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Abstract 

Language models can produce fluent, grammatical text. Nonetheless, some maintain 

that language models don’t really learn language and also that, even if they did, that 

would not be informative for the study of human learning and processing. On the 

other side, there have been claims that the success of LMs obviates the need for 

studying linguistic theory and structure. We argue that both extremes are wrong. 

LMs can contribute to fundamental questions about linguistic structure, language 

processing, and learning. They force us to rethink arguments and ways of thinking 

that have been foundational in linguistics. While they do not replace linguistic 

structure and theory, they serve as model systems and working proofs of concept for 

gradient, usage-based approaches to language. We offer an optimistic take on the 

relationship between language models and linguistics. 

Keywords: language models, linguistic theory, language learning, information theory, 

functional linguistics, statistical learning, neural networks 
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1 Introduction 

It’s 1968, and Norm and Claudette are having lunch. Norm is explaining his position that 

all human languages share deep underlying structure and has worked out careful theories 

showing how the surface forms of language can be derived from these underlying 

principles. Claudette, whose favorite movie is the recently released 2001: A Space 

Odyssey and who particularly loves the HAL character, wants to make machines that 

could talk with us in any human language. Claudette asks Norm whether Norm thinks his 

theories could be useful for building such a system. Norm says he is interested in human 

language and the human mind, found HAL creepy, and isn’t sure why Claudette is so 

interested in building chatbots or what good would come of that. Nonetheless, they both 

agree that it seems likely that, if Norm’s theories are right (and he sure thinks they are!), 

they could be used to work out the fundamental rules and operations underlying human 

language in general—and that should, in principle, prove useful for building Claudette’s 

linguistic machines. Claudette is very open to this possibility: all she wants is a machine 

that talks and understands. She doesn’t really care how it happens. Norm and Claudette 

have very different goals, but they enjoy their conversations and are optimistic that they 

can both help each other. 

Fast forward to 2025. Norm has worked for decades on a variety of diverse languages, 

developing sophisticated theories of linguistic structure. Claudette got more and more 

interested in engineering, amassing huge amounts of data, and training statistical models. 

Norm and Claudette slowly fell out of touch over the years. They are planning a reunion 

lunch: what should they talk about? 

Just like Claudette always dreamed of, she now has machines that can talk with her in 

English, producing grammatical and seemingly sensible utterances. How relevant is it 

that the architecture of Claudette’s machines seems to have nothing to do with the 

structure of language as identified by Norm and other linguists and cognitive scientists? 

Claudette might not care: she just wanted a system that worked, and this stuff works. On 

the other hand, what if Norm was right about the nature of language—does that mean the 

machines aren’t actually as impressive as Claudette thinks, because they are relying on 
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shallow pattern matching? Or are Claudette’s machines evidence that Norm’s theories 

were wrong? More generally, what insights do these machines have for the scientific 

study of language? 

One approach Norm could take would be to dismiss Claudette’s machines out of hand 

as irrelevant to human language, as they are not realistic models of the human brain, nor 

are they intended to be. Under this view, neural networks are no more relevant to 

linguistics than submarine engineering is to an ichthyologist—just because both 

submarines and fish can move underwater does not mean that you can learn much about 

one from studying the other. 

This negative view takes several forms. One argument is that Language Models (yes, 

Claudette’s machines are Language Models; henceforth LMs) are so fundamentally 

different in their architecture from people, and have access to so much more data, that 

whatever they are doing is so different as to be totally irrelevant for humans (Chomsky et 

al., 2023; Fox and Katzir, 2024; Bolhuis et al., 2024). Some have denied that language 

models have actually learned, or ever could learn, the putatively key properties of human 

language, and thus are either irrelevant to language science or do not challenge any 

existing ways of thinking (Lan et al., 2024; Fox and Katzir, 2024). A different and more 

subtle argument is that neural network sequence models could learn to approximate 

anything, so the fact that they seem to learn language (to the extent that they do) is 

uninformative (Rawski and Baumont, 2023; Moro et al., 2023; Chomsky, 2023; Chomsky 

et al., 2023; Collins, 2024; Bolhuis et al., 2024). Under this view, LM architectures are 

like epicycles, the computational technique used by Ptolemy to predict the motions of the 

planets and the sun in a model that placed the Earth at the center of the universe (de 

Santillana, 1955; Flynn, 2013). The problem with epicycles is that they can approximate 

any trajectory arbitrarily well (at the cost of great complexity), so the mere fact that they 

could be used to capture the motions of the planets with high accuracy tells us nothing 

about the real nature of that motion. Similarly, if neural networks are just general pattern 

approximators, then the fact that they can approximate language doesn’t tell us anything 

about language. 
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We believe these negative views are short-sighted: language models do learn non-

trivial aspects of linguistic structure, and they do give important insights that change how 

we should think about language. As language scientists, we ignore them at our peril. 

An opposite approach is to dismiss traditional theories of linguistic structure, on the 

grounds that they turned out to be either useless or of negative value in developing the 

only known systems that can actually use language as humans do (Jelinek, 2004; 

Piantadosi, 2023). Under this view, decades of work on the structure of language turned 

out to be barking up the wrong tree, and the theory of language should be rebuilt on top 

of the only computational foundation that has been demonstrated to be able to produce 

and comprehend language to a human level: large neural networks. In our experience, this 

view is widespread in some engineering and application-focused communities. 

This view is also short-sighted. It throws out hard-won analytical discoveries about the 

structure of language and leaves us adrift in terms of a scientific theory of language, 

without a clear way to approach the question of why human language is the way it is, or 

even a sense of what the interesting questions are. Moreover, language models are 

currently most successful in English and other languages with internet-scale data (Blasi et 

al., 2022). A more complete approach to the science of language will draw on the 

expertise of documentary linguists, sociolinguists, anthropologists, and community 

stakeholders, and it will integrate the insights from decades of linguistic inquiry. 

Thus, we advocate a third view (joining fellow travelers in linguistics, cognitive 

science, and philosophy who have advocated for some form of this middle ground, e.g., 

Smolensky, 1988; Pater, 2019; Portelance and Jasbi, 2023; McGrath et al., 2024; Millière, 

2024; Potts, 2025; Chesi, 2025): language models are not a complete theory of 

language—in fact, no one has such a theory—but they are hugely informative about 

language and its structure, learning, processing, and relationship with the larger structure 

of the mind. Language models have set off an intellectual explosion in cognitive science, 

machine learning, philosophy of mind, and other fields, in which longstanding ideas have 

been overturned; novel ideas are emerging; and disciplinary boundaries are dissolving. 

Linguistics has a chance to stand at the center of this huge intellectual ferment, and would 
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be remiss to isolate itself intellectually on the basis that language models don’t look like 

existing theory. Language science can contribute (and in fact already has contributed) to 

the development of language models, and language models can contribute (and in fact 

already have contributed) insights about language. Norm and Claudette have a lot to talk 

about. 

2 Statistical models of language have outperformed expectations 

2.1 A brief history of statistical language learning 

The generative school of modern linguistics arose from an argument against the idea that 

the structure of language could be learned from the statistics of language data. Chomsky 

perhaps most famously illustrated this by contrasting (1) “Colorless green ideas sleep 

furiously” with “(2) Furiously sleep ideas green colorless.” Even though neither sentence 

makes semantic sense, (1) is clearly grammatical in a way that (2) isn’t. As Chomsky 

(1957) put it: “The notion ‘grammatical in English’ cannot be identified in any way with 

the notion ‘high order of statistical approximation to English.’ It is fair to assume that 

neither sentence (1) nor (2) (nor indeed any part of these sentences) has ever occurred in 

an English discourse. Hence, in any statistical model for grammaticalness, these 

sentences will be ruled out on identical grounds as equally ‘remote’ from English.” 

The effective conclusion from these arguments was that linguistic structure could only 

be characterized in terms of formal systems, based on rules or constraints and operating 

over structured arrays of symbols (Chomsky, 1965). Early on, the expectation was that 

such systems would form the basis for language technologies such as machine translation 

and question answering systems (Hays, 1960; Winograd, 1972; Hutchins, 1981). It was 

believed that these formal systems should be constructed by linguists since the task of 

learning them from data was hard or impossible. Yet despite myriad efforts to build 

machine translation systems, grammatical parsers, and other tools, linguistic competence 

remained elusive for machines. Symbolic approaches that sought to elucidate rules and 

structures often proved unable to capture all the exceptions and complexity that 

characterized natural language as it is used. 
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By the late 1980s and 1990s, statistical learning had a major renaissance in natural 

language processing (Brown et al., 1990; Manning and Schütze, 1999; Pereira, 2000), and 

started to reappear in the human language learning literature as well (Saffran et al., 1996). 

Yet despite success at various natural language processing tasks, these techniques seemed 

frustratingly unable to get past approaches that simply counted up words and phrases 

(Wang and Manning, 2012; Arora et al., 2017). The connectionist movement in the 1980s 

and 90s seemed promising (Rumelhart and McClelland, 1986; Smolensky, 1988; Elman, 

1990a) (and turned out to be the most important forerunner of modern language models), 

but there were well-justified concerns about the ability of these approaches to scale up 

and to represent the rules and structures that seem to characterize language (Pinker and 

Prince, 1988), despite accounts of how connectionist models could in principle 

implement rule-like symbolic behavior (Smolensky, 1990). 

Even researchers optimistic about the role of statistical learning in language 

acquisition were, in the recent past, deeply skeptical that end-to-end neural approaches 

would succeed on interesting linguistic tasks. Representatively, Chater et al. (2006) 

wrote, “connectionism is no panacea here; indeed, connectionist simulations of language 

learning typically use small artificial languages, and, despite having considerable 

psychological interest, they often scale poorly.” Tenenbaum et al. (2011) wrote, 

“connectionist models sidestep these challenges by denying that brains actually encode 

such rich knowledge, but this runs counter to the strong consensus in cognitive science 

and artificial intelligence that symbols and structures are essential for thought.” 

Nevertheless, given the way that linguistics and machine learning developed and evolved, 

it now sometimes seems to be taken for granted in practice that ideas from linguistic 

theory will not form the basis of proficient language processing systems. 

Throughout the statistical renaissance, generative linguists continued to claim that 

statistical methods would never solve interesting problems related to learning linguistic 

structure. In a review article, Everaert et al. (2015) reiterated the claim that statistical 

approaches would be fundamentally unable to distinguish sentences like “How many cars 

did they ask if the mechanics fixed?” from ungrammatical ones like “*How many 
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mechanics did they ask if fixed the cars?”, or that they would only be able to do so if 

provided with certain built-in formal structures. Berwick et al. (2011) were skeptical that 

recurrent neural networks could ever be much more powerful than bigram models. 

Against this backdrop, the fortunes of connectionist models started changing in the 

2010s—as a result of new techniques and, most importantly, due to increased 

computational power that made training neural models much more efficient (Hinton et al., 

2006). By 2016, neural models showed rudiments of grammatical generalizations like 

subject–verb agreement (Linzen et al., 2016). Over the coming years, the success of 

models at acquiring linguistic abilities continued to grow (Futrell et al., 2019a; Wilcox et 

al., 2018; Manning et al., 2020; Hu et al., 2020; Warstadt and Bowman, 2022; Mahowald 

et al., 2024). 

The growth from early neural models in, e.g., 2011 to now is remarkable from a 

historical perspective, and was surprising to virtually everyone in the field at the time. 

Sutskever et al. (2011) introduced an at-the-time state-of-the-art recurrent neural network 

that produced output like “In the show’s agreement unanimously resurfaced. The wild 

pasteured with consistent street forests were incorporated by the 15th century BE.” and 

praised it as a “surprisingly good language model,” noting the “richness of their 

vocabularies,” that the “text is mostly grammatical,” and “parentheses are usually 

balanced over many characters.” Compared to today’s language models, the consistent 

street forests seem a long way away: 2011 might as well have been the 15th century BE. 

