
Proceedings of the Design Society, Volume 5: ICED25
https://doi.org/10.1017/pds.2025.10106

ChAx: a RAG-based chatbot for CAx education

Sarah Steininger ,1,2, , Saltuk Kezer1, Jona Rief ,1, Emily Spicker ,1, Sebastian Preis1

and Johannes Fottner ,1

1 Technical University of Munich, Germany, 2 BMW Group, Munich, Germany

sarah.steininger@tum.de

ABSTRACT: ChAx is a chatbot designed to support in technical drawing lectures by leveraging Retrieval-
Augmented Generation. Addressing challenges such as the complexity of rules and dependencies in technical
drawing, the system accesses the specific lecture materials to provide students with accurate and context-aware
answers. The architecture combines modular components, including a RAG pipeline and a frontend with an
interactive PDF viewer, ensuring transparency and user-friendliness. Optimization strategies like semantic
chunking, fine-tuning, and cost-effective configurations enable efficient performance within constrained server
environments. Evaluation metrics, including factual correctness and answer relevancy, were evaluated by using the
LLM-as-a-judge method. The results underline ChAx’s potential to enhance educational outcomes by enabling
students utilize materials more effectively.

KEYWORDS: retrieval augmented generation, chatbot, education, computer aided design (CAD), user centred
design

1. Introduction
The rapid development of Large Language Models (LLMs) and their widespread adoption is opening up
new possibilities (Steininger, Camci, & Fottner, 2024). Especially in teaching, a core area of knowledge
acquisition and dissemination, the use of this technology seems versatile (Fauzi, Tuhuteru, Sampe,
Ausat, & Hatta, 2023; Jo, 2024; Kasneci et al., 2023). However, a major drawback of LLMs is the
significant number of resources required to train them. This makes customisation a complex and
resource-intensive task, especially when trying to teach existing LLMs new information, such as data
from a custom dataset. Additionally, when using a small dataset, finetuning risks causing the model to
overfit and forget crucial information. To face this challenge, Lewis et al. (2020) introduce a new
approach known as Retrieval-Augmented Generation (RAG). In contrast to normal finetuning, in which
the model is statically trained with new data, RAG dynamically accesses external knowledge sources. In
this way, real-time updates and specific information can be obtained more efficiently, without having to
adapt the model itself (Gao et al., 2023). The aspect of real-time updates is particularly important in
teaching, as lectures are constantly evolving and updated with the state of the art. Used in this way, a
chatbot enables efficient knowledge management by quickly providing specific information to the
student (cf. Bassner, Frankford, and Krusche (2024)). The student can interact with a Chatbot, seek for
clarification and engaging in in-depth discussions about their course material on his own (Jo, 2024).
Regardless from time and place, a chatbot offers round-the-clock service and the student is no longer
bound to the times of office hours (Kasneci et al., 2023). Finally, Jo (2024) also notes that the integration
of LLMs makes teaching more attractive because of the novelty value, as it makes learning more exciting
and engaging. Overall, the current research agrees that the integration of a chatbot mainly brings benefits.
However, there are also risks associated with the new technology. For example, Kasneci et al. (2023)
point out that language models may provide misleading or inaccurate information that is accepted by
students without verification. LLM hallucination can never be eliminated but can only be minimized. In

ICED25 921

https://doi.org/10.1017/pds.2025.10106
https://orcid.org/0009-0002-9545-7849
https://orcid.org/0009-0002-4063-7615
https://orcid.org/0009-0007-7567-8130
https://orcid.org/0000-0001-6392-0371
mailto:sarah.steininger@tum.de

addition to the technological issues, the use of a chatbot in teaching raises aspects of psychology,
sociology and sociolinguistics (Dibitonto, Leszczynska, Tazzi, & Medaglia, 2018).
In summary, integrating a chatbot raises several questions. How do I set up the architecture to ensure the
best result? What settings and parameters do I use for RAG? How do I check the quality of the answers?
And how can I design the frontend of the Chatbot to best meet the student’s needs? To answer these
questions, a RAG-based chatbot for Technical Drawing education is presented.

