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THE KAUFMANN–CLOTE QUESTION ON END EXTENSIONS OF
MODELS OF ARITHMETIC AND THE WEAK REGULARITY

PRINCIPLE

MENGZHOU SUN

Abstract. We investigate the end extendibility of models of arithmetic with restricted elementarity.
By utilizing the restricted ultrapower construction in the second-order context, for each n ∈ N and any
countable model of BΣn+2, we construct a proper Σn+2-elementary end extension satisfying BΣn+1, which
answers a question by Clote positively. We also give a characterization of the countable models of IΣn+2 in
terms of their end extendibility, similar to the case of BΣn+2. Along the proof, we introduce a new type of
regularity principle in arithmetic called the weak regularity principle, which serves as a bridge between the
model’s end extendibility and the amount of induction or collection it satisfies.

§1. Introduction. End extensions play a fundamental role in the model theory of
arithmetic and have been studied intensively. The classical MacDowell–Specker
theorem [13] showed that every model of PA admits a proper elementary end
extension. Around two decades later, Paris and Kirby [16] studied the hierarchical
version of the MacDowell–Specker theorem for fragments of PA. In fact, they
showed that for countable models, end extendibility with elementarity characterizes
the collection strength of the ground model.

Theorem 1.1 (Paris–Kirby). Let M be a countable model of IΔ0. For each n ∈ N,
M satisfies BΣn+2 if and only if M has a proper Σn+2-elementary end extension K.

For the left-to-right direction, the above theorem does not explicitly specify what
theory the end extension K can satisfy. The amount of elementarity stated in the
theorem already implies K |= IΣn. Paris–Kirby’s proof actually indicates that K
cannot always satisfy IΣn+1, since this would implyM |= BΣn+3. Moreover, for each
n ∈ N, Cornaros and Dimitracopoulos [3] constructed a countable model of BΣn+2

which does not Σn+1-elementarily end extend to any model of IΣn+1. So with Σn+2-
elementarity, the theory that the end extension K can always satisfy lies between IΣn
and IΣn+1, and the following question arises naturally.

Question 1.2 (Kaufmann–Clote). For n ∈ N, does every countable model M |=
BΣn+2 have a proper Σn+2-elementary end extension K |= BΣn+1?

The question was included in the list of open problems in [1, p. 12, Problem 33]
edited by Clote and Krajı́ček. It was first raised by Clote in [2], where he noted that
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2 MENGZHOU SUN

the same question in the context of models of set theory had previously been posed
by Kaufmann in [8]. In the same paper, Clote [2, Proposition 7] showed that every
countable model M |= IΣn+2 admits a Σn+2-elementary proper end extension to
some K |=M -BΣn+1, which is defined as follows:M -BΣn+1 is the class of formulas
of the form

∀x < a ∃y ϕ(x, y) → ∃b ∀x < a ∃y < b ϕ(x, y),

where a ∈M and ϕ(x, y) ∈ Σn+1 with parameters in K. Cornaros and Dimitra-
copoulos [3] showed that every countable modelM |= BΣn+2 has a Σn+2-elementary
proper end extensionK |= BΣ–

n+1(the parameter-free Σn+1-collection). In this paper,
we give an affirmative answer to Question 1.2.

The original proof of Theorem 1.1 is based on a first-order restricted ultrapower
construction. The ultrapower is generated by a single element when viewed from
the ground model. One can show that, by relativizing the proof of the fact that
pointwise Σn+1-definable models do not satisfy BΣn+1 (e.g.,[7, Lemma IV.1.41]),
such ultrapowers always fail to satisfy BΣn+1 as required in Question 1.2. To address
this issue, we expand our model to a second-order structure that satisfies WKL0;
the end extension K will then be a second-order restricted ultrapower with respect
to this second-order structure.

For us, one of the motivations for studying this question is to find a model-
theoretic characterization of (countable) models of IΣn+2 analogous to Theorem 1.1.
Despite the fact that the end extension in Question 1.2 is insufficient for
characterization, a slight generalization of it will suffice. We will show that for
any countable modelM |= IΔ0 + exp,M |= IΣn+2 if and only if M admits a proper
Σn+2-elementary end extensionK |=M -IΣn+1, whose definition is similar to that of
M -BΣn+1.

The regularity-type principles are the keys to connecting end extensions and
the arithmetic theories satisfied by the ground model. Through the end extension,
we can employ a “nonstandard analysis” style argument to prove certain types of
regularity principles in the ground model. An example of such an argument related
to Question 1.2 is provided below.

Proposition 1.3. For each n ∈ N, let M |= IΔ0. If M admits a proper Σn+2-
elementary end extension K |= BΣn+1, then M satisfies the following principle:

∀x ∃y < a ϕ(x, y) → ∃y < a ∃cfx ϕ(x, y),

where a ∈M , ϕ(x, y) ∈ Πn+1(M ) and ∃cfx abbreviates ∀b ∃x > b.

Proof. SupposeM |= ∀x ∃y < a ϕ(x, y). Because M and K both satisfy BΣn+1,
the formula ∀x ∃y < a ϕ(x, y) is equivalent to some Πn+1 formula in both M and K.
Then by Σn+2-elementarity,K |= ∀x ∃y <a ϕ(x, y). Pick some arbitraryd > M in K
and let c < a such thatK |= ϕ(d, c). Now for each b ∈M ,K |= ∃x > b ϕ(x, c) and
it is witnessed by d. Transferring each of these formulas back to M by elementarity,
we haveM |= ∃x > b ϕ(x, c) for any b ∈M , which meansM |= ∃cfx ϕ(x, c). �

We call the principle in Proposition 1.3 the weak regularity principle, and
denote it by WRϕ. The above proposition, together with the affirmative answer
to Question 1.2, implies that BΣn+2 � WRΠn+1 for each n ∈ N.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.15
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.47, on 15 Sep 2025 at 04:51:29, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.15
https://www.cambridge.org/core


KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 3

Similarly to the argument above, we will show that if the end extension K is a
model ofM -IΣn+1, then the ground model M will satisfy some stronger form of the
weak regularity principle that implies IΣn+2.

The paper is organized as follows. In Section 2, we present the necessary notations
and fundamental facts regarding models of arithmetic. In Section 3, we review the
definition of the second-order restricted ultrapower, and state some basic properties.
In Section 4, we provide an affirmative answer to Question 1.2 in Theorem 4.3,
and present the construction of an end extension that characterizes countable
models of IΣn+2 as mentioned above. In Section 5, we formally introduce the weak
regularity principle WRϕ, and calibrate its strength within the I-B hierarchy. Finally,
combining the results of Section 4 and Section 5, we establish a model-theoretic
characterization of countable models of IΣn+2 analogous to Theorem 1.1.