Today’s language models (e.g., ChatGPT or Claude) produce seemingly endless streams 

of highly fluent and grammatical (if not always perfectly humanlike) text and form the 

basis of the most successful natural language processing approaches. 

2.2 Neural LMs learn nontrivial linguistic structure 

The rapid development of these capacities has been treated with healthy skepticism. LMs 

have access to vast amounts of data and could be simply memorizing or relying on cheap 

heuristics — giving the appearance of linguistic competence without really having it. 

The most naïve way that one might think to test for grammatical competence in 

language models would be to see whether they assign higher probability to grammatical 
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strings than ungrammatical ones. However, this would not work, even for an ideal 

statistical model, for reasons related to the point that Chomsky (1957) was making. For 

example, the ungrammatical string “Snails died the old” has a probability of ∼ 2
-49 

under 

the GPT-2 language model, whereas the grammatical string “The ancient crustaceans 

expired” has a lower probability of ∼ 2
-55

, simply because it uses lower-frequency words 

(Wilcox et al., 2023a). 

But the failure of this naïve comparison does not mean that language models lack 

grammatical knowledge. In general—for language models and in real language use— 

many factors influence the probability of a string, of which the grammar of the language 

(as represented in the language model or in the mind of a human speaker) is only one: 

word frequency, utterance length, online processing constraints such as memory 

limitations, and plausibility given world knowledge all feed into the probability of an 

utterance. Indeed, not only utterance probabilities, but also comprehension accuracy, 

reaction time, and indeed any psychometric dependent variable are affected by all of 

these factors jointly—including the subjective grammaticality judgments that form the 

basis of much of the formal syntax literature (Kluender and Kutas, 1993; Hofmeister et 

al., 2013; Mahowald et al., 2016; Lau et al., 2017). Therefore, if we want to look for 

evidence that language models represent linguistic structure, we need to search more 

carefully.
1
 

The key is to isolate linguistic structure from these other factors through controlled 

experimental studies and through probing LMs’ internal states. Experimentally, from 

sufficient performance data, one may infer an underlying formal cognitive structure, no 

matter whether the implementation substrate is a brain or a neural network (Piantadosi 

and Gallistel, 2024). This is the standard procedure in linguistics, where data consisting 

                                                                    
1
 Nor is it necessarily sensible to evaluate models based on simply prompting them and asking 

whether sentences are grammatical or not (Hu and Levy, 2023) (as done by Dentella et al., 2023). 

To see this, consider that many linguists have held that grammatical knowledge can be 

represented by a formal system like a context-free grammar; even if a context-free grammar is a 

good model of linguistic knowledge, it could not be prompted in natural language to respond 

about whether a sentence is grammatical or not. Grammatical knowledge does not imply that a 

system can make explicit grammaticality judgments when prompted in natural language. 
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primarily of acceptability judgments is used to postulate underlying linguistic 

competence. This approach can be applied just as well to LMs. 

One form of such a study is to conduct behavioral comparisons of minimally different 

sentences. For example, LMs may be fed sentences such as “The keys to the cabinet are 

on the table” and the ungrammatical “The keys to the cabinet is on the table”, and the 

conditional probabilities assigned to the verb form “are” versus “is” are compared. If the 

model understands how agreement works in English, then the probability for “are” should 

be higher than “is”. This comparison controls for plausibility, since the context is the 

same for the two alternatives. The task could not be solved by any n-gram model with n < 

5 (and higher-order n-gram models can be ruled out by adding more words between 

“keys” and “is/are” in the stimuli). The lexical frequency of “is” versus “are” can be 

controlled through a more elaborate experimental design, with four conditions in a 2 × 2 

design crossing the grammatical number of the subject with the grammatical form of the 

verb (as done by Marvin and Linzen, 2018). These are usual procedures in 

psycholinguistics, where experimenters develop controlled sets of sentences and then 

measure dependent variables like reading times. The same methodology can be applied to 

language models with probability as the dependent variable, aiming to ascertain whether 

models are sensitive to linguistic structure (Linzen et al., 2016; Futrell et al., 2019b). 

Such studies have revealed behavioral patterns consistent with neural networks 

representing formal linguistic structures, in cases such as subject–verb agreement (Linzen 

et al., 2016; Bernardy and Lappin, 2017; Gulordava et al., 2018), filler–gap dependencies 

(Wilcox et al., 2018, 2023a; Kobzeva et al., 2023; Suijkerbuijk et al., 2023), and recursive 

embedding of clauses (Futrell et al., 2019b; Wilcox et al., 2019a; Hu et al., 2020), all of 

which involve highly nontrivial formal structures which statistical models failed to 

capture in previous work. Example results for subject–verb agreement from GPT-2 are 

shown in Figure 1: we see that grammatical verb forms are relatively more probable than 

matched ungrammatical verb forms in all but a few cases (human accuracy in producing 
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the right verb forms in such sentences is 85%; Marvin and Linzen, 2018).
2 

The results 

indicate that the model can represent the non-local structural dependency between the 

subject of the sentence and the matrix verb. 

Of course, this work has not all been positive in its results. Models can be “right for 

the wrong reasons” (McCoy et al., 2019), adopting shallow heuristics which make correct 

predictions on certain test sets but do not generalize properly, or models may show 

mastery of linguistic form without a concomitant ability to understand the implications of 

utterances (Weissweiler et al., 2022)—in effect mastering linguistic form without 

mastering linguistic function (Mahowald et al., 2024). As an example of how shallow 

heuristics may lead to the illusion of good performance, a simple n-gram model performs 

fairly well on some subsets of paired grammatical and ungrammatical sentences of the 

BLiMP dataset (Warstadt et al., 2020) (although not as well as a neural LM), which does 

not explicitly control for n-gram frequency (Vázquez Martínez et al., 2023).
3
 

The possibility that models generalize on the basis of shallow heuristics motivates 

deeper investigation. We discuss two approaches here. The first involves controlling a 

model’s training data and then observing its generalizations on evaluation data that is 

unlike anything in the training data (Jumelet et al., 2021; Feng et al., 2024b; Misra and 

                                                                    
2
 It has been objected that, while humans make errors in verb agreement and other syntactic 

constructions, they have an underlying error-free competence which may be distinguished from 

their errorful performance (Chomsky, 1965, Ch. 1), whereas the neural networks only have 

errorful performance with no underlying competence (Fox and Katzir, 2024). We believe this 

argument is mistaken for two reasons. First, it is indeed possible to define (multiple) competence–

performance distinction(s) in neural networks, for example, by separating the knowledge 

contained in embeddings versus the performance of a linear decoder in extracting that knowledge 

(Pimentel et al., 2020; White et al., 2021; Csordás et al., 2024). Second, even for humans, we 

only ever have access to performance data (including subjective grammaticality judgments), and 

we infer mental constructs such as competence, I-language, etc., on the basis of that data 

(Piantadosi and Gallistel, 2024). We may make the same inferences based on neural network 

performance data. Competence is not a datum to be explained, but rather a theoretical construct 

that is useful for explaining performance data—it is a real pattern (Dennett, 1989; Nefdt, 2023) in 

the sense we will discuss in Section 4.1. 
3
 We note that these kinds of criticisms are harder to apply to studies based on more carefully 

controlled sets of sentences (for example, Marvin and Linzen, 2018; Futrell et al., 2019b; Hu et 

al., 2020; Wilcox et al., 2023a). 
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Mahowald, 2024; Leong and Linzen, 2023; Yao et al., 2025). This approach allows one 

to study true generalization in language models, rather than shallow memorized patterns. 

Ahuja et al. (2025) trained Transformer language models on a corpus of English-like text 

that has been constrained so that subjects and verbs are always adjacent. That is, the 

corpus contains sentences like “I saw the key to the cabinets”, but never something like 

“The key to the cabinets is on the table”. The question is, then, if the model trained in this 

way will generalize in the way that humans do, preferring “The key to the cabinets is on 

the table” (where the form of the verb depends on the subject of the sentence) over 

something like “The key to the cabinets are on the table” (where the form of the verb 

depends on the linearly previous verb, which is perfectly consistent with the training 

data). Ahuja et al. (2025) find that neural language models do make the human-like 

generalization, providing evidence that they can learn the formal structure underlying 

nonlocal subject–verb agreement without ever observing nonlocal subject–verb 

agreement (see also Patil et al., 2024). 

Another approach is to dig into the language models’ internal states. Large language 

models have a reputation of being black boxes, whose internal processes and 

representations are inscrutable, but researchers have been gaining growing traction on 

understanding their inner workin.ss 

Sentences like: The { key / keys } to the cabinet { is / are } ... 

Approaches include probing, where one attempts to decode linguistic features from the 

internal representations of neural networks, and causal interventions, where model 

internals are changed and the resulting output changes are observed (Hewitt and 

Manning, 2019; Chi et al., 2020; Voita and Titov, 2020; Manning et al., 2020; 

Papadimitriou et al., 2021; Ravfogel et al., 2021; Lampinen, 2024; Diego-Simón et al., 

2024, among others). Such studies have revealed increasing evidence of grammatical 

structure in models. We consider these kinds of studies, particularly ones that probe 

models causally, to be promising avenues for linguistics and cognitive science (see 

Section 4.2). 
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A. Matching context, varying verb B. Matching verb, varying context 

 

Figure 1: Language models show sensitivity to linguistic structure. Figure shows data 

from targeted evaluation of subject–verb agreement in GPT-2 from Gauthier et al. (2020), 

based on design and materials from Marvin and Linzen (2018). Each point represents the 

log conditional probability for a verb (e.g., singular is or plural are) in a particular 

sentence. A. Blue points are for grammatical verbs, and red for ungrammatical, in 

matching contexts. The difference in log probability between grammatical and 

ungrammatical verbs in identical contexts is indicated by a line. For plural subjects, the 

grammatical verb is always higher probability. For singular subjects, the grammatical 

verb is higher probability in 79% of cases. Human accuracy on this task is 85% (Marvin 

and Linzen, 2018). B. Blue points for grammatical verbs, and red points for the same 

verbs in a context that makes them ungrammatical. The correct context makes the 

grammatical verb higher probability in all cases for the singular verb is, and in 95% of 

cases for the plural verb are. 
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A caveat to these findings is that the various evaluations of structural representation in 

language models have mostly used English (or a handful of other languages) as the target 

(Blasi et al., 2022). An important area for future work is to extend the empirical scope of 

these studies to a wider set of languages (work which is ongoing; see Jumelet et al., 2025, 

for a multilingual grammatical benchmark). 

While there is disagreement about how much language models capture more complex 

formal patterns (Vázquez Martínez et al., 2023; Lan et al., 2024; Someya et al., 2024) or 

to what extent they can be said to “understand” (Bender and Koller, 2020) or refer to 

things in the world (Mandelkern and Linzen, 2024; Lederman and Mahowald, 2024), this 

is not the right place to adjudicate these debates. What is clear is that language models 

have learned nontrivial formal linguistic patterns better than many expected was possible. 

That is to say, they really have learned something about linguistic structure, in a way that 

problematizes earlier claims about the role of statistics in language learning. They are not 

purely relying on heuristics or memorization or cheap tricks. They have, to a meaningful 

extent, learned “the real thing”—that is, the thing that we care about, as language 

scientists interested in questions like how languages are learned, how they are processed, 

how and why they vary, and where they come from. 

We next ask why this is interesting for the science of language, and how the science of 

language productively integrates these insights. 

 

3 The success of LMs is interesting for the science of language 

“...nor did Pnin, as a teacher, ever presume to approach the lofty halls of modern 

scientific linguistics, that ascetic fraternity of phonemes, that temple wherein young 

people are taught not the language itself, but the method of teaching others to teach 

that method; which method, like a waterfall splashing from rock to rock, ceases to 

be a medium of rational navigation but perhaps in some fabulous future may 

become instrumental in evolving esoteric dialects—Basic 

Basque and so forth—spoken only by certain elaborate machines.” 