2. Materials and methods

2.1. Large Language Models
Over the last few years, LLMs have gained a lot of traction and can be found in various industries for
multiple types of applications (Wang et al., 2024). LLMs are based on deep learning algorithms and
artificial neural networks to understand, interpret, and generate answers in human language. Creating and
training LLMs requires massive amounts of data (Hoffmann et al., 2022). Starting with an unsupervised
learning phase, the model is given unstructured data to work through itself. When a sufficient knowledge
base is created, the model is fine-tuned to create a consistent model and given structured data focused on
more specific concepts. In the last step, the model goes through a phase of reinforcement learning. The
LLMs answers are evaluated, and extra data is given where the answers are insufficient. A drawback of
LLMs is that they require large amounts of data for their training, which makes it difficult to customize to
a specific topic. The traceability of LLM answers can also cause problems. It is not always clear how the
model derives its answer and from which dataset. This is especially critical in cases where the answer is
hallucinated. One way to counteract these problems is by using Retrieval-Augmented Generation. (Gao
et al., 2023)

2.2. Retrieval Augmented Generation
Retrieval-Augmented Generation was first introduced by, Lewis et al. (2020) and is a modification for
LLMs that constricts the data reference to a specified set of information, usually from specific
documents. This allows for domain-specific usage. RAG is built as a two-step approach, combining a
non-parametric retriever with a parametric-memory generation model. Both retriever and generator are
pre-trained and go through a fine-tuning approach. The retriever consists of a query encoder, which
transforms the user’s query into a vector representation, as well as a document index. The document
index takes the vector query and uses a similarity matrix to identify and retrieve documents best suited
for answering. To ensure that the similarity step is effective, the documents should be pre-embedded in
the document index using the same query encoder used as part of the retriever. The generator then uses
these documents and the user’s query to create the final response. The documents retrieved from the
index can be constrained to a pre-defined number k using the top-k approximation, where k is an
adjustable hyperparameter that can be optimized for a more effective output generation.(Lewis
et al., 2020)

2.3. Requirements analysis
In the outlined lecture, first and second semester students of various engineering courses learn the rules of
technical drawing in twelve lectures and exercises. Each lecture focuses on one aspect of a technical
drawing, explaining the relevant laws and many examples of their applications. Furthermore, a lecture
textbook with more detailed descriptions of the rules and their applications, dependencies, and
exceptions is provided. Despite these preparations, independently creating drawings proves to be a
significant challenge for the students due to the many rules and dependencies between the standards. To
improve students’ success and motivation, the Chatbot must fulfil requirements. These requirements are
divided into four sections: Requirements from both user groups, the learners and the teachers, technical
requirements, and general requirements for using a chatbot in education.
From the learner’s perspective, the chatbot must provide accurate and reliable information. This includes
the chatbot generating answers using all documents provided in the lecture. The information provided by
the chatbot must be understandable, tailored to the specific question and its context, and contain an
appropriate level of detail. To ensure high service accessibility, it must be integrated into our learning
management system (Moodle) and optimized for mobile and desktop devices.

922 ICED25

From the teachers’ perspective, the chatbot should enable students to access and utilize the learning
materials efficiently and purposefully to complete the assigned tasks, enhancing their learning
outcomes. Furthermore, the chatbot system must allow for effortless updates to lecture materials, as the
lecture materials are continuously improved. Additionally, the chosen implementation must be easily
extensible while remaining resource-efficient and maintainable without requiring constant developer
intervention.
The technical requirements are defined by the limitations of our in-house hosted servers, which lack
GPUs and operate within constrained computational capacities, as well as the restricted monthly budget
for this application. For the general requirements, it is essential to consider legal implications in cases
where the chatbot provides incorrect or misleading information. Additionally, it is necessary to ensure
compliance with privacy regulations and maintain transparency regarding data usage.

2.4. Evaluation metrics
Evaluating the quality of a chatbot pipeline is essential to ensure its success, analysability, and long-term
sustainability. Chatbots can be assessed based on various criteria, such as the performance of retriever
modules or their ability to generate factually accurate responses. Effective evaluation is also crucial for
aligning with stakeholders, setting clear expectations, and communicating the chatbot’s capabilities.
Traditional metrics like ROUGE and BLEU, originally developed for machine translation tasks, remain
widely used for evaluating chatbot outputs. These algorithms rely on n-grams to compare generated text
against reference pairs, making them applicable for assessing RAG systems (Lin, 2004; Papineni,
Roukos, Ward, & Zhu, 2002). A more modern approach to evaluation leverages large LLMs themselves
in a method known as LLM-as-a-judge. Research has shown that LLMs can deliver human-like
evaluation performance. Instead of relying solely on classical metrics, this approach employs LLMs to
assess chatbot outputs against specific system components. Typically, a higher-quality LLM is used for
evaluation, ensuring accuracy and reliability (Huang et al., 2024; Zheng et al., 2023). In practice, several
frameworks and libraries implement the LLM-as-a-judge methodology. Notable tools include RAGAs,
ARES, and comprehensive frameworks like DeepEval, which offer robust, well-established metrics to
evaluate different aspects of chatbot performance. These metrics can, for example, assess the precision of
retrieved documents relative to the generated responses or evaluate other pipeline components
(“DeepEval,”; Es, James, Espinosa-Anke, & Schockaert, 2023; Saad-Falcon, Khattab, Potts, & Zaharia,
2023). For the evaluation, 300 high-quality question-answer pairs based on the lecture textbook were
created. This dataset serves as a benchmark for assessing the pipeline’s effectiveness. In total, 19 distinct
tests were conducted, optimizing six separate criteria, and five evaluation metrics to measure
performance across all 300 questions were employed. Each metric returned scores as percentages,
allowing for systematic measurement and refinement of the pipeline’s overall performance. More
information regarding the chosen optimization criteria as well as the actual numerical results of the
evaluation is listed in 3.2. Below, the metrics and their specific purposes are outlined. Further
information regarding the selected metrics can be found in the paper of Es et al. (2023).