§2. Preliminaries. We assume the reader is familiar with some basic concepts and
facts in the model theory of first- and second-order arithmetic [7, 9]. We reserve both
the symbols N and � for the set of standard natural numbers. For each n ∈ N, let
Σn and Πn be the usual classes of formulas in the arithmetic hierarchy of first-order
arithmetic. Given a model of first-order arithmetic M, Σn(M ) is the class of Σn
formulas, potentially including parameters from M that are not explicitly shown.
Πn(M ) and other formula classes are defined similarly. A formula is Δn over M if
it is equivalent to both a Σn and a Πn formula in M; if M is clear from context, we
simply write Δn for short. Σn ∧ Πn is the class of formulas which is the conjunction
of a Σn and a Πn formula, and Σn ∨ Πn is defined similarly. Σ0(Σn) is the closure of
Σn formulas under Boolean operations and bounded quantification. Σ0

n, Π0
n, Δ0

n and
Σ0(Σ0

n) are their second-order variants, respectively. Given a model of second-order
arithmetic (M,X ), Σ0

n(M,X ) is defined similarly to the definition of Σn(M ), where
the implicit parameters include both first- and second-order parameters in (M,X ).
Π0
n(M,X ) and Δ0

n(M,X ) are defined similarly. Finally, ∃cfx ... is the abbreviation of
∀b ∃x > b ... .

For each n ∈ N, let BΣn and IΣn be the collection scheme and the induction
scheme for Σn formulas respectively. We assume that all the BΣn include IΔ0, and
all the theories considered include PA–, which is the theory of the non-negative
parts of discretely ordered rings. Paris and Kirby [16, Theorem A] proved that
IΣn+1 � BΣn+1 � IΣn and none of the converses holds for each n ∈ N. The hierarchy
of theories containing all the IΣn and BΣn is referred to as the I-B hierarchy. IΣ0

n and
BΣ0
n are their second-order counterparts, respectively.

We adopt the standard pairing function, where the code of an ordered pair (a, b)
under this pairing function is denoted by 〈a, b〉. For any element c in some model
M |= IΔ0 + exp, we identify c with a subset of M by defining x ∈ c to mean the xth
digit in the binary expansion of c is 1. Fixing any proper cut I of M, we say that a set
A ⊆ I is coded in M if there is some c ∈M such that A = {x ∈ I |M |= x ∈ c}.
We define

SSyI (M ) := {A ⊆ I | A is coded inM}.

RCA0 is the subsystem of second-order arithmetic consisting of IΣ0
1 and Δ0

1-
comprehension. The system WKL0 consists of RCA0 and a statement asserting
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4 MENGZHOU SUN

that every infinite binary tree has an infinite path. For each n ∈ N, every countable
model of BΣ0

n+2 admits a countable �-extension (i.e., an extension only adding
second-order objects) to some model satisfying WKL0 + BΣ0

n+2 [6].
Considering extensions of models of first-order arithmetic, we say that an

extension M ⊆ K of models of first-order arithmetic is Σn-elementary, if all the
Σn(M ) formulas are absolute between M and K, and we writeM �Σn K to denote
this. For any extensionM ⊆ K and d ∈ K , we write d > M if K |= d > c for any
c ∈M . We say that an extensionM ⊆ K is an end extension, if for every d ∈ K \M ,
we haved > M . This is denoted byM ⊆e K , orM �e,Σn K if we also haveM �Σn K .
We say an extensionM ⊆ K is proper ifM 
= K .

Formally, for a model of second-order arithmetic (M,X ), we view (M,X ) as a
two-sorted first-order structure with number sort M and set sort X , where elements
in X are treated as syntactic objects and are not necessarily subsets of M. Under
this convention, we write (M,X ) ⊆ (K,Y) if it is an extension of the corresponding
two-sorted structure, i.e.,M ⊆ K , X ⊆ Y , and for any x ∈M and A ∈ X ,

(M,X ) |= x ∈ A ⇐⇒ (K,Y) |= x ∈ A.

Here, on the left-hand side of the equivalence, the second-order object A is
interpreted by a subset of M; while it is interpreted by a subset of K on the right-
hand side. In this paper, the second-order parts of our extensions usually remain
the same, i.e., X = Y . We write (M,X ) �Σ0

n
(K,Y) if all the Σ0

n(M,X ) formulas
are absolute between the two structures. We say that an extension of second-order
structures is an end extension if its first-order part is an end extension. We denote
this by (M,X ) ⊆e (K,Y), or (M,X ) �e,Σ0

n
(K,Y) if we also have (M,X ) �Σ0

n
(K,Y).

§3. Second-order restricted ultrapowers. The second-order restricted ultrapower
resembles the usual ultrapower construction in model theory. Usually, in the model
theory of arithmetic, we take the index set for the ultrapower construction to be
the model itself, but instead of working on the class of all subsets of the model and
all functions from the model to itself, we only consider a restricted class of subsets
and functions. For completeness, we review the definition and some basic facts.
All the results in this section appear in [10] except Lemma 3.6, Corollary 3.7, and
Theorem 3.9. Throughout this section, we fix some arbitrary second-order structure
(M,X ) |= RCA0.

Definition 3.1 (Second-order restricted ultrapower). The second-order part X
of (M,X ) forms a Boolean algebra under inclusion and Boolean operations. Let U
be a non-principal ultrafilter on X whose elements are all cofinal in M, and F be the
class of all the total functions from M to M in X . Define an equivalence relation ∼
on F by

f ∼ g ⇐⇒ {i ∈M | f(i) = g(i)} ∈ U ,

where f, g ∈ F . Let F/U be the set of equivalence classes [f] for f ∈ F modulo ∼.
The interpretations of symbols in the language of first-order arithmetic in F/U are
defined by
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 5

[f] + [g] = [f + g],

[f] × [g] = [f × g],

[f] < [g] ⇐⇒ {i ∈M | f(i) < g(i)} ∈ U .

Here f + g and f × g are the pointwise addition and multiplication of f and g as
functions. M naturally embeds intoF/U by identifying elements of M with constant
functions. Moreover,F/U is a proper extension of M by considering the equivalence
class of the identity function on M.

F/U admits a natural second-order expansion inherited from X , namely for
A ∈ X and [f] ∈ F/U , we define

[f] ∈ A ⇐⇒ {i ∈M | f(i) ∈ A} ∈ U .

We denote the expanded structure of the ultrapower by (F/U ,X ). It is easy to show
that for i ∈M and A ∈ X ,

(M,X ) |= i ∈ A ⇐⇒ (F/U ,X ) |= i ∈ A.

So we may view (F/U ,X ) as an extension of (M,X ), where the second-order part
remains the same. We call (F/U ,X ) the second-order restricted ultrapower of (M,X )
(with respect to U).

The first-order restricted ultrapower is defined similarly, but withF andU replaced
by the corresponding first-order definable classes. For example, in the construction
of an Δ1-ultrapower, U is an ultrafilter on the class of Δ1-definable subsets, and F is
the class of Δ1-definable total functions.

From now on, we also fix an ultrafilter U on X whose elements are all cofinal
in M.