Vladimir Nabokov 

Pnin 
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LMs learn nontrivial aspects of language. But one could still object that this result is 

not relevant to language science because human language is the product of the human 

brain (and/or vocal tract, body, social environment, or what have you), whereas LMs 

have a totally different architecture and different objective. Perhaps these differences are 

so great that a language scientist has practically nothing to gain from studying language 

models, in the same way that there is limited value to an ornithologist studying jet 

engines, even though both bird wings and jet engines enable flight (Kodner et al., 2023). 

Here we argue that the success of language models is relevant, indeed important, to 

the science of language, because (1) there are good reasons to believe that there should be 

parallels between engineering artifacts like language models and human language, and (2) 

the success of language models in learning from text upends ways of thinking that are 

deeply ingrained in generative linguistics and parts of cognitive science, and (3) language 

models are already connected to statistical and probabilistic traditions in linguistics, and 

in fact arose out of them to a large extent. As such, LMs aren’t alien invaders into 

linguistics from engineering. Rather, they are tools similar to those that have long been 

used to answer fundamentally linguistic questions. 

3.1 Parallels between engineering models and cognition 

From the study of vision, there is strong precedent for the idea that neural networks 

developed purely for practical applications can tell us a great deal about cognition as it is 

implemented in the brain. Similarly, there is good reason to think that LMs will be 

informative for the study of human language. To elucidate this example, we briefly 

review, in simplified form, the development of the neuroscience of vision and the role of 

neural networks in it. 

Hubel and Wiesel (1959) discovered that early processing of visual information is 

performed by neurons that are selectively responsive to edges in the visual input. After 

this discovery, the question became why early visual processing works this way. 

Olshausen and Field (1996), building on information-theory-inspired intuitions from 

Barlow (1961, 1989), showed that edge detectors resembling those found in the visual 
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cortex were the generic solution to the problem of representing visual information 

accurately in a neural network under a constraint that only a small number of units should 

be active (that is, a sparsity constraint, arising ultimately from a power constraint on 

neural firing). Even better explanation—both in the sense of explanatory depth and 

predictive accuracy—came from the engineering of artificial visual systems, in particular 

the development of AlexNet, a large (for the time) hierarchical convolutional neural 

network for image classification (Krizhevsky et al., 2012). Yamins et al. (2014) showed 

that this architecture, when trained to do object recognition, not only developed edge 

filters in its early layers, but also receptive fields in later layers corresponding to later 

layers of visual processing in the primate brain. The overall picture that emerges from 

this line of work is: the neuronal organization of visual processing is determined by the 

function of finding a sparse code to identify and manipulate objects in the environment, a 

function largely shared between biological and artificial systems. 

Here, the artificial system provided guiding insights for understanding the natural 

system.
4 

Something similar is now happening in the science of language processing, 

where the internal representations developed by language models are predictive of 

activation patterns in language areas of the brain (Goldstein et al., 2022; Caucheteux et 

al., 2023; Hosseini et al., 2024b; Rathi et al., 2024), and predictability as estimated by a 

language model is an important factor in studies that predict neural activity (Stanojevíc et 

al., 2023; Zhao et al., 2025). The picture is not yet as clear as it is in vision—this is an 

area of active research, and there are no animal models we can use to get the plentiful 

high-resolution controlled neural data we would like—but there is precedent to think that 

the artificial system will be informative about the natural system here too. 

Why did this work in vision? To explain the success of the approach, Cao and Yamins 

(2021) introduce the Contravariance Principle: the idea that, if we want to uncover 

solutions to problems that are common between brains and models, we should focus on 

hard problems. The reason is that, if a computational problem is hard in the sense that it 

                                                                    
4
 There remains controversy over the extent to which deep neural networks are the best model 

of human vision (see Bowers et al., 2023, for a more skeptical take along with spirited replies), 

but even skeptics of neural models judge that this research program has been fruitful. 
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requires satsifying multiple potentially competing constraints at once, then there are 

likely to be only a small number of ways to solve it. So we expect different systems that 

solve the same hard problem (for example, neural networks and the brain) to converge to 

the same solution (see also Huh et al., 2024; Hosseini et al., 2024a). If a problem is 

relatively simple, then we might expect many different solutions to work. For instance, 

there are famously scores of algorithms that have been proposed for sorting numbers in 

an array. 

Vision is not like sorting a list of numbers: it is a hard problem that requires satisfying 

many constraints (e.g., fast processing, reliable transmission of input, invariance to 

different light conditions, among many others). Therefore, we can expect that any system 

that solves the problem will share core features with any other. We see this not only in the 

comparison of humans vs. neural networks, but also in the comparison of humans vs. 

monkeys (Rajalingham et al., 2018), and primates vs. animals whose visual cortices arise 

from totally different evolutionary phylogenies, such as cephalopods (Pungor et al., 

2023). 

The problem of learning and using language is also not like sorting a list of numbers: 

an entity that learns and processes language has to satisfy many constraints (storage of 

lexical items, generalization to novel contexts, fast processing, etc.). And as we have 

discussed, large Transformer-based models do learn and deploy nontrivial aspects of 

language. If the Contravariance Principle is right, then it is reasonable to expect some 

degree of commonality in the solutions that exist in the brain and in Transformers. 

Indeed, the massive literature on linguistic interpretability in Transformers, which we 

partially reviewed in Section 2.2, has revealed representational strategies in neural 

networks that lead to correct novel predictions about human performance (Lakretz et al., 

2021), and the way that Transformers process syntactic features like agreement cues has 

close parallels with independently proposed cognitive frameworks for modeling human 

language processing based on cue-based retrieval (Lewis and Vasishth, 2005; Ryu and 

Lewis, 2021; Timkey and Linzen, 2023). 
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Thus, it is just not the case that these models can be dismissed out of hand because 

they are different from the brain. To do so would be to miss out on a source of in silico 

insight and inspiration which has been hugely useful in other areas of cognition. 

3.2 Understanding LM success requires rethinking language learning 

3.2.1 The significance of the learning problem in linguistics and cognitive science 

For a century, cognitive scientists, linguists, computer scientists, and philosophers 

developed formal theories of how language learning—or any learning—must work. The 

key concept has been what knowledge is brought to the learning process by a learner 

beyond the data, known as inductive bias in the machine learning literature (Mitchell, 

1980; Goyal and Bengio, 2022), as illustrated in Figure 2. We can think of a learner as a 

device that takes in some data and outputs a hypothesis, or a set of hypotheses, or a 

probability distribution over hypotheses, for the underlying process generating the data. 

For example, given a bunch of data points in a 2D plane, one hypothesis would be that 

the points are generated along a line in the plane; this is the assumption underlying linear 

regression. Given linguistic utterances as data, one might hypothesize a certain grammar 

underlying the data. 

The key issue is that, in a very general sense, the data fundamentally underdetermine 

the hypothesis that the learner arrives at, because any data is compatible with many, many 

hypotheses. In Figure 2A, where the learning data is points and the hypotheses are lines, 

both the straight and the curvy lines fit the learning data equally well; the fact that the 

straight line seems like the right hypothesis—and is likely the one that humans would 

seize on—therefore cannot be a function of fit to the data. It must be a function of fit to 

the data plus something that biases a learner to favor one hypothesis over another, even 

among hypotheses that fit the data equally well: this is inductive bias. Inductive bias is 

something that the model (or modeler) brings to the problem, not something inherent in 

the data.
5
 

                                                                    
5
 We use the term inductive bias here to refer to anything that causes a learner to prefer one 

hypothesis over another, beyond any function of input data (Mitchell, 1980). Such biases exist 
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A. Numerical data 

 

B. Linguistic data 

 

Figure 2: Illustration of the role of inductive bias in generalization. A. The black points 

represent data, and the lines represent generalizations that could be formed on the basis of 

the data. Both lines fit the data exactly, but make different predictions for new datapoints. 

Intuitively, the blue line seems like a better hypothesis. But the choice to prefer any 

                                                                                                                                                                                                     
and are necessary even in learning algorithms that are not strictly ‘inductive’, and they may or 

may not be identifiable as Bayesian priors. 
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single generalization over any other can only be a function of inductive bias—a 

preference for hypotheses which are in some sense ‘simpler’— which is not a function of 

the data. B. Inductive bias in language. In black, possible corpus data from English. In 

blue, sentences which generalize from the corpus data on the basis of hierarchical 

structure. In red, sentences which generalize on the basis of linear word order. Intuitively, 

the blue sentences seem like natural generalizations, and the red ones seem unnatural, 

even though all are equally consistent with the data given. This phenomenon is claimed 

to be the result of innate biases specific to language (Chomsky, 1971). 

Inductive bias shows up in several forms and under many names in the scientific 

literature. In linguistic theory, it appears perhaps first as the evaluation procedure in 

Chomsky (1965, pp. 30–48), a function which compares two different grammars that can 

generate an observed set of sentences (that is, two grammars that fit some learning data 

equally well), and ranks them in order of preference, in a way that captures how humans 

generalize beyond the data (Chomsky, 1965, p. 45). More generally, it appears as 

Universal Grammar (UG)—an “innate schematism of mind that is applied to the data of 

experience” (Chomsky, 1971, p. 28) that enables language learning and generalization; 

furthermore, UG is held to be domain-specific to language (not applying to any other 

aspect of cognition) and species-specific to humans (Huybregts, 2019). In this approach, 

(generative) grammatical theories such as Minimalism are hypotheses about the nature of 

UG (Chomsky, 1993; Adger, 2003). They are meant to precisely delimit what languages 

may exist and be acquired by humans. 

This approach to linguistic theory serves the goal of explanatory adequacy: the 

idea is that a theory of grammar should not only capture which sentences are grammatical 

and ungrammatical in a particular language, but also that the theory encompass all and 

only the possible languages that we might actually find in the world (Chomsky, 1965, Ch. 

1). Thus, if a grammatical theory seems to accommodate ‘impossible’ or unattested kinds 

of languages, then this would be considered evidence against that theory, because the 

theory is supposed to represent the universal and language-specific “schematism of 
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mind” that a learner applies to language data.
6 

This approach to explaining linguistic 

phenomena has been called “explanation by constrained description” (Haspelmath, 2009, 

pp. 384–385). 

Naturally then, Universal Grammar has been the major focus of study in language 

learning, seen as the simultaneous solution to two different problems: (1) how children 

can learn language from inadequate data (the classic Argument from the Poverty of the 

Stimulus: see Pearl, 2022, for a review), and (2) why human language is the way it is: 

because Universal Grammar strongly restricts the set of possible languages.
7 

The dream 

has been to come up with a formalism for linguistic description which captures human 

generalizations, is domain-specific to language, and arises from a genetic endowment 

                                                                    
6
 For example, under this view, it would be justified to criticize a theory of grammar such as 

Head-Driven Phrase Structure Grammar (HPSG: Pollard and Sag, 1994; Sag et al., 2003) on the 

basis that it is Turing-complete, capable of generating any recursively enumerable formal 

language. 
7
 Given the centrality of this reasoning to much of linguistic theory, one might expect it to be 

backed up with strong experimental evidence that humans cannot or do not learn languages which 

violate the putatively universal principles of human languages. This is not the case: there is only 

limited and ambiguous experimental evidence for hard formal limits on human language learning. 

Among the most on-target existing studies is Smith et al. (1993), whose object of study was a 

man described as a polyglot savant living in a mental health facility. This individual and four 

control subjects (linguistics undergraduates) were tasked with learning artificial languages 

designed to be ‘impossible’ in three ways: (1) negation and tense are indicated by word order, (2) 

there is an agreement pattern judged to be impossible, and (3) the position of an emphatic marker 

is determined by a rule involving counting words. Results are not systematically reported, but 

seem to indicate that the polyglot was able to learn the ‘impossible’ word order and agreement 

rules (1) and (2), but not the rule for the emphatic marker (3). 