• Factual Correctness This metric evaluates the factual accuracy of generated responses by
comparing them to baseline references. A confusion matrix is used to analyze claims in the
generated answers against the expected responses.

• Context Precision Measures the proportion of relevant chunks within the retrieved context.
Precision is calculated by comparing the number of relevant chunks at rank kkk to the total chunks
retrieved at that rank.

• Context Recall Assesses the completeness of document retrieval by measuring how many
relevant documents are successfully retrieved. Unlike precision, recall focuses on ensuring that
few relevant documents are missed, reflecting retrieval completeness rather than relevance.

• Faithfulness Evaluates the factual consistency of the generated answer against the provided
context. While Factual Correctness compares generated responses to a reference, Faithfulness
ensures that claims in the response are grounded in the retrieved context and do not introduce
unsupported information.

• Answer Relevancy Examines how closely the generated answer addresses the given prompt. This
metric assesses whether the response is pertinent to the initial query, ensuring that key claims in
the query are considered and correctly answered.

ICED25 923

3. Results

3.1. Architecture design
The architecture of the chatbot consists of several sub-modules, each of which is integral to the overall
functionality of the system. An overview of all components is shown in figure 1.

LearningManagement System (LMS) and LTI Proxy The user accesses the Chatbot through an LMS,
for which different software is available. Within in the school of Engineering and Design (TUM) the
LMS “Moodle” is used. In the architectural design, a key requirement was to secure access via the
Learning Tools Interoperability (LTI) standard. It ensures that only students which are enrolled in the
specific Moodle course can access the Chatbot. Given Moodle’s native support for LTI integration, an
LTI proxy was implemented to mediate between the frontend and backend of the application. The LTI
proxy is built using Express.js, a web application framework for Node.js that simplifies API service
creation and routing. The LTI integration uses the open source LTIJS library, which provides a simple
implementation of the LTI 1.3 standard for secure authentication and communication. In this
configuration, LTIJS is set up to handle connection attempts by redirecting users directly to the frontend.
The security of the LTI standard is maintained through cookie-based authentication, so cookies are set
prior to redirection to ensure secure access. To enforce security, middleware has been integrated into both
the backend and frontend to enable communication with the LTI system. This middleware handles the
“ltik” token added to the redirected URL by LTIJS and manages the authentication process. A single
information endpoint within the Express.js application verifies the validity of incoming requests. Upon
successful validation by the LTI proxy, a legitimate login can be confirmed. Requests that fail validation
are rejected, securing access to the system and ensuring that only authenticated users can interact with the
application. The frontend, backend, and LTI-proxy are each implemented as separate applications, all of
which are stored in the TUM GitLab repository.
Frontend The Frontend is designed to manage user interactions, including the display of the chatbot
interface, handling user messages, and providing a PDF viewer for displaying sourced documents and
highlights. The frontend of the application is implemented using Next.js, a robust React framework
designed for building full-stack applications. Next.js extends the core capabilities of React by adding
features that streamline development and maintenance. These features include server-side rendering,
static page generation, and built-in routing, which together improve performance, scalability, and the
overall developer experience. By using Next.js, the application is designed to be responsive, efficient,
maintainable, and extensible, allowing for future enhancements with minimal disruption (Vercel Inc.).
Upon successful authentication through the LTI proxy, the necessary web files to display the frontend are
delivered to the user, allowing them to interact with the Chatbot. The user interface design principles
prioritize simplicity and ease of use, deliberately avoiding unnecessary complexity. Starting with a
template from create-llama, a service provided by LlamaIndex for rapid development of RAG
applications, the template was customized to meet specific requirements. Key enhancements include a
custom welcome message to greet users upon entering the site. In addition, the Moodle Web Services
API is used to retrieve user-specific information such as the user’s name and profile picture, creating a
more personalized experience. Through prompt engineering, the model is configured to appropriately
cite all generated content. These citations are parsed in the front end and displayed as interactive sources.
When a user clicks on a citation, a PDF viewer is triggered to display the referenced source document
directly on the page (see figure 2).

