descriptions are written, the model
struggles to interpret astronomy-specific language without suffi-
cient contextual variety. While adding a broader range of textual
descriptions could help, this approach is constrained by variability
in human annotation styles. Amore scalable and effective solution
may involve augmenting the training data with language rewrites
(Fan et al. 2023) and paraphrasing techniques (Kim et al. 2024)
or by leveraging large language models to generate richer and
more diverse textual descriptions (e.g., Nguyen et al. 2023; Yu et al.
2024; Chen et al. 2024). These strategies could enhance themodel’s
ability to interpret different forms of scientific language and bet-
ter align them with corresponding visual features, and should be
explored in future work.

4.2. Image queries

For image-based queries, we demonstrate two examples: an FR-
II radio galaxy and ORC J2103-6200 (Norris et al. 2021b). We use
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Figure 4. Example image queries for EMUSE. These figures are screenshots from the
EMU-PS1 image, takenwhile being viewed in CARTA. The left panel shows an FR-II radio
galaxy, while the right panel displays ORC J2103-6200 (Norris et al. 2021b).

EMU-PS1 images, open them in CARTA,g and capture screenshots
of these sources (see Figure 4). These screenshots are then used
as query inputs to search the EMU survey. For the FR-II source
shown in the left panel of Figure 4, the corresponding EMUSE
results are presented in Table A3 and Figure A3. Notably, most
of the retrieved sources exhibit emission from the core, which is
consistent with the query image. Additionally, their sky orienta-
tion closelymatches that of the input query, further demonstrating
the model’s effectiveness in retrieving morphologically similar
sources.

The EMUSE results for the ORC J2103-6200 image query are
shown in Table A4, and in Figure A4. The first four sources include
a starburst radio ring galaxy (SRRG), an ORC candidate, another
SRRG, and a radio source without a plausible host galaxy, as
also identified in Gupta et al. (2025). Although the training set
for fine-tuning included only two ORCs, the model successfully
retrieves a knownORC candidate, several half-ring-like structures,
and potential GLAREs (Galaxies with Large-scale Ambient Radio
Emission; Gupta et al. 2025), which may represent an evolution-
ary stage of ORCs. This demonstrates the potential of EMUSE for
discovering such rare radio sources, which will be enhanced by
incorporating a larger training sample of these sources in future
updates to the model. Further multi-wavelength visual inspections
are needed to categorise the remaining sources in the figure. Due
to the limited training data for ORCs, the model also retrieves
resolved star-forming radio galaxies and other radio sources occu-
pying similar embedding spaces to the image query. However, it
also identifies Wide Angle Tailed (WAT) sources and other diffuse
emissions, highlighting the need for more ORC examples in the
training data.

Note that when a screenshot is used as a query input to a model
trained on 3-channel images, the information in the image is typ-
ically replicated across all three channels to match the expected
input format. Although the screenshot may lack the multi-channel
radio and infrared details present in the training data, the model
often still performs reasonably well. This is likely because high-
level structural features, such as morphology and spatial patterns,
are still available. While the resulting embeddings may not cap-
ture the full richness of the original data, such as distinguishing
between resolved spirals and ORCs, they can still yield meaning-
ful similarity results. Additionally, we find that different image
queries – such as screenshots of this ORC taken from various
sources (e.g., academic papers) or images of other previously

ghttps://cartavis.org/.

identified ORCs and ORC candidates – yield different sets of
sources in the similarity space. A comprehensive future study of
similar sources obtained from various queries will help expand the
catalogue of such rare systems.

5. Conclusions

We explore the application of multimodal foundation models in
the field of radio astronomy, specifically leveraging the power
of OpenCLIP, an open-source pre-trained multimodal model, to
classify and retrieve radio sources from the EMU survey. Radio
astronomy, with its vast and complex datasets, benefits from
advanced machine learning techniques that can efficiently pro-
cess large amounts of data and provide insights into the nature of
celestial objects. This paper aims to enhance the identification and
retrieval of different types of radio galaxies by using the OpenCLIP
model, which integrates both visual and textual information in a
shared embedding space. The motivation behind this study is to
bridge the gap betweenmachine learning and astronomy, allowing
for more accurate and efficient searches within large radio source
databases.