Generally, Łoś’s theorem does not hold for restricted ultrapowers, but a restricted
version of it does hold:

Theorem 3.2 (Restricted Łoś’s theorem). Let (F/U ,X ) be the second-order
restricted ultrapower of (M,X ). Then the following holds:

(1) If ϕ(x) is a Σ0
1(M,X ) formula, then

(F/U ,X ) |= ϕ([f]) ⇐⇒ ∃A ∈ U , A ⊆ {i ∈M | (M,X ) |= ϕ(f(i))}.

(2) If ϕ(x) is a Δ0
1(M,X ) formula over (M,X ), then

(F/U ,X ) |= ϕ([f]) ⇐⇒ {i ∈M | (M,X ) |= ϕ(f(i))} ∈ U .

Here the right-hand side makes sense by the Δ0
1-comprehension of (M,X ).

Corollary 3.3. (M,X ) �Σ0
2

(F/U ,X ).

Proof. Let (M,X ) |= ∀x ∃y �(x, y) for some �(x, y) ∈ Δ0
0(M,X ). By choosing

the least witness y of �(x, y), we may assume �(x, y) defines the graph of a total
function f ∈ F , so (M,X ) |= �(x,f(x)) for all x ∈M . In particular, for each
g ∈ F and x ∈M ,

(M,X ) |= �(g(x), f ◦ g(x)).
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6 MENGZHOU SUN

Here f ◦ g is the composition of f and g. By Theorem 3.2,

(F/U ,X ) |= �([g], [f ◦ g])

for each [g] ∈ F/U . So (F/U ,X ) |= ∀x ∃y �(x, y). �
We ensure that the ultrapower is an end extension of the ground model by the

following definition and lemma.

Definition 3.4. We say that U is additive, if whenever f ∈ F is bounded, then
there is a c ∈M such that {i ∈M | f(i) = c} ∈ U .

Lemma 3.5. If U is additive, then F/U is an end extension of M.

Proof. If F/U |= [f] < b for some b ∈M , then we may define

g(i) =

{
0, if f(i) � b,
f(i), if f(i) < b.

Then g is a bounded function in F and [g] = [f]. The additiveness of U implies
that there is some c ∈M such that {i ∈M | g(i) = c} ∈ U , that is, F/U |= [g] =
[f] = c. �

The following lemma and corollary enable us to transfer the comprehension in
(M,X ) into the ultrapower via Σ0

2-elementarity, and reduce the case of BΣn+2 to BΣ0
2

uniformly in the construction of our main result.

Lemma 3.6. For each n � 1, if (M,X ) satisfies Σn-comprehension, then each
instance of Σn- and Πn-comprehension in (M,X ) is transferred to (F/U ,X ). Formally,
for any first-order formula ϕ(x) in Σn(M ) or Πn(M ), if there is some A ∈ X such
that

(M,X ) |= ∀x (x ∈ A↔ ϕ(x)),

then (F/U ,X ) |= ∀x (x ∈ A↔ ϕ(x)) as well.

Proof. Fix some (M,X ) that satisfies Σn-comprehension. We prove the statement
for all the ϕ(x) in Σk(M ) and Πk(M ) simultaneously by induction on k.

For k = 1, let ϕ(x) be any formula in Σ1(M ) or Π1(M ), A ∈ X and (M,X ) |=
∀x (x ∈ A↔ ϕ(x)). Since ∀x (x ∈ A↔ ϕ(x)) is a Π0

2(M,X ) formula, (F/U ,X ) |=
∀x (x ∈ A↔ ϕ(x)) by Corollary 3.3.

For the induction step, suppose k < n and the statement holds for all the formulas
in Σk(M ) and Πk(M ). Take any ϕ(x) := ∃y �(x, y) ∈ Σk+1(M ) where �(x, y) ∈
Πk(M ). Suppose

(M,X ) |= ∀x (x ∈ A↔ ∃y �(x, y)) (3.6.1)

for some A ∈ X . By Σn-comprehension in (M,X ), there exists some B ∈ X such
that (M,X ) satisfies

∀〈x, y〉 (〈x, y〉 ∈ B ↔ �(x, y)). (3.6.2)

(3.6.1) and (3.6.2) in (M,X ) imply that (M,X ) also satisfies

∀x (x ∈ A↔ ∃y 〈x, y〉 ∈ B). (3.6.3)
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 7

By the induction hypothesis and Corollary 3.3, (3.6.2) and (3.6.3) are transferred
to (F/U ,X ). Combining (3.6.2) and (3.6.3) in (F/U ,X ), we have

(F/U ,X ) |= ∀x (x ∈ A↔ ∃y �(x, y)).

The case for ϕ(x) ∈ Πk+1(M ) is exactly the same. This completes the induction. �

Corollary 3.7. If (M,X ) satisfies Σn-comprehension for some n ∈ N, then
M �Σn+2 F/U when viewed as an extension of models of first-order arithmetic.

Proof. Let M |= ∀x ∃y �(x, y) for some �(x, y) ∈ Πn(M ). By Σn-
comprehension in (M,X ), there exists some A ∈ X such that (M,X ) satisfies

∀〈x, y〉 (〈x, y〉 ∈ A↔ �(x, y)).

Therefore, (M,X ) also satisfies

∀x ∃y 〈x, y〉 ∈ A.

By Lemma 3.6 and Corollary 3.3, both formulas hold in (F/U ,X ), which implies
(F/U ,X ) |= ∀x ∃y �(x, y). �

For technical reasons, we need another kind of ultrapower construction in the
model theory of arithmetic called the coded ultrapower, which appears in [15,
Theorem 9] and [11, Theorem 3]. We fix someM |= IΣ1 and a proper end extension
M ⊆e L such that L |= IΔ0 + exp.

Definition 3.8. LetU be an ultrafilter on SSyM (L) whose elements are all cofinal
in M, and let G be the class of all total functions mapping from M to L that are
coded in L. Then G/U is defined in the same way as F/U in Definition 3.1, and we
call it the M-coded ultrapower of L with respect to U .

For our purpose, only Łoś’s Theorem for Δ0 formulas in G/U and the fact that
G/U |= IΔ0 are needed. Their proofs essentially appear in [15, Theorem 11], but
using a slightly different definition of the coded ultrapowers.

Theorem 3.9. Let G/U be a M-coded ultrapower of L. Then the following hold:

(1) Let ϕ(x) be a Δ0(L) formula, then

G/U |= ϕ([f]) ⇐⇒ {i ∈M | L |= ϕ(f(i))} ∈ U .

(2) G/U |= IΔ0.

§4. Constructions of end extensions. In this section, we present the constructions
of end extensions by the second-order restricted ultrapower construction. We first
answer Question 1.2 affirmatively. In view of Corollary 3.7, it suffices to deal with
the case in which (M,X ) |= BΣ0

2.

Theorem 4.1. For any countable model (M,X ) |= BΣ0
2 + WKL0, there is a proper

end extension (M,X ) �e,Σ0
2

(K,X ) |= BΣ0
1.