Langfuse*

BackendFrontendLTI-Proxy

DFS

Vector
DB

LMS

LlamaParse

User

*restricted to Admin

Figure 1. Architecture structure of the chatbot

924 ICED25

Backend The backend functionality is exposed via a consumable HTTP-based API, which handles the
serving of PDF documents and related annotation. It is based on FastAPI, a Python framework for
creating APIs, which allows easy integration with LlamaIndex (“FastAPI”). The application provides
three main routes:

1. /api/chat: this route handles HTTP POST requests and accepts a list of messages. The messages
are forwarded to the active ChatEngine and the replies are sent to the frontend in real time.

2. /api/pdf: This HTTP GET resource can be used to retrieve a list of available PDF files in the
system. The PDF files must first be generated for a response.

3. /api/pdf/highlight-text: This route allows highlighting to be added to PDFs. By comparing text
parts of the PDF page with the original text, the best match is found and the corresponding
coordinates for the highlight are returned so that the frontend can display the highlight.

LlamaParse To increase the efficiency of processing course materials, a parser is added. A parser is a
program that analyses data and converts it into a structure that can be easily processed by a computer
program. For example, it intelligently converts PDFs into markdown format, optimizing the documents
for later use within the application. In the architecture, the lecture materials are stored in the Document
Filing System and retrieved via its API to the server, where they are then sent to the parser for further
processing.
Langfuse Another component of the architecture is the integration of Langfuse, an open-source
platform designed to build and manage large language models. Langfuse allows for comprehensive
tracking of user interactions with the system, supporting live evaluation and the collection of metrics
and data to improve the pipeline. Langfuse was selected for its seamless integration with LlamaIndex.
In addition to tracking, Langfuse supports debugging by providing detailed insight into the time spent
on each subcomponent of the Retrieval-Augmented Generation (RAG) pipeline. It also tracks the costs
associated with all generated messages, providing valuable information for cost management and
optimization.
Document Filing System (DFS) and Vector Data Base (DB) In the DFS the lecture materials, which
serve as input for the RAG pipeline, are stored. The stored files are primarily PDFs, which include both
images and raw text. However, due to the limitations of the free-tier LlamaParse service, which only
supports textual data processing, the current model does not handle multi-modal data, leaving images
unanalysed. When executing the document embedding process, the script automatically retrieves the
PDFs by entering the URL address and the access data. Once LlamaParse completes the parsing, it
returns a markdown version of the document, which is then embedded and stored in the vector database.
This process ensures that the documents are accurately parsed, embedded, and ready for efficient retrieval
in subsequent queries.
To summarize the overall architecture, the user message is received by the frontend where an embedding
model processes the message and compares it to documents stored in the vector database. The relevant
documents retrieved from this comparison are provided to the LlamaIndex agents as contextual
information, allowing them to generate a response. This response is then returned to the frontend,
completing the interaction cycle.

Figure 2. Frontend

ICED25 925

3.2. Evaluation and optimization
The fundamental concept of RAG is introduced in Section 0 While a basic implementation of RAG
provides reasonable performance, various techniques can significantly enhance the effectiveness of both
the chatbot and the pipeline. To improve system quality, several optimization strategies, focusing on five
key areas, were applied.