In this work, we fine-tune the OpenCLIP model on a dataset
of 2 900 radio galaxies from the RadioGalaxyNET dataset, which
includes various morphological classes, such as FR-I, FR-II, FR-x,
R-type, and peculiar radio sources. The fine-tuning is performed
using adapter-based methods, ensuring that the model adapts
effectively to the specific characteristics of radio sources while
maintaining computational efficiency. The model is trained to
map radio and infrared images to a shared latent space along-
side their associated textual descriptions. Through this process,
the model learns the complex relationships between image fea-
tures and text, making it capable of performing zero-shot retrieval
tasks without the need for additional task-specific training.

The fine-tuned OpenCLIP model is then integrated into the
EMUSE (Evolutionary Map of the Universe Search Engine) appli-
cation, enabling the efficient search and retrieval of radio sources
from the EMU survey. By converting the images of radio sources
into compact embeddings, the model reduces the data storage
requirements and makes searching across large datasets feasible.
The application allows users to query the database using both text
and image-based inputs, providing a flexible and powerful tool for
identifying and classifying radio galaxies. Notably, the zero-shot
retrieval capabilities of the model allow it to generalise to new
types of radio sources, making it adaptable to future discoveries
without the need for retraining.

The results from the evaluation of the model demonstrate its
effectiveness in retrieving radio sources based on both text and
image queries. In particular, the model performs well in retriev-
ing sources with specific morphological features. Additionally, the
image query functionality highlights the model’s ability to recog-
nise and retrieve similar sources withmatchingmorphological fea-
tures, even for complex objects like Odd Radio Circles. However,
certain categories of radio sources–such as supernova remnants,
planetary nebulae, cluster relics, etc.–which were absent from the
fine-tuning dataset may not be retrieved as accurately. This lim-
itation highlights the importance of continuously expanding the
training data to include a wider range of radio source types.

Future work should focus on extending the model to accom-
modate more complex datasets, enhancing its performance on
rare or previously unseen radio sources, and integrating it with
other astronomical databases to further expand its capabilities.
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Future work should also focus on improving the accessibility of
the EMUSE application by displaying the source images from
the catalogue generated through image and text queries. This
functionality can be implemented by retrieving images via the
cutout service, which is currently being integrated into the CASDA
server. While this study demonstrates the model’s application
using the first-year data from the EMU survey, future efforts
should incorporate observations from the ongoing survey in the
coming years. In addition, incorporating more multiwavelength
datasets will help refine the classification of rare radio sources,
improving the model’s accuracy and applicability. The current
approach relies on RG-CAT catalogues, which in turn are derived
from Selavy-based catalogues. Consequently, sources missed by
Selavy–such as very faint objects–are also absent from our results.
Future research should explore catalogue-agnostic approaches to
mitigate this limitation. Furthermore, with the increasing avail-
ability of open-source pre-trained models, whether trained on
astronomical or real-world data, future studies should investigate
the adoption of newer architectures that may enhance fine-tuning
beyond OpenCLIP. By providing an efficient and scalable solution
for radio astronomy, this approach paves the way for researchers
to explore and classify the ever-growing volume of radio datamore
effectively, ultimately advancing our understanding of complex
radio sources.

Data availability statement. The OpenCLIP model with fine-tuning
settings is available at https://github.com/Nikhel1/Finetune_OpenCLIP.
The radio source images and labels used for fine-tuning are avail-
able at https://doi.org/10.25919/btk3-vx79, while the exact images and
expanded text descriptions are available upon request. The search engine
is accessible at https://askap-emuse.streamlit.app/ and can also be used
locally by cloning the repository and following the steps provided at
https://github.com/Nikhel1/EMUSE, i.e., by running the command ‘streamlit
run main.py’. The fine-tuned models, EMU survey radio source embeddings,
and catalogue metadata are accessible within ‘main.py’.
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Appendix

Table A1. Top-50 EMUSE output for text query, ‘A bent-tailed radio galaxy’.