We will give two proofs. In both of our constructions, the end extension is given by
a second-order restricted ultrapower construction. The first proof, presented below,
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8 MENGZHOU SUN

was suggested by Tin Lok Wong. We ensure that the ultrapower of (M,X ) satisfies
BΣ0

1 by properly embedding it into a coded ultrapower as an initial segment. The
second proof, presented on Page 11, guarantees that the ultrapower satisfies BΣ0

1
directly by the construction of the ultrafilter. WKL0 plays a central role in both
constructions.

The first proof of Theorem 4.1. First by [5, Theorem 4.6], there is a countable
end extensionM ⊆e L |= IΔ0 such that X = SSyM (L).

Let

G := {g | g is a total function fromM to L coded in L},
F := {f ∈ X | f is a total function fromM toM}.

For any ultrafilter U on X whose elements are all cofinal in M, let G/U and
(F/U ,X ) be the coded ultrapower (see Definition 3.8) and the second-order
restricted ultrapower with respect to U respectively. Since X = SSyM (L), we may
regard F as a subset of G, and thus F/U naturally embeds into G/U .

We want to construct a sufficiently generic ultrafilter U , such that both M and
F/U are proper initial segments of G/U . We construct U in � many stages. For
each k ∈ N, we construct some Ak ∈ X that is cofinal in M and Ak ⊇ Ak+1. We
enumerate all the pairs 〈f, g〉 such that f ∈ F and g ∈ G as {〈fk, gk〉}k∈N, and all
the bounded functions in F as {hk}k∈N. Here we identify each element g ∈ G with
some element in L that codes g.

Stage 0: Set A0 =M .
Stage 2k + 1 (F/U ⊆e G/U): Consider

A := A2k ∩ {x ∈M | L |= gk(x) < fk(x)}.

Since L |= IΔ0, A ∈ SSyM (L) = X . If A is cofinal in M, then let A2k+1 = A.
Otherwise let A2k+1 = A2k and proceed to the next stage.

Stage 2k + 2 (M ⊆e F/U): Assume hk is bounded by b ∈M . Then

(M,X ) |= ∃cfx ∃y < b (x ∈ A2k+1 ∧ hk(x) = y).

Since (M,X ) |= BΣ0
2, there is some c < b such that the set

Ac := {x ∈M | (M,X ) |= x ∈ A2k+1 ∧ hk(x) = c}

is cofinal in M. Ac ∈ X by Δ0
1-comprehension in (M,X ). Let A2k+2 = Ac and

proceed to the next stage.
Finally, let U := {A ∈ X | ∃k ∈ N Ak ⊆ A}. It is not hard to see that U is an

ultrafilter and each element of U is cofinal in M. This completes the construction
of U .

Verification: First we verify that F/U ⊆e G/U and it is proper. We show that for
any g ∈ G and f ∈ F , either G/U |= [g] � [f] or there exists some ĝ ∈ F such that
G/U |= [g] = [ĝ]. Take k ∈ N such that 〈fk, gk〉 = 〈f, g〉. At Stage 2k, if

A = A2k ∩ {x ∈M | L |= g(x) < f(x)}
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 9

is cofinal in M, then {x ∈M | L |= g(x) < f(x)} ∈ U . Let ĝ ∈ G be defined by

ĝ(x) =

{
g(x), if g(x) < f(x),
0, if g(x) � f(x).

Then [ĝ] ∈ F/U and G/U |= [g] = [ĝ]. Otherwise, if A is bounded in M, then we are
forced to have {x ∈M | L |= g(x) � f(x)} ∈ U . By Theorem 3.9, G/U |= [g] �
[f]. The fact that F/U ⊆e G/U is proper follows from considering the constant
function g(x) ≡ c for any c > M in L.

Next we verify that M ⊆e F/U . By Lemma 3.5, it suffices to show that U is
additive with respect to F . Suppose h ∈ F is bounded and h = hk for some k ∈ N.
At Stage 2k + 2, the choice of A2k+2 forces

{x ∈M | (M,X ) |= h(x) = c} ∈ U

for some c ∈M , so U is additive with respect to F .
The fact that (M,X ) �Σ0

2
(F/U ,X ) follows from Corollary 3.3.

Finally we verify that (F/U ,X ) |= BΣ0
1. By Theorem 3.9, G/U |= IΔ0. Since

G/U is a proper end extension of F/U , (F/U , SSyF/U (G/U)) satisfies BΣ0
1. It

suffices to show that (F/U ,X ) embeds into (F/U , SSyF/U (G/U)). For each
A ∈ X = SSyM (L), let a ∈ L be the element that codes A ⊆M . By Theorem 3.9
and Definition 3.1, it is not hard to prove that for each f ∈ F ,

(F/U ,X ) |= [f] ∈ A ⇐⇒ (G/U ,X ) |= [f] ∈ a.

So we may embed the second-order part X of (F/U ,X ) into SSyF/U (G/U) by
sending A to the subset of F/U coded by a. Since (F/U , SSyF/U (G/U)) |= BΣ0

1, we
have (F/U ,X ) |= BΣ0

1.

Even though it is simple, this construction does not reveal a syntactical proof of
the fact that BΣn+2 � WRΠn+1. We ensure that (F/U ,X ) |= BΣ0

1 by embedding it
in a larger ultrapower G/U as an initial segment, and the core argument is wrapped
within the construction of G/U .

Our second construction directly guarantees each instance of BΣ0
1 in the

ultrapower, and therefore provides more insights. It relies on a simple yet powerful
lemma, which states that second-order universes of models of WKL0 are closed
under the operation that produces choice functions for ranges of Π0

1-definable multi-
valued bounded functions. The lemma also leads to a syntactical proof of the fact
that BΣn+2 � WRΠn+1 (see Lemma 5.2).

Lemma 4.2. Fix a model (M,X ) |= WKL0. Let �(x, y, z) ∈ Δ0
0(M,X ). If

(M,X ) |= ∀x ∃y < f(x) ∀z �(x, y, z) for some total function f ∈ X , then there
is a total function P ∈ X such that

(M,X ) |= ∀x (P(x) < f(x) ∧ ∀z �(x, P(x), z)).

Proof. Consider the following tree T which is Δ0
1-definable in (M,X ):

� ∈ T ⇐⇒ ∀x, z < len � (�(x) < f(x) ∧ �(x, �(x), z)).
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10 MENGZHOU SUN

Obviously T is bounded by the total function f ∈ X , which means that for any
� ∈ T and x < len �, we have �(x) < f(x). We show that T is infinite. Let F (x) =
maxx′<x f(x′). For any x ∈M , by IΣ0

1, let �x ∈M be a coded sequence of length x
such that for any x′ < x and y′ < F (x),

�x(x′) = y′ ⇐⇒ (M,X ) |= ∀z �(x′, y′, z) ∧ ∀w < y′ ¬∀z �(x′, w, z).