Retrieving As discussed in Section 0, the retriever employs the parameter k to determine the number of
documents passed as context to the generator module. Ideally, providing the entire context would
maximize information retrieval, but resource constraints and the linear cost increase of generator modules
with context size necessitate a balanced approach. In this project, multiple values for k (600, 200, 300,
100, 50, 20, 10, and 5) were tested to identify the optimal trade-off between performance and resource
cost. After theoretical and practical evaluations, the most effective value was selected, ensuring a balance
between retrieval quality and system efficiency.
Reranking Advanced RAG pipelines benefit from a dedicated reranking module to refine retrieved
documents. While the retriever relies on the highly efficient Maximum Inner Product Search (MIPS)
algorithm, its non-parametric nature can yield suboptimal results, particularly when k is small. To address
this, a reranker module was implemented that improves ranking accuracy at the expense of additional
computational resources. The reranker refines the top k retrieved documents into a final set of n
documents embedded in the context. The hyperparameter n controls the size of this refined set, allowing
to optimize for performance while managing computational overhead (Zhuang, Liu, Koopman, &
Zuccon, 2023).
Advanced Querying-Techniques Further querying techniques, specifically subquestion querying,
were analysed during the finetuning process. This method involves decomposing the initial query into
claims or subquestions, which are individually processed by the retriever and generator modules. The
subquestion responses are then synthesized into a final response, enabling the chatbot to better handle
complex queries (Gao et al., 2023). However, this approach effectively multiplies computational costs
by the number of subquestions generated. While testing revealed a modest performance improvement
of 3–4%, the cost increase outweighed the benefits. Consequently, the technique wasn’t adopted to the
system.
Finetuning Finetuning a RAG-based system can significantly enhance performance by customizing
the model to meet specific domain requirements. Leveraging OpenAI’s public finetuning API, we
trained a custom model using a high-quality dataset comprising 300 questions, employing a 70/30
train-test split for training and evaluation. The fine-tuned model exhibited noticeable performance
improvements while incurring minimal additional costs. We selected a fine-tuned version of GPT-4o-
mini for its combination of fast inference times, strong performance, and relatively low cost compared
to other, more expensive models. Although fine-tuning introduces certain risks, as outlined in Section
1, combining it with a RAG framework mitigates these concerns. This hybrid approach enables the
model to develop a deeper understanding of domain-specific language and enhances its ability to
effectively handle specialized terminology. The use of synthetic datasets to augment the training
process was also explored. However, aligning the data distributions of high-quality manually collected
datasets with synthetic data proved to be a complex challenge. Future research may uncover improved
strategies for achieving better alignment between these dataset types, opening the door for further
performance gains.
Chunk SizesWhen working with LLMs, chunking is a crucial process that involves dividing a document
into smaller, manageable parts. The simplest approach to chunking is splitting text into fixed-size chunks
containing a specific number of tokens. However, since most LLMs have a constrained context window
—limiting the amount of additional information passed alongside a query—this naive approach can be
suboptimal. Moreover, even without such restrictions, providing full documents as context can
overwhelm the model, making it difficult to localize relevant information in a large text. Chunking helps
mitigate these issues by breaking the document into smaller pieces, enabling finer-grained control over
context. Various chunking strategies, starting with sentence-based splitting, were explored in the project.
While this approach provided a straightforward solution, it revealed limitations, such as difficulty in
maintaining the contextual flow of the document’s structure. To address this, semantic chunking was
considered. It involves leveraging an embedding model to create vector representations of individual
sentences. These embeddings are compared using a sliding window approach, where adjacent sentences
are analyzed for similarity. Sentences with high similarity are grouped into the same chunk, while

926 ICED25

significant dissimilarities indicate a potential topic shift, such as the beginning of a new chapter or
section. This method led to noticeable improvements in the quality of chunks, as it preserved semantic
coherence (Gao et al., 2023). Despite these improvements, a persistent issue was encountered: loss of
contextual information about the document’s structure, particularly its chapters and sections. Human
readers naturally rely on outlines to interpret content. For instance, if a cookbook discusses general
slicing techniques under a subchapter about bananas but doesn’t explicitly mention bananas within the
subsection, readers can still infer that the techniques are related to bananas. To replicate this structural
awareness, markdown-based chunking method was developed. The implemented markdown-parsing is
inspired by LlamaIndex’ MarkdownParser (LlamaIndex). In the pipelines first ingestion step, PDFs are
converted to markdown, enabling to analyze the document’s headings, sections, and subsections. Each
subsection is compiled into a single node, with headings serving as markers for starting new chunks. If a
subsection is exceptionally long, spanning multiple pages, a fixed-size chunking step was applied to
divide it into smaller parts. Additional metadata, such as the ordering of these smaller chunks within the
original subsection, is added to maintain structural clarity. The chunk size for these fixed-size divisions is
a tuneable parameter, optimized for specific use cases. The effectiveness of this approach is demonstrated
in the evaluation table 1, which highlights its role in improving information retrieval and maintaining
contextual relevance.

Initial Prompt A key factor influencing system performance is also the selection of the initial prompt.
For this issue, the approach outlined in Bassner et al. (2024) was taken as guidance. Additionally, the
concept of few-shot learning was incorporated to teach the bot how to identify and reject certain types of
questions (Brown et al., 2020). The final version of the prompt can be seen in figure 3.
As shown in table 1, the best results show a 75% correctness for our primary script and approximately
70% correctness when both main scripts are combined. The slightly lower correctness for the combined
scripts is attributed to the second script, which includes a significant amount of visual image data. As the
current iteration of the chatbot primarily focuses on text analysis, its correctness decreases when handling
visual data. The row highlighted in bold represents the configuration currently deployed in the
production environment. Performing reranking via an API is extremely expensive, with costs reaching up
to three times higher than those for query analysis and response generation combined. An alternative
approach would be to host a GPU locally and run an open source reranking model in-house. For
evaluation purposes, the Cohere API reranker was used, which is fast, scalable, and delivers excellent
performance (“Cohere”).
Due to cost constraints and the absence of a reranker, it was necessary to set k=5 for the number of
embedded documents. While this decision significantly reduces pipeline costs, it also adversely impacts

Figure 3. Initial prompt

ICED25 927

performance. It is important to note that costs scale linearly with the number of documents. Without a
reranker to minimize the number of documents passed to the generator module, increasing from 5 to 100
documents would result in a 20x cost increase. Thus, the row highlighted in bold represents the current
evaluation metrics for the chatbot.