SBID RA (Degrees) Dec (Degrees) Integrated flux (mJy) CatWISE potential host Probability
47034 37.63730 −49.23537 8.27 J023032.95-491407.3 0.99

53218 251.15865 −61.97237 15.71 J164438.07-615820.5 0.99

51432 151.54313 −10.53717 23.71 J100610.35-103213.7 0.99

50419 137.03420 −5.72172 31.96 J090808.20-054318.1 0.99

51964 335.60979 −4.71453 51.79 J222226.34-044252.3 0.99

59804 138.76081 −16.81240 9.01 J091502.59-164844.6 0.99

46982 47.54216 −69.89382 14.76 J031010.11-695337.7 0.99

51962 209.24932 −8.51805 7.80 J135659.83-083104.9 0.99

59095 151.54427 −10.53891 25.03 J100610.62-103220.0 0.99

51852 329.42790 −4.31361 6.29 J215742.69-041848.9 0.99

54923 330.48922 −62.24350 5.05 J220157.41-621436.6 0.99

52145 115.69195 −56.67697 261.32 J074246.06-564037.0 0.99

59607 56.37160 −72.79562 6.41 nan 0.99

53557 355.02405 −69.47579 60.33 nan 0.99

54098 118.43152 −48.97921 8.79 J075343.56-485845.1 0.99

50417 249.27072 −73.72866 5.27 J163704.97-734343.1 0.98

54802 293.68269 −68.72743 12.80 J193443.84-684338.7 0.98

54770 77.56348 −9.15113 31.80 J051015.23-090904.0 0.98

59609 181.47904 0.76041 0.93 J120554.96+004537.4 0.98

51559 197.17494 −4.94096 87.75 J130841.98-045627.4 0.98

47034 41.25039 −50.51419 40.77 J024500.09-503051.0 0.98

50534 171.09989 −0.74536 1.49 J112423.97-004443.2 0.98

52161 332.68165 −10.94630 0.63 J221043.59-105646.6 0.98

53566 334.34896 −71.74171 2.21 nan 0.98

53218 251.11829 −61.97387 1.25 nan 0.98

46971 13.11986 −37.73006 47.53 J005228.76-374348.2 0.98

50181 133.86841 1.80529 2.29 J085528.41+014819.0 0.98

55325 333.19754 −8.31449 2.45 J221247.41-081852.1 0.98

46971 10.68130 −38.09499 36.30 J004243.51-380541.9 0.98

45781 334.95910 −57.38690 5.19 J221950.18-572312.8 0.98

54105 266.01302 −53.35766 5.58 J174403.12-532127.5 0.98

46946 32.10990 −53.65888 18.66 nan 0.98

46971 14.40059 −34.83221 5.28 J005736.14-344955.9 0.98

59609 181.08124 −0.31712 6.30 J120419.49-001901.6 0.98

54807 29.34617 −9.45147 279.85 J015723.08-092705.2 0.98

55325 335.34370 −11.61309 3.50 J222122.48-113647.1 0.98

52145 116.96675 −57.52042 10.44 J074752.02-573113.5 0.98

51962 208.93476 −7.27899 4.04 J135544.34-071644.3 0.98

46955 264.45051 −71.44783 11.33 nan 0.98

55325 332.58552 −10.21272 11.37 J221020.52-101245.7 0.98

54926 265.19108 −62.84665 1.35 J174045.85-625047.9 0.97

50423 30.06071 −28.35766 1.54 J020014.56-282127.5 0.97

50787 52.00056 −52.70249 0.37 J032800.13-524208.9 0.97

51818 304.85137 −56.85586 64.85 J201924.32-565121.0 0.97

47034 34.02686 −52.14808 1.38 J021606.44-520853.0 0.97

52125 299.83536 −59.08474 10.32 J195920.48-590505.0 0.97

51930 314.36795 3.41040 7.30 J205728.30+032437.4 0.97

46971 14.10576 −39.69648 106.41 nan 0.97

51931 83.41189 −57.68088 8.26 J053338.85-574051.1 0.97

53210 102.14236 −45.50372 8.87 nan 0.97

50049 130.24632 1.60090 29.77 J084059.11+013603.2 0.97
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Figure A1. Top-50 EMUSE output for the text query, ‘A bent-tailed radio galaxy’. Positions in Table 1 are used here for 5′ × 5′ cutout images with radio-radio-infrared (RGB)
channels.
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Table A2. Top-50 EMUSE output for text query, ‘Resolved star forming radio galaxy’.

SBID RA (Degrees) Dec (Degrees) Integrated flux (mJy) CatWISE potential host Probability
51958 340.06634 −2.42481 6.32 nan 0.97