Then we have

(M,X ) |= ∀x′ < x ∀z (�x(x′) < f(x) ∧ �(x′, �x(x′), z)).

This means �x is an element of T of length x, so T is infinite. It is provable in WKL0

that every infinite bounded tree has an infinite path (see [17, Lemma IV.1.4]). Take
any such infinite path P ∈ X of T. Clearly P satisfies the requirement as in the
statement. �

The second proof of Theorem 4.1. We construct an ultrafilter U on X in �
many stages. Along the construction, we gradually guarantee that the ultrapower
(F/U ,X ) |= BΣ0

1 and that U is additive.
Enumerate all the triples {〈∃z �k(x, y, z), fk, gk〉}k∈N, where �k(x, y, z) ∈

Δ0
0(M,X ) and fk, gk are total functions in X . Enumerate all the bounded total

functions in X as {hk}k∈N. For each k ∈ N, at Stage k we construct a cofinal set
Ak ∈ X such that Ak ⊇ Ak+1 for all k ∈ N, and the resulting ultrafilter U := {A ∈
X | ∃k ∈ N A ⊇ Ak}.

Stage 0: Set A0 =M ∈ X .
Stage 2k + 1 ((F/U ,X ) |= BΣ0

1): At these stages we want to guarantee the
following instances of BΣ0

1 in (F/U ,X ):

∀y < [gk] ∃z �k([fk], y, z) → ∃b ∀y < [gk] ∃z < b �k([fk], y, z).

The general idea is that we first try to “force” the consequent of the implication above
to be true in (F/U ,X ). If we succeed, then the entire instance is true. Otherwise, we
apply Lemma 4.2 to argue that the antecedent is already guaranteed to be false in
the ultrapower.

Consider the Σ0
1-definable set

A := A2k ∩ {x ∈M | ∃b ∀y < gk(x) ∃z < b �k(fk(x), y, z)}.

It is provable in RCA0 that every cofinal Σ0
1-definable set has a cofinal subset in

the second-order universe (see [7, Theorem I.3.22]). If A is cofinal in M, then let
A2k+1 ∈ X be such a cofinal subset of A and proceed to Stage 2k + 2. If A is not
cofinal in M, then we let A2k+1 = A2k and proceed directly to Stage 2k + 2.

Stage 2k + 2 (Additiveness of U): This part is exactly the same as the
construction of Stage 2k + 2 in the first proof of Theorem 4.1.

Finally, let U := {A ∈ X | ∃k ∈ N A ⊇ Ak}. This completes the construction
of U .

Verification: Let (F/U ,X ) be the corresponding second-order restricted ultra-
power. The fact that (M,X ) �e,Σ0

2
(F/U ,X ) follows from the exact same reasoning

as in the first proof of Theorem 4.1. To show that (F/U ,X ) |= BΣ0
1, consider
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 11

arbitrary instance of BΣ0
1 in (F/U ,X ):

∀y < [g] ∃z �([f], y, z) → ∃b ∀y < [g] ∃z < b �([f], y, z),

where � ∈ Δ0
0(M,X ) and [f], [g] ∈ F/U . Here without loss of generality, we assume

that [f] is the only first-order parameter in �. Assume that at Stage 2k + 1, we
enumerate 〈∃z �k(x, y, z), fk, gk〉 = 〈∃z �(x, y, z), f, g〉, andA2k ∈ X is the cofinal
subset of M we obtained from the previous stage. Suppose we are in the first case of
the construction at this stage, i.e.,

A = A2k ∩ {x ∈M | ∃b ∀y < g(x) ∃z < b �(f(x), y, z)}

is cofinal in M, then by the construction there exists some cofinal subset of A in
U . By Theorem 3.2, (F/U ,X ) |= ∃b ∀y < [g] ∃z < b �([f], y, z), so the instance
of BΣ0

1 is true. If we are in the second case, assuming that A is bounded by some
d ∈M , then

(M,X ) |= ∀x > d (x ∈ A2k → ∀b ∃y < g(x) ∀z < b ¬�(f(x), y, z)).

By BΣ0
1 in (M,X ), this is equivalent to:

(M,X ) |= ∀x > d ∃y < g(x) (x ∈ A2k → ∀z ¬�(f(x), y, z)).

By Lemma 4.2, there is a total function P ∈ X such that

(1) (M,X ) |= ∀x > d P(x) < g(x).
(2) (M,X ) |= ∀x > d (x ∈ A2k → ∀z ¬�(f(x), P(x), z)).

Since P is a total function, [P] ∈ F/U . By Theorem 3.2, (1) implies (F/U ,X ) |=
[P] < [g].

We claim that (F/U ,X ) |= ∀z ¬�([f], [P], z). Suppose not, then by Theorem 4.1,
there is someA′ ∈ U such thatA′ ⊆ {x ∈M | ∃z �(f(x), P(x), z)}. But by (2),A′ ∩
A2k is bounded by d, which contradicts the fact that A′ ∩ A2k ∈ U . So (F/U ,X ) |=
∀z ¬�([f], [P], z), and the instance of BΣ0

1 we considered is vacuously true.

Theorem 4.3. For each n ∈ N and any countable model M |= BΣn+2, there is a
Σn+2-elementary proper end extensionM �e,Σn+2 K |= BΣn+1.

Proof. We first expand M to a second-order structure satisfying BΣ0
2 by

adding all the Σn-definable sets into the second-order universe, then we further
�-extend it to some countable (M,X ) |= BΣ0

2 + WKL0. By Theorem 4.1, there is an
ultrapower extension (M,X ) �e,Σ0

2
(F/U ,X ) that satisfies BΣ0

1. Since all Σn-definable

subsets of M are in X , (M,X ) satisfies Σn-comprehension and M �e,Σn+2 F/U by
Corollary 3.7.

To show that F/U |= BΣn+1, suppose that F/U |= ∀x < [g] ∃y �(x, y, [f]) for
some [g] ∈ F/U and � ∈ Πn, where [f] ∈ F/U is the only parameter in �. By
Πn-comprehension in M, let A ∈ X be so that (M,X ) satisfies

∀〈x, y, z〉 (〈x, y, z〉 ∈ A↔ �(x, y, z)).

The structure (F/U ,X ) satisfies the same formula by Lemma 3.6, and thus

(F/U ,X ) |= ∀x < [g] ∃y 〈x, y, [f]〉 ∈ A.
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12 MENGZHOU SUN

By BΣ0
1 in (F/U ,X ),

(F/U ,X ) |= ∃b ∀x < [g] ∃y < b 〈x, y, [f]〉 ∈ A,

which means F/U |= ∃b ∀x < [g] ∃y < b �(x, y), so F/U |= BΣn+1. �

We now proceed with the construction of end extensions in order to characterize
countable models of IΣn+2. We first defineM -IΣn+1 for an end extensionM ⊆e K ,
and introduce some equivalent definitions of it.