Another commonly cited experimental work on this topic is Musso et al. (2003), who expose 

German speakers to Italian and Japanese sentences, either following the real rules of those 

languages, or following modified rules deemed to be linguistically impossible, for example 

placing a negation marker after the third morpheme from the beginning of a sentence. The result 

is equally accurate learning of the ‘natural’ and ‘unnatural’ languages. fMRI on the subjects 

shows that the real languages elicit activity in the left inferior frontal gyrus, while the unnatural 

ones elicit activity elsewhere. We believe the meaning of these results is unclear. Only a small 

number of languages and participants (all of whom were already native speakers of largely 

hierarchically-structured languages) were tested, the localization of syntax in the brain is still 

contentious, and the patterns of brain activity for the ‘unnatural’ languages might reflect a lack of 

practice with such patterns, rather than their impossibility or a qualitative difference between 

linear and hierarchical rules. 
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unique to humans (Chomsky, 1988; Hauser et al., 2002; Berwick et al., 2011)—thus in 

one fell swoop solving (1) and (2). 

Under this logic, it follows that a good theory of language learning should be 

restrictive: that is, there should be languages that cannot be learned under the theory, and 

this restriction on the hypothesis space provides explanatory adequacy.
8 

In terms of 

Figure 2, the intuitively bad hypotheses would be ruled out as simply unavailable as 

mental representations during learning (Everaert et al., 2015).
9 

This approach to linguistic 

explanation has a pleasing elegance to it: learners must be restricted to learn properly, and 

we see that the variation in actual languages is restricted, therefore we can kill two birds 

with one stone by finding the right representational restrictions on learners. 

 

3.2.2 The modern view on learning 

The logic of inductive bias is sound. On a deep level, there really is no free lunch in 

learning, even deep learning (Mitchell, 1980; Wolpert et al., 1995; Baxter, 2000; Adam et 

al., 2019). Asking how much one can learn ‘from the data alone’ without inductive bias is 

like asking how close a runner can get to the finish line without saying where they 

started. It’s just not a sensible question. However, developments in deep learning have 

forced revisions to conventional ways of thinking about how inductive bias arises. 

                                                                    
8
 See, for example, Kodner et al.’s (2022) criticism of Yang and Piantadosi’s (2022) model of 

language learning as Bayesian program induction, a model which successfully learns grammars 

of various formal classes given small amounts of string input, thus addressing the Poverty of the 

Stimulus problem for formal structures. Although the model readily meets the challenge of 

inducing formal structure from strings, it has been dismissed by some in the linguistics literature 

because the same model could also learn grammars that are unlike human language. 
9
 Although these are common examples, it is not clear exactly how generative formalisms rule 

out the unnatural hypotheses here. In particular, the languages implied by the unnatural 

hypotheses are context-free, just as much as the languages implied by the natural hypotheses. So 

these (string) languages could be generated from, for example, Minimalist Grammars (Chomsky, 

1993; Stabler, 1997), since Minimalist Grammars generate a superset of context-free languages 

(Michaelis, 1998). 
10

In certain settings and with the right regularization, the best performance comes from models 

whose capacity is poised right at the point where training data and model parameters are 

balanced—the right regularization in these settings avoids the sharp spike in loss characteristic of 

double descent (Maloney et al., 2022, §4.2). 
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The conventional wisdom was that a learning model must be restricted in terms of the 

hypotheses it can consider, so that it does not overfit (Bishop, 2006, §1.1). A relatively 

unrestricted model may memorize the training data, or find some other pathological 

solution which lurks in the depths of its vast hypothesis space, as in the red hypotheses in 

Figure 2. By restricting the hypothesis space, one provides strong inductive bias, so that 

pathological solutions can be ruled out and good generalization can be guaranteed. The 

logic is the same as Universal Grammar: explaining generalization requires that we 

restrict the set of hypotheses (grammars) that a model (learner) may entertain. 

However, the empirical finding from deep learning is that overparameterized 

networks, which are more than flexible enough to memorize their training data, do 

generalize, often better than relatively restricted ones (Belkin et al., 2019; Zhang et al., 

2021). In machine learning, overfitting has typically been measured in terms of 

performance on a held-out dataset, where one typically sees a U-shape curve as in the left 

part of Figure 3: as models become more flexible in terms of the hypotheses they can 

express, at first they generalize to the held-out data poorly (underfitting), then they 

generalize well (the sweet spot), then after some point the more powerful models learn 

poorer hypotheses (overfitting). And yet in the late 2010s it was discovered that if you 

keep adding model power, the U-shape curve starts to descend again, in a phenomenon 

called double descent, shown in Figure 3. This pattern suggests that learners continue to 

find good generalizations even after being flexible enough to memorize their training 

data.
10

 

It seems that what appeared to be an insurmountable barrier turned out to be a kind of 

phase transition in how learning works. What looks like overfitting is, counterintuitively, 

ameliorated by adding even more parameters. Thus, one sees a new kind of generalization 

emerging, where less restricted learners have superior performance in learning the right 

generalizations. 

These findings came as a surprise to statistical learning theorists (Belkin et al., 2019; 

Zhang et al., 2021) and have triggered an ongoing field-wide effort to rethink learning 

theory or to show how these unexpected findings are compatible with existing theory (for 
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example, Poggio et al., 2020a; Martin et al., 2021; Martin and Mahoney, 2021; 

Kuzborskij et al., 2021; Henighan et al., 2023; Attias et al., 2024). These results should 

also make us rethink language learning and the role of restrictive formalisms in linguistic 

explanation. It is simply not the case that proper generalization can only come from 

learners who are sharply restricted to small hypothesis spaces, nor even that there is a 

correlation between restrictedness and proper generalization. All the successes of modern 

machine learning are in contradiction to the view that generalization must come from 

hard restrictions on the hypothesis space. 

 

Figure 3: Expected error of a learning model on training set and test set as a function of 

model expressivity (the variety of hypotheses that the model can express). To the left of 

the blue line, we have the classical picture from statistical learning theory. In the 

underfitting regime, increasing model capacity reduces training and test error, up to a 

point where one enters the overfitting regime, in which increasing model capacity causes 

a decrease in error on the training data but an increase in error on held-out data. This 

overfitting phenomenon is intuitively due to the model gaining the capacity to memorize 

the training set without forming generalizations that would be useful on the test set. The 

goal of model fitting in this view is to find the sweet spot that minimizes test error, often 

accomplished through methods such as deliberately reducing model capacity or early 

stopping. However, modern deep learning has revealed that as model capacity increases 
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beyond the point where the model can memorize the training data (the interpolation 

threshold, in blue), we enter a new overparameterized regime, where test error decreases, 

due to soft simplicity biases in the learner. Figure based on Belkin et al. (2019). 

 

 

Figure 4: Illustration of the logic of a soft inductive bias within a flexible hypothesis 

space, adapted from Wilson (2025). Figures show a hypothesis space for a learner, 

including regions of bad generalization (overfitting) and good generalization. The learner 

starts at the dot and, throughout learning, moves in the direction indicated by the arrow. 

A. Given a uniform bias over a highly flexible, relatively unrestricted hypothesis space, 

the learner is likely to overfit and form pathological generalizations. B. One strategy to 

impart useful inductive bias to a learner is to restrict the hypothesis space. However, this 

may miss the good generalizations. C. A better strategy, which is part of what underlies 

neural network success, is to keep a highly flexible, relatively unrestricted hypothesis 

space, but impart a soft simplicity bias which guides the learner towards the good 

generalizations. 

But how can this be, if the idea of inductive bias is right? How did the conventional logic 

go wrong in practice? The key mistake was the conflation of model power with inductive 

bias (Hubinger, 2019). The modern empirical finding is that more flexible learners have 

stronger biases toward “simple” hypotheses (Huh et al., 2024): that is, although they do 
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not restrict the range of hypotheses that can be considered, they do impose a soft notion 

of simplicity on those hypotheses. The logic is illustrated in Figure 4, following Wilson 

(2025). Furthermore, the source of this simplicity bias in neural networks and related 

systems is not necessarily related to the hard limits of their expressivity. The simplicity 

bias in neural networks seems to be toward functions that are nearly linear or simple in 

other ways (Valle-Perez et al., 2018; Hahn et al., 2021b), likely as a result of the 

dynamics of gradient descent on the loss landscape induced by the model (Poggio et al., 

2020b; Pezeshki et al., 2020; Merrill et al., 2021; Hahn and Rofin, 2024). 

In machine learning, these discoveries have catalyzed a change in focus, away from 

models whose architecture and representations are tailor-fit to their domain, and toward 

models that learn quickly in relatively unrestricted hypothesis spaces (Sutton, 2019). The 

zeitgeist is now strongly against using domain knowledge to restrict the behavior of 

learners, even when researchers have a strong sense of what the relevant domain 

knowledge is. 

3.2.3 The upshot for linguistic theory 

These surprising results from deep learning mean that the research program of achieving 

explanatory adequacy through restricted learners is deprived of its apparent logical 

inevitability. Previously, the logic was: learners must be formally restricted, and we see 

that human languages do have universal patterns, so maybe these necessary restrictions 

create the universal patterns. Nowadays, if this approach to linguistic explanation is to be 

maintained, the logic must be: learners have hard formal restrictions even though this is 

not necessary and may be harmful for learning, and these restrictions create language 

universals. It is still a viable hypothesis, but it loses its elegance. 

Furthermore, even if language-specific innate inductive biases in humans really are the 

key to the structure of human language, these inductive biases might not be expressible in 

terms of a categorical symbolic formalism or a sharply limited hypothesis space for 

learners. Inductive biases in modern neural models are soft and seem to arise from a 
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complex interplay of training dynamics, objective function, and model architecture, with 

the hard limits of model expressivity playing a relatively minor role. 

Overall, “explanation by constrained description” no longer seems so explanatory, at 

least not without further stipulations. Language learning and language universals may 

well be better captured by a highly flexible, less constrained formalism for linguistic 

representation—one which on its own could capture non-linguistic patterns as well as 

natural linguistic ones—paired with a soft, quantitative simplicity metric that captures 

learning dynamics or functional pressures on language. Learning models with explicit 

simplicity biases exemplify this approach (for example, Hsu et al., 2011; Perfors et al., 

2013; Rasin et al., 2021; Lan et al., 2022). 

This is not to say that inductive biases are no longer important in linguistics and 

language learning, nor that investigating inductive biases of humans and neural networks 

is not important: we will have much more to say on this in Section 4.4. Far from 

demoting inductive bias as a concern, language models open up the range of (possibly 

innate) inductive biases that we might look for in humans. The main point for linguistic 

theory is not to demote the importance of the learning problem, but to reshape it: away 

from explanation by constrained description, and toward a broader landscape of 

approaches and hypotheses. 

3.2.4 The question of data quantity 

It is still the case that, whatever language models learn about language, they do it using 

orders of magnitude more linguistic input data than human children are exposed to 

(Yedetore et al., 2023; Warstadt et al., 2023). Moreover, the learning trajectories of 

models and humans continue to show systematic differences (Chang and Bergen, 2022; 

Evanson et al., 2023; Constantinescu et al., 2025). Taken together, these results suggest 

meaningful differences between learning in models and humans, both in terms of data 

requirements and patterns of learning. A form of the Poverty of the Stimulus argument is 

still alive in the form of the observation that even if neural networks acquire linguistic 
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structure, they do not do so on the basis of the same amount and kind of data that a 

human child learner gets (Lan et al., 2024). 

As reviewed above, it has been suggested that formal linguistic structure provides the 

key inductive bias that makes learning from small amounts of data possible. However, 

there is no evidence that linguistic structure is the major missing ingredient to close the 

gap between models and human children.
10 

There have been many attempts to inject 

linguistic structure into neural models in various ways; some of the earliest successful 

deep learning approaches to language understanding were based on architectures that 

performed recursive computation in hierarchical parse trees (Socher et al., 2011, 2013). 