51964 340.06702 −2.42499 4.63 nan 0.96

59560 180.09821 −1.10006 212.74 J120023.57-010600.2 0.96

54773 11.94711 −11.46856 20.76 J004747.30-112806.8 0.96

59607 68.25520 −73.23706 54.31 J043301.24-731413.4 0.96

52125 298.60649 −58.71635 43.65 nan 0.96

59609 180.09846 −1.09651 2.03 nan 0.95

51959 100.18053 −58.52443 61.85 J064043.32-583127.9 0.95

53513 340.10107 −66.47889 1.77 J224024.25-662844.0 0.95

51574 283.00855 −57.32063 33.93 J185202.05-571914.2 0.95

51932 197.20163 −6.77416 34.15 nan 0.95

53313 3.62772 −7.16736 23.08 J001430.65-071002.4 0.94

46976 351.34005 −57.79137 23.85 J232521.61-574728.9 0.94

46925 35.01385 −64.60222 49.33 J022003.32-643607.9 0.94

59835 218.46783 5.45840 50.65 J143352.27+052730.2 0.94

51574 278.63108 −57.79277 39.97 J183431.45-574733.9 0.94

51948 197.51854 −46.43741 10.42 J131004.45-462614.6 0.94

51930 319.81097 6.02001 4.54 J211914.63+060112.0 0.93

52096 315.71100 3.94851 12.02 nan 0.93

54769 279.98512 −67.42562 14.59 J183956.42-672532.2 0.93

54770 74.19130 −10.59294 8.26 J045645.91-103534.5 0.93

50230 72.09941 −59.80035 54.35 J044823.85-594801.2 0.93

50182 210.52001 −1.35790 6.31 J140204.80-012128.4 0.93

50787 57.32923 −51.81883 9.22 J034919.01-514907.7 0.93

53314 113.84786 −66.35405 4.08 J073523.48-662114.5 0.93

46978 74.65443 −75.07876 3.33 nan 0.93

52121 311.94228 −65.08420 7.43 J204746.14-650503.1 0.92

51948 197.50475 −46.44542 0.75 nan 0.92

50230 73.21743 −59.74236 40.85 J045252.18-594432.5 0.92

54926 271.28683 −64.19840 0.78 J180508.83-641154.2 0.92

54802 295.97530 −70.63307 126.75 J194354.07-703759.0 0.92

52125 293.64487 −61.14600 4.34 J193434.77-610845.5 0.92

45761 328.32113 −59.49363 26.04 J215317.07-592937.0 0.92

46946 29.41844 −57.79017 48.72 J015740.42-574724.6 0.92

53566 330.52304 −71.08281 2.61 nan 0.92

46951 16.25826 −49.41661 165.21 J010501.98-492459.7 0.92

53211 219.57554 3.41044 13.33 J143818.13+032437.5 0.91

53566 346.08974 −71.48710 18.93 nan 0.91

51931 83.01161 −56.35367 45.12 J053202.78-562113.2 0.91

54098 114.32972 −52.74191 3.86 J073719.13-524430.8 0.91

46955 274.10770 −71.58137 19.48 J181625.84-713452.9 0.91

59246 185.17599 −0.86446 57.97 J122042.23-005152.0 0.91

46980 259.24811 −62.82057 29.04 J171659.54-624914.0 0.91

47130 36.12181 −44.60664 8.49 J022429.23-443623.9 0.91

51928 202.98277 −6.64210 32.91 J133155.86-063831.5 0.90

59612 327.96281 −69.08918 2.55 J215151.07-690521.0 0.90

51930 315.71009 3.94843 12.21 nan 0.90

52125 295.89349 −58.65578 181.12 J194334.43-583920.8 0.90

53313 7.80539 −10.48083 22.45 J003113.29-102850.9 0.90

54923 319.06100 −64.46230 4.87 nan 0.90

51948 199.74997 −47.90849 15.66 J131859.99-475430.5 0.90

https://doi.org/10.1017/pasa.2025.10064 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10064


Publications of the Astronomical Society of Australia 13

Figure A2. Top-50 EMUSE output for the text query, ‘Resolved star forming radio galaxy’. Positions in Table 2 are used here for 5′ × 5′ cutout images with radio-radio-infrared
channels.
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Table A3. Top-50 EMUSE output for image query shown on the left panel of Figure 4.

SBID RA (Degrees) Dec (Degrees) Integrated flux (mJy) CatWISE potential host Probability
50786 316.61292 −4.78572 10.53 J210627.10-044708.6 1.00