Definition 4.4. For each n ∈ N, letM,K be models of IΔ0 + exp andM ⊆e K .
We say K |=M -IΣn+1 if for any ϕ(x) ∈ Σn+1(K) and a ∈M ,

K |= ϕ(0) ∧ ∀x < a (ϕ(x) → ϕ(x + 1)) → ∀x < a ϕ(x).

Notice that we allow parameters from K in ϕ, while the bound a must be in M.

Lemma 4.5. For each n ∈ N, let M be a model of IΔ0 + exp,K |= IΣn andM ⊆e K .
Then the following are equivalent:

(i) K |=M -IΣn+1.
(ii) For any ϕ(x) ∈ Σn+1(K) and a ∈M ,

K |= ∃c ∀x < a (ϕ(x) ↔ x ∈ c).

(iii) For any �(x, y) ∈ Πn(K) and a ∈M ,

K |= ∃b ∀x < a (∃y �(x, y) ↔ ∃y < b �(x, y)).

Proof. We show (i) ⇔ (ii) and (ii) ⇔ (iii). To show (i) ⇒ (ii), first by modifying
a standard argument, one can show that (i) implies the least number principle for
Πn+1(K) formulas that are satisfied by some element of M. Then we can pick the
least c < 2a ∈M such that

K |= ∀x < a (ϕ(x) → x ∈ c).

Such c will code ϕ(x) for x < a by the minimality of c. To show (ii) ⇒ (i), take
some c ∈M that codes {x < a | K |= ϕ(x)}. Then, one can prove the instance of
M -IΣn+1 for ϕ(x) by replacing ϕ(x) with x ∈ c and applying K |= IΔ0.

To show (ii) ⇒ (iii), take some c ∈M that codes {x < a | K |= ∃y �(x, y)} by
(ii). Consider the following Σn+1 formula (over IΣn):

Φ(v) := ∃b ∀x < v (x ∈ c ↔ ∃y < b �(x, y)).

It is not hard to show that K |= Φ(0) ∧ ∀v (Φ(v) → Φ(v + 1)). ByM -IΣn+1 (from
(ii) ⇒ (i)) we have K |= Φ(a), which implies (iii). Finally, to show (iii) ⇒ (ii), let
ϕ(x) := ∃y �(x, y) for some � ∈ Πn(K). By (iii), there is some b ∈ K such that

K |= ∀x < a (∃y �(x, y) ↔ ∃y < b �(x, y)).

By IΣn in K, there is some c ∈ K that codes {x < a | K |= ∃y < b �(x, y)}. This
element c will serve as a witness for (ii). �

The condition (ii) in Lemma 4.5 was first studied in [12] by Kossak. An extension
M ⊆ K is called an (n + 1)-conservative extension ifM �Σn+2 K and it satisfies the
condition (ii) in Lemma 4.5. In the same paper, Kossak showed that every countable
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 13

model of IΣn+2 has a proper (n + 1)-conservative extension. The construction is also
a mild generalization of [2, Proposition 7]. For the sake of completeness, we include
a proof of this result here, employing the framework of the second-order restricted
ultrapowers.

Theorem 4.6. For any countable model (M,X ) |= IΣ0
2, there is a proper end

extension (M,X ) �e,Σ0
2

(K,X ) such that for any Σ0
1(K,X ) formula ϕ(z) and a ∈M ,

the set {z < a | (K,X ) |= ϕ(z)} is coded in K.

Proof. We ensure that the ultrapower (F/U ,X ) satisfies the coding requirement
by maximizing each Σ0

1-definable subset of (F/U ,X ) that is bounded by some
element of M.

Enumerate all the pairs {〈∃y �k(x, y, z), ak〉}k∈N such that �k(x, y, z) ∈ Δ0
0(M,X )

and ak ∈M . Enumerate all the bounded total functions in X as {hk}k∈N. At each
stage k we construct a cofinal set Ak ∈ X such that Ak ⊇ Ak+1 for all k ∈ N, and
we define the ultrafilter U := {A ∈ X | ∃k ∈ N A ⊇ Ak}.

Stage 0: Set A0 =M .
Stage 2k + 1 (Coding Σ0

1 sets): Consider the following Π0
2 formula where c < 2ak :

Φ(c) := ∃cfx (x ∈ A2k ∧ ∀z ∈ c ∃y �k(x, y, z)).

Since A2k is cofinal in M, (M,X ) |= Φ(0). By IΣ0
2 in (M,X ), there exists a maximal

c0 < 2ak satisfying the formula above. Similar to the second proof of Theorem 4.1,
let A2k+1 ∈ X be a cofinal subset of the following Σ0

1-definable subset of M:

{x ∈M | (M,X ) |= x ∈ A2k ∧ ∀z ∈ c0 ∃y �k(x, y, z)}.

Stage 2k + 2 (Additiveness of U): This part is exactly the same as Stage 2k + 2
in the proof of Theorem 4.1.

Finally, let U := {A ∈ X | ∃k ∈ N A ⊇ Ak}. This completes the construction.
Verification: Let (F/U ,X ) be the corresponding second-order restricted ultra-

power. The fact that (M,X ) �e,Σ0
2

(F/U ,X ) follows in exactly the same way as in
the second proof of Theorem 4.1.

To show the coding requirement of (F/U ,X ), consider any Σ0
1 formula

∃y �([f], y, z) where � ∈ Δ0
0(F/U ,X ) and a ∈M . Without loss of generality, we

may assume that [f] ∈ F/U is the only first-order parameter of �.
Let k ∈ N be such that the pair 〈∃y �(f(x), y, z), a〉 was considered at Stage

2k + 1 of the construction. We claim that the maximal c0 ∈M we obtained in the
construction codes {z < a | (F/U ,X ) |= ∃y �([f], y, z)}.

On the one hand, for each z < a such that z ∈ c0, since A2k+1 ∈ U is a subset of
{x ∈M | (M,X ) |= ∃y �(f(x), y, z)}, (F/U ,X ) |= ∃y �([f], y, z) by Theorem 3.2.
On the other hand, for each z ′ < a such that z ′ /∈ c0, if (F/U ,X ) |= ∃y �([f], y, z ′),
then by Theorem 3.2 again there is some B ∈ U such that

B ⊆ {x ∈M | (M,X ) |= ∃y �(f(x), y, z ′)}.

Since B ∩ A2k+1 ∈ U , B ∩ A2k+1 is cofinal in M. Then we have

(M,X ) |= ∃cfx(x ∈ A2k ∧ ∀z ∈ c0 ∪ {z ′} ∃y �(f(x), y, z)),
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14 MENGZHOU SUN

which contradicts the maximality of c0 in the construction. So (F/U ,X ) |=
¬∃y �([f], y, z ′) for z ′ /∈ c0. �

Theorem 4.7 (Kossak [12]). For each n ∈ N and any countable modelM |= IΣn+2,
there is a Σn+2-elementary proper end extensionM �e,Σn+2 K |=M -IΣn+1.