These approaches do succeed in promoting the kinds of structural generalizations that 

humans find intuitive, with the result that language learning from data is somewhat more 

sample efficient (Dyer et al., 2016; Futrell et al., 2019b; Wilcox et al., 2019b; Kim et al., 

2019; Papadimitriou and Jurafsky, 2020, 2023; Nandi et al., 2025). However, in terms of 

absolute performance, these approaches are still far from closing the gap between humans 

and neural networks. 

It is entirely possible that the key to faster and more human-like learning is not 

particular built-in formal constraints, but rather more flexible architectures (such as 

Kolmogorov–Arnold Networks: Liu et al., 2024), or biases towards domain-general 

compositional reasoning (McCoy and Griffiths, 2023; Yang and Piantadosi, 2022), or 

different training regimes (Murty et al., 2023), or the incorporation of multimodal data 

which provides rich side information about the structure of the environment that is being 

described in language (Wang et al., 2023), or domain-general bounded-rational 

approaches to generalization such as the Tolerance Principle (Belth et al., 2021; Payne et 

al., 2021; Kodner, 2022). 

Overall, we believe the shoe is on the other foot for those who believe that an innate 

bias toward a particular formal linguistic structure is the factor that enables human 

learning from small amounts of data. Formal linguistics has not presented an alternative 

model with the demonstrated practical language-learning capabilities of neural models. 

                                                                    
10

 Indeed, the analysis by Mollica and Piantadosi (2019) suggests that syntactic structure makes 

up only a very small portion of the information necessary to learn a language. 
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The direction of developments in machine learning suggests that the gap between human 

and machine learning is more likely to be closed not through built-in domain-specific 

formal restrictions, but rather through more powerful domain-general learning 

algorithms. 

The difference between human and neural network learning also raises the possibility 

that humans and neural networks are just so different that one is not informative about the 

other (Kodner et al., 2023). We believe not. First, as argued above, the success of neural 

networks weakens logical arguments that language cannot be learned without domain-

specific formal constraints on language, and in general changes how we think about the 

role of formal restrictions in learning. Second, even if standard neural network training 

methods are not able to acquire linguistic structure on the basis of developmentally 

realistic data, the representations that they do eventually acquire based on more data are 

still informative about how language might be represented and processed in the brain 

(more in Section 4), even if the networks do not arrive at these representations along the 

same trajectory as the human child. 

3.3 Language models and linguistic traditions 

While language models may seem to involve concepts that are foreign to linguistics, they 

emerged in part from certain intellectual traditions of the study of language—although 

these traditions are not necessarily the ones that have been dominant in linguistics 

departments. Below we discuss the relationship between schools of linguistics and the 

development of language models and related language technologies. 

3.3.1 The generative tradition of linguistics 

It is rare in the history of science for a scientific theory to turn out as disconnected from a 

corresponding engineering application as formal generative linguistics has turned out to 

be for language models. We believe this has happened primarily because of a difference 

in goals between generative linguistics and language modeling, with the generative 

tradition taking a narrow view of its goals. 
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A historical parallel is informative. In the early 19th century, while Newtonian 

mechanics provided a strong basis for parts of mechanical engineering, it did not on its 

own seem to provide a theory that answered pressing questions about the increasingly 

complex machines emerging from the Industrial Revolution, in particular steam engines. 

Carnot (1824) developed an effective theory of such engines using a new ad-hoc concept 

of ‘moment of activity’, which eventually developed into the idea of entropy (Clausius, 

1865). This concept had to be discovered through engineering because the focus of purely 

theoretical physics was on understanding fundamental mechanics through mathematical 

methods of increasing elegance. Explaining the behavior of complex machines—which 

behavior certainly must reduce to more basic mechanics anyway—was not on the agenda. 

And yet from the practical project of understanding steam engines emerged a family of 

concepts that some theoretical physicists now view as more fundamental than even matter 

itself (Wheeler, 1989). 

Turning back to linguistics: the reason that generative linguistic theory did not turn out 

to be helpful along the path toward language models was due to a similar narrowness in 

focus, which led it away from considering complex systems for dealing with language. 

Language models are, at bottom, models of the stream of language that is produced 

and comprehended by humans. The relevant theory is the theory of language use, 

production, comprehension, learning, and of human cognition more generally. Generative 

linguistics, on the other hand, has not focused on how to build a machine that produces 

and comprehends language, but rather how to build a language, conceived of as an 

abstract mental structure that gives rise to a mapping between meaning (that is, a logical 

form or conceptual–intensional representation) and form (that is, a phonological form or 

sensorimotor representation) (Chomsky, 1995, 2005; Adger, 2003; Hornstein et al., 

2005).
11 

Furthermore, it was claimed that this kind of analysis must take center stage in 

                                                                    
11

 Early generative linguistics went further in its goals, claiming that the structures identified 

through generative analysis would not only provide a characterization of language, but also be a 

necessary and explicit part of any theory of how language could be learned and processed 

(Chomsky, 1965, 1971; Bresnan, 1982). See Stabler (1983) for discussion of what he sees as 

confusion within the field as to whether or not generative linguistic theories are intended to be 

theories of the representations used by the brain during processing, as opposed to theories that 
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the science of language, preceding any analysis of more complex systems for language 

processing, use, or learning, since these systems must operate in ways that make 

reference to the abstract structures of language (Chomsky, 1965, Ch. 1). 

Given this focus, generative linguistics has had a huge influence on the engineering 

field that works on how to build languages: programming language design. Indeed, the 

basics of all modern programming languages are based on formal linguistic theory, 

incorporating explicit (often contextfree) grammars and parsers, as a way of linking a 

stream of text to a representation of a computation. Programming languages are, perhaps, 

exactly the ‘esoteric dialects’ spoken by ‘elaborate machines’ in the Nabokov quote that 

starts this section. 

While this narrowness of focus was useful on its own terms, it has limits. There are 

potentially fundamental insights to be gained now from the analysis of messy, complex, 

practical systems, just as happened in physics, and as is now happening in linguistics. 

3.3.2 The statistical tradition of linguistics 

In fact, there is a long tradition of statistical approaches to language, and these traditions 

were deeply involved in the early development of language models. 

Perhaps the most well-known such contribution is distributional semantics: the idea 

that the semantics of a word is related to the distribution over contexts in which that word 

appears, often cited to Firth (1957, p. 11), and developed more systematically by Harris 

(1954). This idea originates from the school of structuralist linguistics (Saussure, 1916; 

Bloomfield, 1926). Structuralist linguistics had as one theoretical aim the development of 

discovery procedures, which were formal procedures that could be applied to bodies of 

text in order to discover (and even define) linguistic structures (Harris, 1951). The most 

well-developed of these discovery procedures were statistical in nature. For example, 

Harris (1955) developed a theory of words and morphemes based on statistical co-

                                                                                                                                                                                                     
constrain possible language. He concludes that Chomsky and others often conflated theories of 

grammar and theories of mental representation and processing, but that this position was not well 

grounded and that “it seems unlikely that linguists and psychologists really want to claim any 

such thing”. 
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occurrence patterns, including a procedure for discovering morpheme boundaries by 

effectively calculating transitional probabilities, an idea taken up again much later in the 

psycholinguistics of language learning (Saffran et al., 1996), and closely related to 

tokenization methods such as byte-pair encoding (Shibata et al., 1999; Tanaka-Ishii, 

2021, Ch. 11). At issue was the relationship between grammatical structure and the 

observable statistical structure of a corpus of language—one of the core questions that 

linguists working on language models are interested in again today. 

Harris’s work is an intellectual precursor to modern language models. However, in 

practice, the statistical structuralist tradition represented by this work was largely 

supplanted in American linguistics departments by the generative school, which sprang 

from Chomsky’s (1957) arguments that distributional statistics were irrelevant to 

linguistic structure and that discovery procedures were a distraction from the putatively 

‘core’ questions of linguistics. 

Nevertheless, the statistical analysis of language continued under the heading of 

usage-based approaches (Bybee and Hopper, 2001), in which the key to language is not a 

set of underlying formal rules but emergent properties based on the statistics and 

dynamics of language use (from which rules or rule-like behavior might emerge). 

Traditions in typological syntax (Greenberg, 1963; Dryer, 1992), functionalist syntax 

(Comrie, 1989; Keenan and Comrie, 1977), construction grammar (Croft, 2001; 

Goldberg, 2009), probabilistic modeling (Bresnan et al., 2001, 2007; Christiansen and 

Chater, 2016), and evolutionary linguistics (Kirby and Hurford, 2002) have all carried the 

banner of a thoroughgoingly statistical approach to language. Earlier arguments about the 

relationship between statistics and structure, and the value of probabilistic methods, 

mirror many of the points we are making here (Abney, 1996; Pereira, 2000; Manning, 

2003; Bresnan et al., 2007; Lappin and Shieber, 2007; Norvig, 2012). 

These statistical traditions of linguistics played a catalyzing role in the birth of neural 

networks and LMs. The connectionist framework from which neural LMs emerged 

overlapped with the statistical tradition in linguistics, often in conflict with the anti-

statistical tradition. A major locus of this early work using neural networks was about the 
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English past tense, with Rumelhart and McClelland (1987) developing a neural model for 

forming the past tense from present tense words, triggering much debate (Pinker and 

Prince, 1988). Elman, a Linguistics PhD, developed an early recurrent neural network 

(RNN) sequence architecture (1990a) in order to solve the problem of finding linguistic 

structure in time, a problem motivated by findings in linguistics and psycholinguistics 

(Frazier and Fodor, 1978). This basic architecture still underlies many language models 

(Feng et al., 2024a). Chris Manning, a pioneer in neural and probabilistic models, was 

trained as a linguist (Manning, 1995), and argued for a statistical approach to syntax 

(Manning, 2003), before going on to work on influential neural methods for performing 

linguistic tasks (e.g., Pennington et al., 2014). 

The history of the field and the dominance of the generative tradition made it such that 

these figures are sometimes seen as ‘not linguists’. But the traditions they emerged from 

were fundamentally concerned with questions about human language and cognition and 

belong under the heading of linguistics. To be clear, we do not think that the success of 

modern language models unequivocally supports or refutes any particular intellectual 

tradition in linguistics. But we do think that the narrow and exclusive theoretical focus of 

generative linguistics, coupled with its relative dominance within American linguistics 

departments throughout the late 20th century, caused tragic missed connections in 

intellectual history, and has left the field of linguistics diminished compared to where it 

could be. 

Progress in language science will not come from hyperfocus on any one goal, nor from 

any one theory of what language is, nor from one framework for understanding linguistic 

phenomena. Rather, the science of language needs to draw on a plurality of perspectives, 

from a wide variety of disciplines. In the current moment, that means leveraging the 

explosion of intellectual creativity springing forth around language models. Just as the 

concept of entropy arose from ad-hoc analysis of complex machines and ended up 

revolutionizing fundamental physics, it is possible and even likely that ideas based on 

language models will revolutionize linguistics. 
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4 Where does that leave the science of language? 

“Trying to understand perception by studying only neurons is like trying to 

understand bird flight by studying only feathers: It just cannot be done. In order 

to understand bird flight, we have to understand aerodynamics; only then do the 

structure of feathers and the different shapes of birds’ wings make sense.” 

Marr (1982, p. 27) 

If neural models make us rethink some aspects of linguistic theory, where do we go 

from here? What is the status of the formal structures discovered through linguistic 

analysis, if they don’t have to be innately latent in the human brain? We believe that 

linguistic structure is as real as it ever was, and that the LM revolution presents us with 

important new ideas and methods for studying language. Taking a statistical and 

information-theoretic approach to language brings these possibilities into focus. We also 

consider ways in which LMs might give us reason to update our linguistic theories to be 

more gradient, usage-based, and functionalist, by serving as a proof-of-concept system 

that implements ideas that were previously hard to formalize. 