53293 18.19064 −32.22042 5.78 J011245.75-321313.5 1.00

52219 202.43153 −4.45410 45.05 J132943.56-042714.7 1.00

50413 214.07986 −30.43106 89.79 J141619.16-302551.8 1.00

46959 248.13356 −67.51922 15.87 nan 1.00

51956 215.66485 −32.45638 16.27 J142239.56-322722.9 0.99

46943 217.75088 −27.24095 8.59 J143100.21-271427.4 0.99

52145 110.91825 −56.29562 6.02 J072340.37-561744.2 0.99

54105 262.17056 −58.22261 33.48 J172840.93-581321.3 0.99

51948 202.43108 −45.65679 39.95 J132943.45-453924.4 0.99

50049 128.88849 −0.12402 76.55 J083533.23-000726.4 0.99

46984 226.25434 −29.33961 92.99 J150501.04-292022.5 0.99

53293 16.15859 −32.80721 19.25 J010438.06-324825.9 0.99

51845 135.19085 −65.74613 24.90 J090045.80-654446.0 0.99

51430 316.38351 −8.14548 266.17 J210532.04-080843.7 0.99

51948 200.09450 −48.31177 26.21 J132022.68-481842.3 0.99

54769 278.69927 −70.52948 16.38 J183447.82-703146.1 0.99

51853 90.49432 −61.78667 19.35 J060158.63-614712.0 0.99

54926 260.52841 −65.20608 30.05 nan 0.99

51959 107.88512 −59.62079 56.10 J071132.42-593714.8 0.99

46966 25.48851 −47.38656 135.70 J014157.24-472311.6 0.99

59862 338.72276 −52.02211 17.26 J223453.46-520119.5 0.99

51559 196.72903 −6.66626 9.97 J130654.96-063958.5 0.99

53566 334.88363 −70.04507 99.03 J221932.07-700242.2 0.99

45761 331.92321 −58.53195 13.55 J220741.57-583155.0 0.99

53183 31.39560 −3.51602 14.33 J020534.94-033057.6 0.99

46984 225.38555 −26.05533 23.63 J150132.53-260319.1 0.99

59253 32.19052 −9.28769 8.62 J020845.72-091715.6 0.99

54944 317.80591 −58.32017 17.78 J211113.41-581912.5 0.99

46978 89.13536 −72.11116 145.02 nan 0.99

51927 103.99102 −55.89982 86.91 J065557.84-555359.3 0.99

54099 251.46808 −70.70401 4.41 J164552.33-704214.4 0.99

50182 207.68442 −1.60279 66.31 J135044.26-013610.0 0.99

51434 319.58953 1.68626 51.62 nan 0.99

53304 106.05205 −71.92890 21.78 J070412.49-715544.0 0.99

52179 309.15719 −19.99941 32.53 J203637.72-195957.8 0.99

53557 347.29875 −69.63885 21.84 nan 0.99

55326 40.19354 −4.85017 97.93 J024046.45-045100.6 0.99

59159 50.59763 −44.95993 12.03 J032223.43-445735.7 0.99

55326 38.39934 −6.26939 9.57 J023335.84-061609.8 0.99

53313 3.18376 −9.52691 24.55 J001244.10-093136.8 0.98

47136 27.32598 −49.39718 16.81 J014918.23-492349.8 0.98

54926 270.53502 −63.61610 20.11 J180208.40-633657.9 0.98

54802 301.48566 −68.00271 9.24 nan 0.98

51797 322.61649 −54.85862 380.63 J213027.95-545131.0 0.98

54104 123.48123 −56.99331 71.76 J081355.49-565935.9 0.98

46957 62.52834 −70.44637 26.79 J041006.80-702646.9 0.98

46980 261.24429 −66.32601 59.09 nan 0.98

51448 319.58879 1.68616 51.57 nan 0.98

51430 317.08857 −8.84341 38.37 J210821.25-085036.2 0.98

46925 31.93579 −66.12144 19.10 J020744.58-660717.1 0.98
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Figure A3. Top-50 EMUSEoutput for imagequery shownon the left panel of Figure 4. Positions in Table 3 are usedhere for 5′ × 5′ cutout imageswith radio-radio-infrared channels.
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Table A4. Top-50 EMUSE output for image query shown on the right panel of Figure 4.

SBID RA (Degrees) Dec (Degrees) Integrated flux (mJy) CatWISE potential host Probability
46984 227.02211 −25.77369 7.61 J150805.30-254625.2 1.00