Proof. The proof is mostly the same as that of Theorem 4.3. We expand M
to a second-order structure (M,X ) satisfying IΣ0

2 + RCA0 by adding all the Δn+1-
definable subsets of M into the second-order universe. Such (M,X ) satisfies Σn-
comprehension. By Theorem 4.6, there exists an ultrapower extension (M,X ) �e,Σ0

2

(F/U ,X ) that codes all the Σ0
1-definable subsets bounded by some element of M.

Since all the Σn-definable sets of M are in X , (M,X ) satisfies Σn-comprehension and
M �e,Σn+2 F/U by Corollary 3.7.

To show that F/U |=M -IΣn+1, we only need to show that F/U satisfies condition
(ii) in Lemma 4.5. Let ϕ(x) := ∃y �(x, y, [f]) be any Σn+1 formula, where � ∈ Πn
and [f] ∈ F/U is the only parameter in �. Since (M,X ) satisfies Σn-comprehension,
there is some A ∈ X such that (M,X ) satisfies

∀〈x, y, z〉 (〈x, y, z〉 ∈ A↔ �(x, y, z)).

The same formula holds in (F/U ,X ) by Lemma 3.6, and thus

(F/U ,X ) |= ∀x (∃y 〈x, y, [f]〉 ∈ A↔ ϕ(x)).

For any a ∈M , there is some c ∈ K that codes

{x < a | (F/U ,X ) |= ∃y 〈x, y, [f]〉 ∈ A}.

Such c also codes {x < a | F/U |= ϕ(x)}. �

In Section 5, we will prove the converse of Theorem 4.7 (see Theorem 5.9). We
will relate the end extension constructed in Theorem 4.7 to the weak regularity
principle, analogous to Proposition 1.3. Notably, the course of the proof will reveal
some non-trivial syntactic consequences.

§5. The weak regularity principle. In this final section, we introduce the weak
regularity principle WRϕ, a variant of the regularity principle, and determine its
strength within the I-B hierarchy.

Mills and Paris [14] introduced the regularity principle Rϕ to be the universal
closure of the following formula:

∃cfx ∃y < a ϕ(x, y) → ∃y < a ∃cfx ϕ(x, y).

For any formula class Γ, let

RΓ = IΔ0 ∪ {Rϕ | ϕ ∈ Γ}.

It is shown in [14] that RΠn ⇔ RΣn+1 ⇔ BΣn+2 for each n ∈ N. The weak regularity
principle is defined by replacing the ∃cfx by ∀x in the antecedent of implication in
Rϕ.

Definition 5.1. Let ϕ(x, y) be a formula in first-order arithmetic with possibly
hidden variables. The weak regularity principle WRϕ denotes the universal closure
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KAUFMANN–CLOTE QUESTION AND WEAK REGULARITY PRINCIPLE 15

of the following formula:

∀x ∃y < a ϕ(x, y) → ∃y < a ∃cfx ϕ(x, y).

For any formula class Γ, define

WRΓ = IΔ0 ∪ {WRϕ | ϕ ∈ Γ}.
The status of the strength of the weak regularity principle among the I-B hierarchy

is more complex in comparison with that of the regularity principle. The principles
for most natural classes of formulas are equivalent to the collection schemas, whereas
induction schemas are only equivalent to the principle for a highly restricted subclass
of Σ0(Σn+1) formulas. We will show that for each n ∈ N, WRΣ0(Σn) and WR(Σn+1 ∨
Πn+1) are both equivalent to BΣn+2, and WR(Σn+1 ∧ Πn+1) is equivalent to IΣn+2.

The weak regularity principle may also be viewed as an infinitary version of the
pigeonhole principle (PHP), and similar phenomena arise with the strength of the
pigeonhole principle in the I-B hierarchy. Dimitracopoulos and Paris proved in [4]
that PHPΣn+1 and PHPΠn+1 are equivalent to BΣn+1, and that PHP(Σn+1 ∨ Πn+1)
and PHPΣ0(Σn+1) are equivalent to IΣn+1.

Lemma 5.2. For each n ∈ N, BΣn+2 � WRΠn+1.

Proof. We only show the case of n = 0 and the rest can be done by relativizing
to the Σn-universal set.

LetM |= BΣ2. We first expand M to a second-order structure satisfying BΣ0
2 by

adding all Δ1-definable subsets of M, then further �-extend it to (M,X ) satisfying
WKL0 + BΣ0

2.
Suppose M |= ∀x ∃y < a ∀z �(x, y, z), where �(x, y, z) ∈ Δ0(M ). Applying

Lemma 4.2 for � and f(x) ≡ a as a constant function, we obtain a total function
P ∈ X such that

(M,X ) |= ∀x (P(x) < a ∧ ∀z �(x, P(x), z)).

By BΣ0
2, there is some y0 < a such that there are cofinally many x satisfying P(x) =

y0, which impliesM |= ∃y < a ∃cfx∀z �(x, y, z). SoM |= WRΠ1. �
Corollary 5.3. For each n ∈ N, BΣn+2 � WR(Σn+1 ∨ Πn+1).

Proof. Fix n ∈ N and let M |= BΣn+2, ϕ(x, y) ∈ Σn+1(M ) and �(x, y) ∈
Πn+1(M ). Suppose M |= ∀x ∃y < a (ϕ(x, y) ∨ �(x, y)) for some a ∈M . If
M |= ∀x > b ∃y < a �(x, y) for some b ∈M , then by Lemma 5.2, M |=
∃y <a ∃cfx �(x, y) and the conclusion holds. Otherwise,M |= ∃cfx ∃y <a ϕ(x, y),
then by RΣn+1,M |= ∃y < a ∃cfx ϕ(x, y) and the conclusion holds again. �

Remark. There is also a direct model-theoretic proof similar to Proposition
1.3. One only needs to notice that over BΣn+1, ∀x ∃y < a (ϕ(x, y) ∨ �(x, y)) is
equivalent to a Πn+2 formula.

Lemma 5.4. For each n ∈ N, WR(Σn ∧ Πn) � IΣn+1.

Proof. We prove for each k � n, that IΣk + WR(Σn ∧ Πn) � IΣk+1. Then the
lemma follows by induction on k. Let M |= IΣk + WR(Σn ∧ Πn) and assume
M |= ¬IΣk+1. Then there is a proper cut I ⊆M defined by some formula ϕ(y) :=
∃x �(x, y), where �(x, y) ∈ Πk(M ). Let

�(x, y) := ∀y′ < y ∃x′ < x �(x′, y′).
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Then �(x, y) ∈ Πk(M ) over IΣk . Define

J = {y ∈M |M |= ∃x �(x, y)}.

It is not hard to show that J is closed downward, closed under successors, and J ⊆ I
by its definition, that is, J is a proper cut of M contained in I.