4.1 Linguistic structure is real 

LMs are proof-of-concept that systems can process language without having linguistic 

structure hardwired in. But that doesn’t mean it isn’t real. We hold that linguistic 

structure is a real pattern in the sense of Dennett (1989): it provides a compressed and 

useful representation of important aspects of language. To explain or describe linguistic 

phenomena without reference to linguistic structure, perhaps in terms of some more 

reductive neural theory, would be hopelessly complex — and would make understanding 

LM behavior more difficult (see Nefdt, 2023, for a worked-out theory of linguistic 

structure as real patterns). 

Figure 5 shows a schematic of how this account works for a phenomenon like subject–

verb agreement. Modern language models are proficient at this task, proficient enough 

that their behavior looks rule-like. But, given the dynamic and chaotic nature of neural 

networks, it is likely that there are messy and heterogeneous structures and processes that 
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give rise to this rule-like behavior in models. These structures might only very noisily 

map onto linguistic categories like “grammatical subject” or “number agreement”. One 

reaction to that might be to conclude that linguistic theory was wrong or misguided—that 

it seemed like there was such a thing as “grammatical subject” that was crucial for verb 

agreement, but that actually the underlying reality was more complicated and now we can 

do away with all these rules and replace them with the messy, complicated neural system 

instead. 

This hyper-reductive conclusion would not be productive. A theory of language which 

points to complex neural circuits for explaining the data of subject–verb agreement, without 

referring to something about the concept of grammatical subject, would be like an example 

from Dennett (1989, Ch. 2): imagine aliens who can perfectly predict human behavior using 

atomic physics (that clump of human atoms will move towards that coffee shop) but without 

understanding human beliefs and desires (that the human wants coffee and believes that the 

coffee shop will provide it). Lacking concepts of humans’ attitudes, the aliens’ theory of 

human behavior is perhaps perfectly accurate and reductive, but comes “at enormous cost of 

cumbersomeness, lack of generality, and unwanted detail” (Dennett, 1990, p. 189). Dennett 

concludes that the concept of belief is a real pattern in that it provides an abstraction that 

supports prediction and counterfactual reasoning based on coarse-grained data. The idea is 

that any abstraction that enables simple prediction, compression, and causal modeling in this 

way is a real pattern, fully deserving the epithet real even if there is a more reductive theory 

that lacks the abstraction. Similarly, even if it turned out we could explain linguistic behavior 

without recourse to anything recognizable as linguistic structure, it would come at the same 

cost of “cumbersomeness, lack of generality, and unwanted detail”. 
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Figure 5: Schematic for linguistic structure as a real pattern, a (potentially leaky) 

abstraction that supports prediction and counterfactual reasoning based on coarse-grained 

data. In humans (in vivo), the complex physical, biological, and social processes 

associated with language learning, use, and knowledge may be abstracted into 

psycholinguistic theories describing operations on mental representations. In turn, the 

behaviors of these mental representations may be interpretable in terms of coherent 

linguistic structure. In neural networks (in silico), the complex patterns of weights and 

activations may be abstracted into interpretable circuits that approximately compute 

linguistically meaningful features like whether a word is singular and a grammatical 

subject. In turn, those interpretable circuits may be interpretable in terms of a larger 

abstraction of a coherent linguistic structure. Thus linguistic structure is a real pattern at 

the highest level of abstraction, which allows us to understand language as it is 

implemented by a human or by a neural network. 
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We join Dennett in his conviction that real patterns are, well, real. As such, we are not 

eliminativists about grammatical structure, nor do we believe that this kind of 

eliminativism would be scientifically productive. Some in the generative tradition adopt a 

similar view, contra the idea that every posited linguistic structure must be in the head. 

Adger (2022) writes: “Generative grammarians think of the posits of their theories in 

much the same way as physicists think of quarks or particles in wave form: They are the 

best explanations of the phenomena, though we do not know exactly what they 

correspond to in the world we can currently observe.” LMs are a promising avenue for 

figuring out what these explanations do, in fact, correspond to in the world. 

Indeed, the idea of real patterns can help explain the success of language models. 

Language models are trained to predict tokens in context. From an information-theoretic 

perspective, this means they are finding simple representations for linguistic input (Chater 

and Vitányi, 2007), and in particular, compressed representations of past input that let 

them predict future input (Tishby et al., 1999; Shalizi and Crutchfield, 2001; Bialek et al., 

2006; Still, 2014; Tishby and Zaslavsky, 2015). Insofar as linguistic structure is real, it is 

part of the representation that enables this compression. 

A similar point is made by Wolfram (2023), who connects the success of LMs with 

the reducibility of computational processes. Some computational processes are chaotic: 

there is no good way to systematically predict the digits of pi other than actually running 

the computation and learning what the next digit is. But other processes that appear 

complex have learnable patterns that can be used to give simpler, compressed 

representations. For instance, 
    

   
 is 5.8144144144... where the 144 repeats forever. This 

repeating structure means that we could give a compressed representation of what the 

millionth digit is without having to do additional computation. Wolfram suggests that the 

success of LMs proves that human language has structure that enables this kind of 

compression. This compressibility is responsible not only for LMs’ success, but for the 

fact that it is possible to construct linguistic theories. Compressibility is structure. 
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4.2 What LM interpretability can tell us about human language 

We do not mean to suggest that linguists and cognitive scientists should identify 

compressible patterns in behavior, call it a real pattern, and declare victory. Perhaps the 

grand challenge of all of cognitive science is to uncover the internal mechanisms in 

neural networks and brains that underlie and implement behavioral patterns (Smolensky, 

1988). Finding these internal mechanisms is not a prerequisite for the reality of linguistic 

structure—the mechanisms may be irreducibly complex. But when mechanisms are 

found in neural networks, they can be informative not only about linguistic structure 

itself, but also about how language processing and learning may be implemented in the 

human brain. 

Interpretability in an idealized thought experiment Consider a thought experiment, 

using the linguistic concept of c-command (a particular relationship between elements in 

a linguistic tree which has been posited to be important for a variety of structure-sensitive 

linguistic patterns). In this thought experiment, we get embedded representations for each 

word and use an interpretability method to get a representation of the pairwise 

relationship between each pair of words in each sentence. We analyze these word pair 

representations, and we find that, in layer n, neuron m patterns in an interesting way. If 

and only if the value of that particular neuron is positive, then the first word in the pair c-

commands the second word. If it’s negative, then we know that it doesn’t. Further 

experimentation reveals that this pattern is remarkably consistent. (N.B.: We want to be 

clear that no experiment would ever give such clean results; LMs just don’t represent 

anything in such human-interpretable ways.) 

If we did discover a result like this, we would be justified in drawing several 

conclusions. First, the ease with which we extracted the c-command relationship would 

be compelling evidence that, for performing linguistic tasks in English, understanding 

which words c-command which other words is useful — so useful that the model learned 

it emergently. Second, we would conclude that learning the c-command relationship is 

possible with relatively little built-in language-specific bias. We would thus update our 

credence that the learning of complex syntactic relationships like c-command is possible 
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without a built-in Universal Grammar. Third, we could use this method to test various 

competing theories about which kinds of structural relationships should be more or less 

prominently represented in models. Fourth and most importantly, we could use these 

results to try to work out how an abstract structural relationship like c-command can be 

represented in the weights of any system which, like the brain, is composed of cascades 

of activating neurons. Such explorations would be informative as proof-of-concept in 

silico models of how the brain might process language. 

If we didn’t find the c-command relationship in our model representations, that’s a 

trickier scenario. We might simply not have used the right methods to find c-command, 

even though it’s robustly represented. Or it might turn out that, while c-command is 

critical to human processing, LMs process language sans c-command. Or it might turn 

out that neither humans nor models need to represent something like c-command to 

demonstrate proficient linguistic behavior. Even in this negative case, though, the results 

could be fruitful for generating hypotheses and stimulating further inquiry, grounded in 

data and requiring precise formulations. 

Thus, while the linguistic conclusions we can draw from LM interpretability 

experiments require care, it should be relatively uncontroversial that the idealized c-

command experiment above would be linguistically interesting—even while recognizing 

a wide variety of opinions as to whether the current slate of results from LM experiments 

are linguistically interesting. 

Interpretability in the real world Our c-command example is not realistic: like all 

complex systems, language models don’t learn and represent information in neat and 

interpretable ways. Rather, it takes a lot of work to ask questions about how LMs 

represent parts of speech (Tenney et al., 2019) or grammatical dependencies (Hewitt and 

Manning, 2019). And the answers that come out are messy. 

But we are optimistic. The extent to which LMs are “blackboxes” is now overstated 

because of major advances in the field of neural network interpretability. For example, as 

discussed in Section 2.2, researchers now have a grip on how neural systems use the 
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geometry of word embeddings to represent syntactic relations among words (Hewitt and 

Manning, 2019; Chi et al., 2020; Eisape et al., 2022; Diego-Simón et al., 2024). 

More recent techniques have shown, in a mechanistic way, exactly how artificial 

neural circuits can be used to perform higher-level computations (Lindsey et al., 2025), 

finding neural circuits and induction heads in Transformers (Elhage et al., 2021) or using 

sparse autoencoders to find key features in model representations (Huben et al., 2023). 

These techniques often depend on causal manipulation—showing that, if particular parts 

of the neural network are perturbed or patched in particular ways, the output is affected in 

predictable ways (Geiger et al., 2023). For instance, Wang et al. (2023) shows how it is 

possible to trace a circuit that controls the completion of an object (e.g., “When Mary and 

John went to the store, John gave a drink to .” where the intended answer is “Mary”). 

Many papers have now used these techniques to causally study what parts of a network 

are responsible for particular kinds of complex linguistic behavior like grammatical 

number agreement (Lasri et al., 2022; Finlayson et al., 2021; Mueller et al., 2022; Lakretz 

et al., 2019), verb conjugation (Hao and Linzen, 2023), animacy processing (Hanna et al., 

2023), and various kinds of long-distance dependencies (Arora et al., 2024). These 

techniques demonstrate how complex linguistic behavior can actually be implemented 

mechanistically in a neural system. These mechanisms are strong hypotheses for how 

syntactic relationships are represented in the human brain as well. 

It is our hope—and also our prediction—that interpretability techniques will make it 

possible to close the gap between linguistic theory and implementation (mechanistic 

interpretability is a big part of “the way forward” per Millière and Buckner, 2024). This 

broad line of work, exploring symbolic representations in systems that solve genuinely 

interesting linguistic tasks, has started to make good on the promise of Smolensky’s 

(1988) prescient vision “in which traditional and connectionist theoretical constructs 

collaborate intimately to provide an understanding of cognition”. 
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4.3 LMs are a proof of concept for gradient, usage-based theories of language 

The real patterns account leaves open the possibility that a wide variety of linguistic 

theories can be fruitfully combined with LMs. But there is a separate question raised here, 

which is whether the LM era should push us towards any particular theory for explaining 

language. We believe that the success of LMs strengthens the case for existing usage-

based language theories based on gradient representations. By their very nature, such 

theories have been difficult to formalize to the extent that one could, for example, 

generate or process sentences with them. LMs serve as model systems for how these 

ideas can be implemented, and as proof of concept that they can work. 

Word Meanings Traditional views in semantics often posit that words have discrete 

meanings and can be combined using systematic rules (Heim and Kratzer, 1998). In 

contrast, a distributional view of meaning assumes meanings are best captured by usage 

patterns (Potts, 2019; Goldberg, 2019; Erk, 2012; Baroni and Lenci, 2010; Baroni et al., 

2014; Elman, 1990a), an intuition now operationalized inside language models as 

continuous high-dimensional vectors that encode the contexts in which a word appears, 

resulting in a rich web of lexical relationships represented within the geometry of the 

word vector space (Mikolov et al., 2013). If we think of the meaning of the word fire as 

being represented by its embedding in context, we find that the meaning of the word is 

slightly different in every context in which it occurs, but clustering together in space 

(campfires in a distinct cluster from a building fire even though these meanings are in 

some theories often lumped in as the same “meaning”; Chronis and Erk, 2020). As such, 

LMs show that we might not need a strict separation between core meaning and a richly 

context-dependent and pragmatics-laden meaning in use. LMs give us a way of 

formalizing the intuition that meaning might be gradient, fuzzy, and usage-based in a way 

that works in practice, not just in theory. 