4. Discussion

4.1. Evaluation of requirements
Requirements from the Learners’ Perspective The implemented pipeline of the chatbot uses RAG to
access the provided lecture materials. In this way, it ensures that the relevant documents are retrieved,
and accurate answers are delivered. A PDF-Viewer placed next to the chat window displays referenced
documents, which provides transparency and contextual precision. The integration with Moodle is
successfully implemented, with support for both mobile and desktop devices. A limitation is the lack of
image integration. In the current pipeline, images in lecture materials are not analysed due to the text-
only processing capability, which could be an issue for visually oriented content. To some extent the
PDF-Viewer could be a pain reliever, assuming that the image content is referred in the text. Another
solution for this issue is the textual description of images in the parser process. In the scope of this
project, this option wasn’t added due to additional costs.
Requirements from the Teachers’ Perspective Regarding the requirements of education staff, the
chatbot helps students to use the materials effectively. The question on the potential to improve the
learning outcome of the students will be evaluated in the current test phase. Updates to materials are
simplified through a script which provides automated synchronization with the DFS. A drawback of the
pipeline is the dependency on open-source tools like Llamaindex or Langfuse. If they are changes, the
pipeline must be updated.
Technical Requirements Several optimizations and restrictions are made to reduce the computational
demands and the related costs. For example, currently no reranker modul is implemented into the pipeline
although it would offer more performance. Overall, the factors “(resource) costs” and “performance” are
conflicting requirements throughout the whole project. To anyway fulfil the requirement, cost-conscious
decisions have been made.
General Requirements Data protection is ensured by using local servers and secure LTI connections.
Errors are minimized through optimized RAG modules and benchmark dataset of high-quality question-
answer pairs. Nevertheless, avoiding misleading answers (hallucinations) remains a challenge,
particularly for complex or niche queries.
Overall, the implementation of the chatbot fulfils most of the outlined requirements effectively. Key
success includes LMS integration, RAG implementation, and resource optimization. However,
limitations exist regarding the inclusion of graphical materials and the long-term balance between
maintenance and cost.

Table 1. Test settings and evaluation results.

K N
Sub-ques-

tion
Chunk
Size

Fine-
tuning

TZ
Skript

GEO
Skript

Factual
Correctness

Answer
Relevancy

Faith-ful-
ness

Context
Recall

Context
Precision

600 10 X 256 X ✓ X 67,16% 86,53% 88,32% 90,25% 86,53%
200 10 X 256 X ✓ X 70,35% 88,3% 87,76% 89,27% 85,45%
200 X X 256 X ✓ X 68,61% 88,16% 87,83% 92,27% 78,69%
300 5 X 512 X ✓ 71,66% 87,32% 87,44% 93,92% 94,13%
300 X X 512 X ✓ X 69,1% 87,19% 87,28% 92,1% 82,13%
100 5 X 512 X ✓ X 71,79% 88,21% 87,27% 93,35% 93,8%
100 X X 512 X ✓ X 67,28% 88,21% 88,12% 92,43% 82,93%
100 5 ✓ 512 X ✓ X 72,63% 87,91% 89,13% 93,33% 81,63%
100 X X 1024 X ✓ X 69,62% 88,87% 86,16% 88,77% 84,99%
100 5 X 1024 X ✓ X 70,26% 88,72% 87,31% 95,3% 94,47%
5 X X 512 X ✓ X 65,05% 87,56% 87,02% 86,78% 87,7%
10 X X 512 X ✓ X 66,43% 88,48% 87,48% 91,85% 83,06%
20 X X 512 X ✓ X 66,49% 86,4% 87,79% 91,68% 83,27%
50 X X 512 X ✓ X 68,59% 88,14% 87,82% 91,56% 83,06%
100 X X 512 ✓ ✓ X 70,29% 90,12% 82,93% 92,78% 83,81%
100 5 X 512 ✓ ✓ X 74,69% 88,6% 89,92% 94,72% 96,62%
100 5 X 512 ✓ ✓ ✓ 69,49% 88,44% 91,62% 94,57% 93,71%