For any x ∈M , ifM |= �(x, y) for all y ∈ J , then y ∈ J is defined by �(x, y) in
M, which contradicts our assumption that M |= IΣk . So for each x ∈M , we may
take the largest y ∈ J satisfying �(x, y) by IΣk . Fixing some arbitrary a > J , we
have

M |= ∀x ∃y < a (�(x, y) ∧ ¬�(x, y + 1)).

Applying WR(Σn ∧ Πn), there is some y0 < a such that

M |= ∃cfx (�(x, y0) ∧ ¬�(x, y0 + 1)).

By the definition of �(x, y), this implies y0 ∈ J and y0 + 1 /∈ J , which contradicts
the fact that J is closed under successors. SoM |= IΣk+1. �

Lemma 5.5 (Independently by Leszek A. Kołodziejczyk). For each n ∈ N,
WRΣ0(Σn) � BΣn+2.

Proof. LetM |= WRΣ0(Σn). We showM |= RΠn, which is equivalent to BΣn+2.
By Lemma 5.4, M |= IΣn+1. Suppose M |= ∃cfx ∃y < a ϕ(x, y) for some ϕ ∈
Πn(M ), and without loss of generality, we assumeM |= ∃y < a ϕ(0, y). For each
z ∈M , we find the largest x < z such that M |= ∃y < a ϕ(x, y), and associate z
with all the witnesses y < a such that ϕ(x, y). Formally,

M |= ∀z ∃y < a ∃x < z (ϕ(x, y) ∧ ∀x′ ∈ (x, z) ¬∃y < a ϕ(x′, y)),

where (x, z) refers to the open interval between x and z. By WRΣ0(Σn),

M |= ∃y < a ∃cfz ∃x < z (ϕ(x, y) ∧ ∀x′ ∈ (x, z) ¬∃y < a ϕ(x′, y)),

which impliesM |= ∃y < a ∃cfx ϕ(x, y). �

Theorem 5.6. For each n ∈ N, WRΣ0(Σn) ⇔ WR(Σn+1 ∨ Πn+1) ⇔ BΣn+2.

Proof. The fact that WRΣ0(Σn) � BΣn+2 follows from Lemma 5.5. The fact that
BΣn+2 � WR(Σn+1 ∨ Πn+1) follows from Corollary 5.3. For WR(Σn+1 ∨ Πn+1) �
WRΣ0(Σn), note that every Σ0(Σn) formula is equivalent to some Δn+1 formula over
IΣn (see [7, Lemma I.2.50]), and WR(Σn+1 ∨ Πn+1) � IΣn by Lemma 5.4. �

The following proposition is an analog of Proposition 1.3 for M �e,Σn+2 K |=
M -IΣn+1 and WR(Σn+1 ∧ Πn+1). It also leads to a model-theoretic proof of the fact
that IΣn+2 � WR(Σn+1 ∧ Πn+1).

Proposition 5.7. LetM |= IΔ0 + exp. For each n ∈ N, if there is a proper Σn+2-
elementary end extensionM �e,Σn+2 K |=M -IΣn+1, thenM |= WR(Σn+1 ∧ Πn+1).

Proof. Let �(x, y, z) ∈ Σn(M ), �(x, y,w) ∈ Πn(M ) and

ϕ(x, y) := ∀z �(x, y, z) ∧ ∃w �(x, y,w).
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SupposeM |= ∀x ∃y < a ϕ(x, y) for some a ∈M . Over IΣn+1, this is equivalent to
the following Πn+2 formula:

∀x ∀b ∃y < a (∀z < b �(x, y, z) ∧ ∃w �(x, y,w)).

M |= IΣn+1 by Theorem 1.1, so both M and K satisfy the above formula by
elementarity. Pick some arbitrary d > M in K, then

K |= ∀b ∃y < a (∀z < b �(d, y, z) ∧ ∃w �(d, y, w)).

By Lemma 4.5(iii), there is some b ∈ K such that

K |= ∀y < a (∀z �(d, y, z) ↔ ∀z < b �(d, y, z)),

which implies

K |= ∃y < a (∀z �(d, y, z) ∧ ∃w �(d, y, w)).

Pick a witness c < a in M such that K |= ∀z �(d, c, z) ∧ ∃w �(d, c, w), i.e.,
K |= ϕ(d, c). Now for each b ∈M , K |= ∃x > b ϕ(x, c), which is witnessed by
d. Transferring each of these formulas to M, we haveM |= ∃x > b ϕ(x, c) for any
b ∈M . SoM |= ∃cfx ϕ(x, c). �

Theorem 5.8. For each n ∈ N, WR(Σn+1 ∧ Πn+1) ⇔ IΣn+2.

Proof. The fact that WR(Σn+1 ∧ Πn+1) � IΣn+2 follows from Lemma 5.4. For
the other direction, given any countable model M |= IΣn+2, there is a proper end
extension M �e,Σn+2 K |=M -IΣn+1 by Theorem 4.7, and then M |= WR(Σn+1 ∧
Πn+1) by Proposition 5.7. �

Remark. In Hájek–Pudlák [7, Lemma I.2.49], it was shown that for each n ∈ N,
every Σ0(Σn+1) formula is equivalent to the following normal form:

Q1u1 < v1 ... Qkuk < vk Ψ(u1 ... uk, v1 ... vk, w1 ... wl ),

where k, l ∈ N, eachQi for i ≤ k is either ∀ or ∃. Ψ is a Boolean combination of Σn+1

formulas and the variable sets {ui}i�k , {vi}i�k and {wi}i�l are pairwise disjoint.
Our proof of Proposition 5.7 can be refined to show that IΣn+2 � WRϕ, where

ϕ(x, y) ∈ Σ0(Σn+1), and if written in the normal form above, x does not appear in
{vi}i�k , i.e., x is not permitted to appear as the bound of any bounded quantifiers in
front of a Boolean combination of Σn+1 formulas. In contrast, the instance ϕ(z, y)
used to prove WRΣ0(Σn) � BΣn+2 in Lemma 5.5 starts with ∃x < z explicitly.

Finally, we prove the converse of Theorem 4.7, and establish the characterization
of countable models of IΣn+2 as promised.

Theorem 5.9. Let M be a countable model of IΔ0. For each n ∈ N,M |= IΣn+2 if
and only if M admits a proper Σn+2-elementary end extension K |=M -IΣn+1.

Proof. The direction from left to right follows by Theorem 4.7. For the
other direction, if M �e,Σn+2 K |=M -IΣn+1, then M |= WR(Σn+1 ∧ Πn+1) by
Proposition 5.7, and thusM |= IΣn+2 by Theorem 5.8. �

The main remaining problem now is to find a purely syntactic proof of
Theorem 5.8. We conjecture that a more refined tree construction similar to the
approach in Lemma 4.2 would solve the problem.
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18 MENGZHOU SUN

Problem 5.10. Give a direct proof of the fact that IΣn+2 � WR(Σn+1 ∧ Πn+1)
(and also IΣn+2 � WRϕ where ϕ(x, y) ∈ Σ0(Σn+1) as described in the remark after
Theorem 5.8) without using end extensions.
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