Syntactic Categories and Grammatical Roles LMs seem to be able to perform tasks 

that require knowledge of syntactic category and grammatical role, such as generalizing 

part of speech when encountering a novel token (Kim and Smolensky, 2021). One might 
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then be tempted to ask: what are the syntactic categories an LM uses? And we can, for 

instance, probe for grammatical category in models and see whether the categories that 

emerge correspond to ones posited by linguists (Chi et al., 2020; Papadimitriou et al., 

2021)? A key finding of this work is that, while there are natural clusters in part of speech 

and grammatical role, such clusters are necessarily fuzzy and gradient. For instance, 

Papadimitriou et al. (2021) found robust representations of subjecthood. But they were 

graded, with intransitive subjects and passive subjects less “subject-y” than the subjects 

of transitive active verbs. These representations could be discretized to make judgments 

like “BERT represents this word as a subject but not this one”, but this discretization 

would be lossy. This graded notion of syntactic category and grammatical role has a long 

history in functional linguistics (Ross, 1972) and, as such, can be useful in giving us a 

new way to think about claims that word classes are not stable across languages 

(Haspelmath, 2012) and that grammatical categories exist in graded hierarchies (Comrie, 

1989; Keenan and Comrie, 1977). 

Compositionality While traditional theories have emphasized the compositional nature 

of language, the construction-based approach has emphasized that not all (or even most) 

language can be explained strictly compositionally (Goldberg, 2009). This position 

argues for a graded notion of compositionality: knowing what “green tea” is requires 

more than just knowing the meaning of “green” and the meaning of “tea”—even though 

this isn’t strictly an idiom in that the meanings of “green” and “tea” are still relevant. 

There has been a lot of work on whether LMs can handle strict compositionality (Lake 

and Baroni, 2018; Kim and Linzen, 2020; Russin et al., 2024), as well as work on how 

LMs handle more idiosyncratic constructions (Mahowald, 2023; Misra and Mahowald, 

2024; Weissweiler et al., 2023; Tseng et al., 2022; Devlin et al., 2019). Neural models 

can combine the best of both worlds in that they can maintain multiple levels of 

representation at once (Baroni et al., 2014). They don’t have to decide whether “green 

tea” is fully composed or fully stored: it can be a little of both. They can even be used to 

measure the degree of compositionality quantitatively (Rathi et al., 2021; Socolof et al., 

2022). 
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Separation of Linguistic Layers Traditional linguistic theory has often posited a 

cognitive separation in processing between linguistic layers (phonology, syntax, 

semantics, pragmatics). But evidence from psycholinguistics (e.g., Tanenhaus et al., 

1995; Shain et al., 2024; Fedorenko et al., 2020) suggests these layers are not processed 

in neat discrete stages but are richly integrated. LMs do seem to have some separation 

such that, for example, lower layers of the model handle morphology with higher layers 

handling syntax and semantics (Tenney et al., 2019). However, the nature of their 

architecture is to share information in hard-to-untangle nonlinear ways. So their 

functional separation is not strict but fuzzy and gradient—similar to psycholinguistic 

evidence for humans. 

4.4 What the inductive biases of LMs can tell us about language 

Since neural language models do have inductive biases, perhaps one reason for their 

success in learning language is that those inductive biases meaningfully align with 

linguistic structure. Indeed, a number of recent studies have investigated this possibility. 

In one such study, Kallini et al. (2024) refute the claim that neural LMs can learn any 

language, including unnatural ones, equally well (Bolhuis et al., 2024). They compare the 

learning curves for the GPT-2 architecture trained on language modeling on English text 

against models trained on various transformations of the English text, designed to create 

languages that are intuitively ‘impossible’, but which still have the same level of overall 

predictability as the original English text. For example, one transformation applies a 

deterministic shuffling function to the tokens of English text, creating extraordinarily 

complex but deterministic word order rules that violate all known formal 

characterizations of syntax, and another transformation creates a new agreement marker 

that must appear exactly 4 tokens away from a verb, also an unnatural pattern. Kallini et 

al. (2024) find that the model learns from real English text consistently faster than these 

baselines (see also Mitchell and Bowers, 2020; Yang et al., 2025; Xu et al., 2025; Ziv et 

al., 2025, among others). 
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These results and others show that Transformers and related models have inductive 

biases that align with human language. However, the major determinant of inductive 

biases in LM is not that they are restricted to a particular formal language class, as might 

be expected from the generative linguistics paradigm. In fact, in terms of formal 

expressivity, it seems that Transformers are mismatched with the usual formal language 

classes used to characterize language. Whereas human language is sometimes 

characterized using (extensions of) the Chomsky–Schützenberger hierarchy (Chomsky 

and Schützenberger, 1963; Vijay-Shanker et al., 1987; Weir, 1988), which encompasses 

well-known classes such as regular and context-free languages, modern Transformers as 

they are currently applied (and other recently successful language model architectures 

such as State Space Models: Gu and Dao, 2024) seem to inhabit formal language classes 

defined by circuit complexity (Merrill et al., 2022; Strobl et al., 2024; Merrill et al., 

2024), a formal language hierarchy which is orthogonal to the Chomsky–Schützenberger 

hierarchy.
12 

To the extent that Transformers have inductive biases that help (or hinder) 

their language learning, they likely arise from something other than the expressive limits 

of their architecture. 

Below we consider two apparent learning biases of modern LMs which may be 

aligned with the structure of human language: information locality and low sensitivity. 

Information locality Human languages are structured in a way such that elements that 

statistically predict each other are usually close to each other. For example, in phrase such 

as big brown box, the noun box and the adjective brown are highly predictive of each 

other—boxes, especially cardboard ones, are often brown, for many reasons—and so 

these words are likely to be close to each other: the alternate order brown big box sounds 

odd or like it is conveying some other special meaning (Futrell, 2019; Culbertson et al., 

2020; Scontras, 2023; Dyer et al., 2023). Locality ideas of this kind pervade human 

language (Behaghel, 1930; Givón, 1991; Futrell, 2019; Mansfield, 2021; Hahn et al., 

                                                                    
12

 Interestingly, circuit complexity has also been used to characterize the computational capacity 

of biologically realistic populations of neurons (Maass, 1997; Maass and Markram, 2004). So 

human performance may also be ultimately limited in this way. 
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2021a; Mansfield and Kemp, 2023): words are usually contiguous units, usually modified 

by prefixes and suffixes (directly adjacent to them, ordered by ‘relevance’ to the root: 

Bybee, 1985; Saldana et al., 2024), and words linked by syntactic dependencies tend to be 

close to each other 

(Gibson, 1991, 1998; Liu, 2008; Liu et al., 2017), more than would expected under 

random grammars within a linguistically realistic formalism (Gildea and Temperley, 

2007; Park and Levy, 2009; Gildea and Temperley, 2010; Futrell et al., 2015, 2020b). 

Autoregressive LMs such as GPT-2 also show a bias towards information locality, as 

demonstrated by several of the experiments of Kallini et al. (2024) (discussed above): 

many of the counterfactual languages which are harder to learn in those experiments are 

also those that disrupt information locality. The bias towards locality seems to come from 

the next-token prediction task performed by LMs. The bias toward information locality is 

an ‘ember of autoregression’ in the terminology of McCoy et al. (2023), one which helps 

language learning and is likely shared with humans. 

Relatively low sensitivity Another related inductive bias in Transformers is the bias 

toward learning functions with low sensitivity or low polynomial degree (Hahn et al., 

2021b; Abbe et al., 2023; Bhattamishra et al., 2023). Sensitive functions are functions on 

input strings whose outputs change drastically based on small changes to the input. For 

example, a function on input bitstrings that counts the parity of the input—returning odd 

or even depending on the number of 1’s in the input—is maximally sensitive and high-

degree, because any single change to the input bits will flip the output of the function 

(O’Donnell, 2014). Although the Transformer architecture has the ability to represent 

highly sensitive functions in terms of its representational capacity, this turns out not to be 

relevant to its inductive bias in learning. Rather, the bias toward low-sensitivity functions 

comes from the shape of the loss landscape induced by the model. In particular, any 

parameter setting representing a highly sensitive function in the Transformer architecture 

must be brittle, meaning that a small change to the parameters would make the 

Transformer produce some different, lower-sensitivity function (Hahn and Rofin, 2024). 
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Thus high-sensitivity functions are unlikely to be reached through a gradient-descent-

based learning process. 

Human languages, viewed (for example) as functions from strings to meanings or to 

grammaticality judgments, also seem to be relatively low-sensitivity (Hahn et al., 2021b). 

We do not find human languages where, for example, a word is well-formed if and only if 

it contains an odd number of some certain segment, even though it would be easy to 

express this language using a regular grammar. 

However, like information locality, low sensitivity is not an absolute formal restriction 

on languages. For example, calculating the meaning of iterated negation is like a parity 

function: What does it mean when someone says they are not not not not not not wearing 

a tie? These high-sensitivity parts of language are nonetheless rare in usage, and difficult 

to understand in practice. Relative low sensitivity is an important statistical property of 

human language, perhaps reflecting a general cognitive constraint for humans, which has 

come to light as the result of taking the inductive biases of LM architectures seriously. 

4.5 Convergence of LMs and psycholinguistics on predictive processing 

It is not a coincidence that the basic paradigm for training language models—incremental 

prediction of upcoming input—mirrors ideas about how human language processing 

works. In early neural network work, Elman (1990b) cites two reasons for choosing to 

use a prediction task in training his models: “minimal assumptions about special 

knowledge required for training” and the fact that “much of what listeners do involves 

anticipation of future input”. Indeed, there is a deep functional convergence between the 

predictive approach to language modeling and the ways that human language is processed 

and structured. 

Elman’s statement about what listeners do is not speculative. Experimental 

psycholinguistics has delivered a picture of human language processing that is deeply 

entwined with the task of autoregressive prediction, mirroring other areas of cognition 

(Rao and Ballard, 1999; Bar, 2009; Friston and Kiebel, 2009; Ryskin and Nieuwland, 

2023). In comprehension (the process of decoding meaning from linguistic form in real 

time), the way that human processing works is influenced by the predictability of each 
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word (or sub-word unit) conditional on previous words (Hale, 2001; Levy, 2008; Wilcox 

et al., 2020, 2023b; Xu et al., 2023). Furthermore, language comprehension is highly 

incremental (Tanenhaus et al., 1995; Smith and Levy, 2013), meaning that information of 

different kinds is processed and integrated as quickly as possible as it comes in. There is 

also a high degree of incrementality in language production (Ferreira and Swets, 2002), 

and incremental predictability plays a key role there too: for example, disfluencies and 

pauses in speech happen before unpredictable words (Goldman-Eisler, 1957; Beattie and 

Butterworth, 1979; Dammalapati et al., 2019; Futrell, 2023), and unpredictable words are 

enunciated more slowly (Bell et al., 2009; Upadhye and Futrell, 2025). 

Many of these studies about the effects of predictability in language processing would 

have been impossible without large language models. Even after converging on the idea 

that prediction is an important part of language processing, psycholinguistics as a field 

was hampered by the fact that strong probabilistic models for language were not 

available, resulting in conclusions based on what now seem to be fairly weak models and 

methods of estimating incremental probability (Frank and Bod, 2011; Fossum and Levy, 

2012; Smith and Levy, 2013). Now, neural models make it possible to probe the limits of 

predictive models of language processing (Wilcox et al., 2020, 2023b; Xu et al., 2023), 

including the discovery that certain phenomena seem to go beyond the simplest predictive 

models (van Schijndel and Linzen, 2018, 2021; Huang et al., 2024; Staub, 2024), and that 

human processing is better characterized by prediction under resource constraints similar 

to but more severe than those present in neural models (Futrell et al., 2020a; Hahn et al., 

2022; Kuribayashi et al., 2022; Timkey and Linzen, 2023; Oh and Schuler, 2023; De 

Varda and Marelli, 2024; Clark et al., 2025). 