928 ICED25

4.2. Reflection of the approach
The system’s performance is highly dependent on numerous parameters and optimization techniques,
many of which are resource intensive. For example, advanced solutions such as Cohere offer potential
improvements but are approximately ten times more expensive, making them impractical for large-scale
educational use. This emphasizes the need for a balanced trade-off between cost and utility.
Choice of Evaluation Metrics The choice of the evaluation method “LLM-as-a-judge” offers a great
opportunity to assess the performance of the chatbot. Nevertheless, optimizing on the six selected criteria
risks that the parameters are specialized on these. Considering that the evaluation LLM is usually a
higher-quality one, this limitation is made due to budget requirements.
Response Time In total, the whole pipeline and the integrated modules require an average response time
of 12 seconds. It is adequate for educational applications but leaves room for improvement. Faster
response times could enhance the user experience, especially during high-intensity usage periods.
Integration of Visual Data As mentioned in chapter 4.1 there’s no integration of visual data in the
chunks. Regarding questions to the content of an image, the results have been suboptimal. Incorporating
better methods for image integration, such as multi-modal processing, could enhance the chatbot’s
effectiveness, particularly for technical subjects.
Novelty of RAGTechnology Furthermore, the technology RAG is relatively new, being introduced only
in 2020. While it has proven effective, its recent origin means there is still much to learn and optimize,
especially in educational contexts.
Impact on Learning Habits As Bassner et al. (2024) highlight, over-reliance on chatbots can affect
learning behaviors, potentially reducing critical thinking and deep engagement with material. There is a
risk that students may prefer quick answers over tackling complex concepts. However, it is worth noting
that students are aware that neither ChAx nor the lecture script can be used during exams, which helps to
mitigate this concern.

5. Conclusion and outlook
The implementation of ChAx, a RAG-based chatbot, demonstrates the potential of enhancing the
learning experience in technical drawing lectures. By providing accurate and context-aware answers, the
chatbot addresses the challenges students face in mastering complex rules and dependencies. The
architecture effectively balances performance with limited server resources through optimizations like
semantic chunking and fine-tuning. While ChAx meets most of the defined requirements, certain
limitations remain, including the absence of image data processing. This challenge presents an
opportunity for future development. Additionally, the chatbot entered the test phase and the first feedback
loops with an initial beta version in 2024. Now, the chatbot will be put into everyday operation at the start
of the 2025 summer semester. It is now imperative to generate empirical data to analyse and compare
student learning before and after the intervention. It is also necessary to analyse how and when students
use the chatbot exactly. Moreover, the need for systematic feedback loops with students is critical for
continuous improvement and alignment with educational goals.
Overall, ChAx provides a robust foundation for integrating AI-driven assistance into education, paving
the way for broader adoption and refinement of such technologies in both academic and industrial
settings. Future efforts will aim to enhance the system’s capabilities while maintaining a cost-effective
and user-centric approach.

References
Bassner, P., Frankford, E., & Krusche, S. (2024). Iris: An AI-Driven Virtual Tutor for Computer Science

Education. In M. Monga, V. Lonati, E. Barendsen, J. Sheard, & J. Paterson (Eds.), Proceedings of the 2024 on
Innovation and Technology in Computer Science Education V. 1 (pp. 394–400). New York, NY, USA: ACM.
https://doi.org/10.1145/3649217.3653543

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,... Amodei, D. (2020). Language Models
are Few-Shot Learners. Retrieved from http://arxiv.org/pdf/2005.14165v4

Cohere. Retrieved from https://cohere.com/
DeepEval. Dibitonto, M., Leszczynska, K., Tazzi, F., & Medaglia, C. M. (2018). Chatbot in a Campus

Environment: Design of LiSA, a Virtual Assistant to Help Students in Their University Life. In M. Kurosu
(Ed.), Lecture Notes in Computer Science. Human-Computer Interaction. Interaction Technologies: 20th
International Conference, HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings (1st

ICED25 929

https://doi.org/10.1145/3649217.3653543
http://arxiv.org/pdf/2005.14165v4
https://cohere.com/

ed., Vol. 10903, pp. 103–116). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-
91250-9_9

Es, S., James, J., Espinosa-Anke, L., & Schockaert, S. (2023). RAGAS: Automated Evaluation of Retrieval
Augmented Generation. Retrieved from http://arxiv.org/pdf/2309.15217v1

FastAPI. Retrieved from https://fastapi.tiangolo.com/
Fauzi, F., Tuhuteru, L., Sampe, F., Ausat, A. M. A., & Hatta, H. R. (2023). Analysing the Role of ChatGPT in

Improving Student Productivity in Higher Education. Journal on Education, 5 (4), 14886–14891. https://doi.
org/10.31004/joe.v5i4.2563

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y.,... Wang, H. (2023). Retrieval-Augmented Generation for Large
Language Models: A Survey. Retrieved from http://arxiv.org/pdf/2312.10997