50538 77.63662 −58.42155 2.17 J051032.78-582517.5 1.00

51956 211.64795 −34.31162 9.76 J140635.50-341841.8 0.99

51962 211.78771 −9.28361 4.36 J140709.04-091700.9 0.97

59094 49.29686 −52.15329 1.51 J031711.24-520911.8 0.97

46959 241.29206 −70.51253 0.62 J160510.09-703045.0 0.96

54773 11.76460 −11.87260 42.27 J004703.50-115221.3 0.96

50048 20.79271 −54.33171 0.95 nan 0.95

53304 105.78548 −70.59927 1.27 J070308.51-703557.3 0.94

46978 80.58389 −71.56971 11.67 J052220.13-713410.9 0.94

46955 266.63387 −68.26133 1.94 J174632.12-681540.7 0.94

50048 20.81822 −54.34069 3.21 nan 0.94

51434 318.06099 −0.39710 1.69 nan 0.94

54926 269.71410 −64.15688 0.87 J175851.38-640924.7 0.94

54098 118.77421 −49.65293 0.49 J075505.81-493910.5 0.93

45781 334.25553 −57.67611 3.50 nan 0.93

51430 316.07299 −8.07676 41.06 J210417.51-080436.3 0.93

59804 137.82948 −17.94543 14.55 J091119.07-175643.5 0.93

46951 16.90893 −51.46922 1.83 J010738.14-512809.1 0.92

45761 327.34774 −59.37191 4.03 nan 0.92

53210 99.31469 −48.46778 1.65 J063715.52-482804.0 0.92

59560 175.97084 −1.69125 7.73 J114353.00-014128.5 0.92

53313 5.20887 −9.26766 1.65 nan 0.92

54103 307.24684 −69.51609 0.89 J202859.24-693057.9 0.92

59253 32.81166 −7.86003 1.10 J021114.79-075136.0 0.92

53314 109.11890 −66.81888 1.75 nan 0.92

51574 281.18582 −57.64771 1.63 J184444.59-573851.7 0.91

52219 204.89026 −6.51725 0.64 J133933.66-063102.0 0.91

54098 117.49202 −51.49752 1.17 J074958.08-512951.0 0.91

46978 83.45844 −72.04856 185.75 J053350.02-720254.8 0.91

50427 245.71940 −64.27653 4.75 J162252.65-641635.5 0.91

54103 317.34480 −68.78581 1.43 nan 0.91

51931 82.57955 −56.87337 0.98 J053019.09-565224.1 0.91

51932 200.62191 −6.58950 3.34 J132229.25-063522.1 0.91

46951 15.08030 −53.06277 0.54 J010019.27-530345.9 0.91

50413 210.26688 −30.32623 47.21 J140104.05-301934.4 0.91

59253 31.31543 −11.52721 1.95 J020515.70-113137.9 0.90

51403 128.64065 −62.13250 2.77 J083433.75-620757.0 0.90

59612 327.61388 −69.70213 0.97 J215027.33-694207.6 0.90

59159 49.09901 −48.45771 2.08 nan 0.90

50180 12.24043 −47.22998 6.56 nan 0.90

51403 127.05199 −59.82145 2.69 nan 0.90

54926 271.28683 −64.19840 0.78 J180508.83-641154.2 0.90