4.6 Functional explanations for human language 

LMs also orient us toward another route to explanatory adequacy in linguistic theory, one 

which posits that the form of language is related to its function: communication of 

thought and social coordination under general cognitive constraints on how language is 

produced and comprehended (Chomsky, 2005; Gibson et al., 2019; Levshina, 2022; 
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Bickel et al., 2024). The functionalist school of linguistics, which is often contrasted to 

the generative or formalist approach (Newmeyer, 1998), holds that the structure of 

language ultimately reflects constraints and pressures arising from the way language is 

actually used (Hawkins, 1994, 2004, 2014; Haspelmath, 2008; Comrie, 1989)—perhaps 

motivated by factors such as a language’s “niche” such that languages with larger 

communities of speakers or more second language learners might have different pressures 

(Lupyan and Dale, 2010; Raviv et al., 2019). 

We believe that linguistics and language modeling can make (and in fact already have 

made) fruitful contact at this functional level of explanation. By analogy, bird wings and 

airplane wings are very different things, but they share the function of flying in the 

Earth’s atmosphere, and so they are both shaped by the constraints of aerodynamics 

(Marr, 1982; Gill, 1995). Similarly, neural language models and human language 

processing mechanisms are different things, but at the level of function, they both encode 

and decode information in linguistic strings incrementally and predictively. To the extent 

that human language is structured in a way that supports this kind of incremental 

prediction (for example, through information locality), it is also aligned with the strengths 

and inductive biases of language models. 

Indeed, language models have already proved a key tool in functionalist models of 

why languages are the way they are. A sizable literature exists about what kinds of 

languages emerge in simulated populations of agents who communicate by encoding and 

decoding meanings into strings using various neural architectures, and what constraints 

(on the environment, the agents, or the task) are necessary for the emergent languages to 

resemble natural language (Lazaridou et al., 2017; Mordatch and Abbeel, 2018; Steinert-

Threlkeld, 2020; Kuciński et al., 2021; Chaabouni et al., 2021). For example, Hahn et al. 

(2020) show that certain universal properties of word order (Greenberg, 1963; Dryer, 

1992) can be derived by finding grammars that optimize (1) the ease of recovering a 

parse tree from a string, and (2) the ease of incrementally predicting each word, with both 

factors operationalized using neural networks (see also Kuribayashi et al., 2024). Clark et 

al. (2023) show that natural language word order seems to be structured in a way that 
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minimizes the variance of word-by-word surprisals, again measured using neural LMs, in 

keeping with the theory of Uniform Information Density (Fenk and Fenk, 1980; Levy and 

Jaeger, 2007; Jaeger, 2010; Jaeger and Tily, 2011). More generally, because human 

language processing is highly probabilistic and predictive, theories of linguistic structure 

based on functional constraints must be evaluated using a strong probabilistic predictive 

model. Language models provide exactly that. 

4.7 Upshots for linguistics beyond language structure 

In much of this piece, we have focused on the upshot of LMs for linguistic structure, 

particularly morphosyntax. We did so for two main reasons: first, because of the 

centrality of these topics within linguistics over the last 60+ years; and, second, because 

mastery of linguistic form emerged in models earlier than other high-level abilities 

(Mahowald et al., 2024). Taken together, these developments have led to important 

insights about human language learning and processing. 

But LMs have also made recent striking gains in domains like reasoning, logic, and 

long-form dialog. These abilities seem to emerge not just from pretraining, but from 

techniques like supervised fine-tuning, instruction-tuning, and reinforcement learning 

from human feedback whereby models are given specific feedback to make them more 

aligned with human behavior on specific tasks (Ouyang et al., 2022; Bai et al., 2022; 

Achiam et al., 2023). The importance of inference-time compute—whereby models learn 

in-context and perform additional computation during the process of generating text—has 

also become apparent for tasks like math and reasoning (OpenAI et al., 2024; Marjanović 

et al., 2025). 

As such, just as it is fruitful to explore what inductive biases and representational 

mechanisms underlie the emergence of syntax in LMs, it is increasingly fruitful to study 

what inductive biases and structures are necessary and/or sufficient for other abilities in 

LMs like reasoning (Marjanović et al., 2025), theory of mind (Hu et al., 2025), planning 

(Liu et al., 2023), and other aspects of higher-level cognition. Many of our same 
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arguments hold in these domains as well: the upshot of the modern view of learning, the 

Contravariance Principle, the role of the statistical tradition, real patterns. 

Moreover, as LMs continue to develop, they increasingly are becoming part of our 

speech communities. Millions of humans regularly interact with chatbots, in some cases 

carrying on long extended dialogs with chatbots playing various roles. And, increasingly, 

text read by humans is written or co-written by AI. How will the presence of AI change 

language? How should we think about dialogs between human and non-human 

interlocutors? What social consequences will emerge from this new paradigm? 

Linguistics as a field, particularly sociocultural linguistics and related disciplines, is well-

positioned to be at the forefront of answering these questions (Bucholtz and Hall, 2005; 

Meyerhoff, 2006). 

5 Conclusion 

As Norm and Claudette would agree, this is a remarkable and pivotal moment in 

linguistics. Even ten years ago, it was not obvious that Claudette’s dream of models that 

produce fluent and coherent text would be possible in her lifetime—or ever. It was also 

not obvious that, if it were to happen, it would happen using statistical systems trained 

largely on next-word prediction, using massive amounts of data. These systems don’t use 

Norm’s hand-crafted rules. They don’t rely on insights from generative linguistic theory, 

although they do draw on decades of linguistic work in distributional semantics and 

statistical language learning. 

Rather than resisting this development, we contend it offers a golden opportunity for 

linguistics by enabling new kinds of research and opening up vistas of new hypotheses, 

methods, and research questions. Some of these questions will be new, like what kinds of 

artificial neural architectures best capture language, what kinds of biases they hold, and 

what the sources of those biases are. But we also have highlighted ways in which these 

methods can make progress on some of the oldest and most venerable questions in 

linguistics: what must be true of the input data for certain structures to be learned in 
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principle, what are the constraints on what languages are possible, how does the form of 

language relate to its function. 

In response to Piantadosi’s claim that language models refute Chomsky, Kodner et al. 

(2023) wrote a piece skeptical of the role of LMs in linguistic theory called “Why 

linguistics will thrive in the 21st century”. We would go a step further and argue that, 

with the 21st century a quarter over, linguistics is thriving. But we think it’s doing so not 

in spite of language models, but in part because of them and the opportunities they open 

up for new research directions and the light they shed on old questions. 

Therefore, we reject the dichotomy in the discourse around Piantadosi’s (2023) paper, 

which often seems to pit language models against linguistics. Linguistic structure, as 

described in linguistic theories, is real and important even if language models learn those 

structures emergently in a complex statistical way. Conversely, language models can 

point the way to new ways of thinking about the learning, processing, and fundamental 

nature of language. 

But we do think there are some major revisions to some earlier accepted dogma that 

are warranted, including: 

• Much of the field of linguistics has assumed that the form of language must be 

explained in terms of a symbolic formalism that constrains the forms of possible 

languages, and that this grammar formalism must represent innate human constraints 

on language, and that these constraints are logically necessary for language to be 

learned. The success of machine learning models should orient us away from this 

paradigm, because it shows that this approach is not necessary to characterize 

learning, and it opens up a new universe of statistical, quantitative, and functional 

theories to constrain the forms of possible languages and explain why only humans 

have language, while at the same time providing the tools to test those theories.   

• Relatedly, the idea that the formal structure of linguistic competence should be the 

main focus of theoretical linguistics, which precedes other forms of study, is no longer 

tenable—language models reveal and allow us to characterize new dimensions of 
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language such as how corpora of text express world knowledge, how the structure of 

usage supports learning or doesn’t, and how fundamental information-processing 

constraints shape the way that language is represented in brains and machines. 

• The success of machine learning models shows us how language can be represented in 

ways that are graded, probabilistic, and fuzzy, which should move us away from an 

insistence on discrete categorical frameworks. They also reveal potential soft 

constraints on the structure of language.  

• The ontological basis for linguistic structure need not lie in an innate genetic 

endowment. Linguistic structure is a real pattern, just as real and worthy of study 

whether it lies innate in the human genome or whether it is learned entirely through 

inductive statistical learning with domain-general biases. Linguistic phenomena do not 

become less interesting when they are learnable in this way, they become more 

interesting. 

More broadly, language models show that linguistics needs the rest of science. We 

will not answer the most fundamental questions about language by focusing only on 

language, using only methods that are tailor-made for linguistics. Just as neural networks 

revealed principles that are now fundamental in our understanding of vision, they are now 

in a position to revolutionize our understanding of language. Just as physics was 

revolutionized by thermodynamic ideas which arose from the ad-hoc analysis of complex 

machines, linguistics stands to benefit from new ways of thinking about computation 

arising from the analysis of neural networks. There is now massive intellectual activity 

spurred by language models in cognitive science, philosophy, physics, statistical learning 

theory, and information theory. The science of language can draw ideas, methods, and 

inspiration from all of this by maintaining a spirit of deep, curious, open-minded 

engagement and integration. Human language is in many ways unique as a natural 

phenomenon, and this means that the science of language should integrate with other 

fields of science more, in order to find deeper unities and to delineate and explain how 

and why language is special. 
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In particular, we are optimistic about significantly revising what Stabler (1983) said in 

doubting that “any close connections between linguistic theory and biology will be 

forthcoming”. He continues: “it is a crucial advantage of the computational approach that 

it has a functionalist vocabulary that does not require a type reduction to physicalistic 

concepts [...] since this seems to be required in linguistics and in psychological accounts 

of language processing and visual perception”. We agree that there is a crucial advantage 

to the functionalist vocabulary used in linguistic theory. But by analogy to recent work in 

vision, we are optimistic about the role that artificial neural models will play in bridging 

the gap between theory and biology. 

This progress will come through an expansive linguistics — expansive in the breadth 

and diversity of languages it considers, expansive in its methods, and expansive in its 

connections to related fields. Baroni (2022) lamented that, as of a 2021 exploration of 

citation records, Linzen et al.’s seminal work on subject-verb agreement was largely 

uncited within the linguistics community. But, since then, there are increasingly 

researchers using language models to ask questions that are informed by and which can 

inform linguistic theory. 

On the computer science side, while there is a persistent stereotype that the Natural 

Language Processing (NLP) community cares mostly about engineering, we have found 

there to be significant interest in fundamentally linguistic questions. Of the 7 papers that 

won Best Paper Awards at ACL 2024 (the largest annual conference focused on NLP), 1 

was a direct response to a claim by Chomsky about language learning (Kallini et al., 

2024), 1 was about inductive biases in models of relevance to questions about constraints 

on language (Hahn and Rofin, 2024), 1 was a theoretically motivated paper studying 

satisfiability in natural language of relevance to old questions about the complexity of 

language (Madusanka et al., 2024), 1 was a new method for measuring memorization in 

models and is of relevance for studying trade-offs in memorization vs. generalization in 

natural language (Lesci et al., 2024), 2 were about reconstructing or recovering ancient 

languages (Lu et al., 2024; Guan et al., 2024), and 1 presented an open-access 

multilingual model for broadening coverage of under-resourced languages (Üstün et al., 
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2024). Every one of these papers has relevance to scientific questions about human 

language, and in most cases one or more of the authors works in a linguistics department 

and/or has a degree in linguistics. 

Thus, we don’t see ourselves as calling for radical change, but rather as 

acknowledging the interdisciplinary work that is already thriving in the 21st century. 

Linguistically informed computational work is increasingly taking place within 

linguistics departments, where computational researchers are working alongside 

syntacticians, semanticists, phonologists, language documentation experts, sociocultural 

linguists, and experts in a wide variety of languages and language families. We think this 

is a very good development—one that both Norm and Claudette should embrace. 
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