51434 318.06051 −0.39312 0.84 J211214.52-002335.2 0.90

50049 128.60151 0.08055 3.78 J083424.36+000449.9 0.89

50413 215.14208 −29.25002 5.52 nan 0.89

45781 334.25606 −57.67157 1.04 nan 0.89

51797 319.29061 −55.94363 8.14 J211709.74-555637.0 0.89

52121 314.22566 −64.96138 4.06 J205654.15-645740.9 0.89

54099 257.05483 −71.22234 4.17 J170813.16-711320.4 0.89

46957 59.50084 −73.62135 2.93 nan 0.89
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Figure A4. Top-50 EMUSE output for image query shown on the right panel of Figure 4. Positions in Table 4 are used here for 5′ × 5′ cutout images with radio-radio-infrared
channels.
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Table A5. Examples of the expanded text descriptions for the main radio source classes. These, along with similar variations based on subcategories and special
features, are used to fine-tune the OpenCLIP model.

Main category Expanded text descriptions

FR-I An image of FR-I; fr1; double lobed FR-I radio galaxy; Fanaroff-Riley type I radio galaxy; FR-I radio galaxies are characterised by edge-dimmed
radio morphology, where the brightest emission is near the core and gradually fades outward along the jets

FR-II An image of FR-II; double-lobed FR-II; double-lobed FR-II type radio galaxy; double-lobed Fanaroff-Riley type II radio galaxy; FR-II radio
galaxies exhibit edge-brightened radio morphology, with the brightest emission located at the outer edges of the lobes, often forming
distinct hotspots

FR-x An image of FR-X; frx; FRx radio galaxy that has morphology in-between FR-I and FR-II types but can’t be determined due to lack of telescope
sensitivity and resolution; Fanaroff-Riley type X, an intermediate type between type I and type II radio galaxies with morphological structure
in-between FR-I and FR-II types

R An image of Single-Peak R/DJS; djs; double jet radio source; resolved DJS or R radio galaxy with a single peak visible in the centre

Peculiar An image of Complex/Peculiar; ORC; ORC that is an Odd Radio Circle; peculiar radio galaxy classified as an Odd Radio Circle; ring-like
structure seen in radio with no corresponding emission in other wavelengths
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