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E.,... Sifre, L. (2022, March 29).
Training Compute-Optimal Large Language Models. Retrieved from http://arxiv.org/pdf/2203.15556v1

Huang, H., Qu, Y., Bu, X., Zhou, H., Liu, J., Yang, M.,... Zhao, T. (2024). An Empirical Study of LLM-as-a-Judge
for LLM Evaluation: Fine-tuned Judge Model is not a General Substitute for GPT-4. Retrieved from http://
arxiv.org/pdf/2403.02839v3

Jo, H. (2024). From concerns to benefits: a comprehensive study of ChatGPT usage in education. International
Journal of Educational Technology in Higher Education, 21 (1). https://doi.org/10.1186/s41239-024-00471-4

Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F.,... Kasneci, G. (2023). ChatGPT
for good? On opportunities and challenges of large language models for education. Learning and Individual
Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,... Kiela, D. (2020). Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. Retrieved from http://arxiv.org/pdf/2005.11401

Lin, C.-Y. (2004). ROUGE: a Package for Automatic Evaluation of Summaries. InWorkshop on Text Summarization
Branches Out, Post-Conference Workshop of ACL 2004, Barcelona, Spain. Retrieved from https://www.
microsoft.com/en-us/research/publication/rouge-a-package-for-automatic-evaluation-of-summaries/

LlamaIndex. Markdown. Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a Method for Automatic
Evaluation of Machine Translation. In Annual Meeting of the Association for Computational Linguistics.
Retrieved from https://api.semanticscholar.org/CorpusID:11080756

Saad-Falcon, J., Khattab, O., Potts, C., & Zaharia, M. (2023). ARES: An Automated Evaluation Framework for
Retrieval-Augmented Generation Systems. Retrieved from http://arxiv.org/pdf/2311.09476v2

Steininger, S., Camci, H., & Fottner, J. (2024). Current State, Potentials and Challenges for the Use of Artificial
Intelligence in the early Phase of Product Development: A Survey. In 2024 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM) (pp. 551–555). IEEE. https://doi.org/10.1109/
IEEM62345.2024.10857061

Vercel Inc. Next.js. Retrieved from https://nextjs.org/docs
Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,... Wen, J. (2024). A survey on large language model

based autonomous agents. Frontiers of Computer Science, 18 (6). https://doi.org/10.1007/s11704-024-
40231-1

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S. [Siyuan], Wu, Z., Zhuang, Y.,... Stoica, I. (2023). Judging LLM-
as-a-Judge with MT-Bench and Chatbot Arena. Retrieved from http://arxiv.org/pdf/2306.05685v4

Zhuang, S. [Shengyao], Liu, B., Koopman, B., & Zuccon, G. (2023). Open-source Large Language Models are
Strong Zero-shot Query Likelihood Models for Document Ranking. Retrieved from http://arxiv.org/pdf/2310.
13243v1

930 ICED25

https://doi.org/10.1007/978-3-319-91250-9_9
https://doi.org/10.1007/978-3-319-91250-9_9
http://arxiv.org/pdf/2309.15217v1
https://fastapi.tiangolo.com/
https://doi.org/10.31004/joe.v5i4.2563
https://doi.org/10.31004/joe.v5i4.2563
http://arxiv.org/pdf/2312.10997
http://arxiv.org/pdf/2203.15556v1
http://arxiv.org/pdf/2403.02839v3
http://arxiv.org/pdf/2403.02839v3
https://doi.org/10.1186/s41239-024-00471-4
https://doi.org/10.1016/j.lindif.2023.102274
http://arxiv.org/pdf/2005.11401
https://www.microsoft.com/en-us/research/publication/rouge-a-package-for-automatic-evaluation-of-summaries/
https://www.microsoft.com/en-us/research/publication/rouge-a-package-for-automatic-evaluation-of-summaries/
https://api.semanticscholar.org/CorpusID:11080756
http://arxiv.org/pdf/2311.09476v2
https://doi.org/10.1109/IEEM62345.2024.10857061
https://doi.org/10.1109/IEEM62345.2024.10857061
https://nextjs.org/docs
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
http://arxiv.org/pdf/2306.05685v4
http://arxiv.org/pdf/2310.13243v1
http://arxiv.org/pdf/2310.13243v1

	ChAx: a RAG-based chatbot for CAx education
	1.. Introduction
	2.. Materials and methods
	2.1.. Large Language Models
	2.2.. Retrieval Augmented Generation
	2.3.. Requirements analysis
	2.4.. Evaluation metrics

	3.. Results
	3.1.. Architecture design
	3.2.. Evaluation and optimization

	4.. Discussion
	4.1.. Evaluation of requirements
	4.2.. Reflection of the approach

	5.. Conclusion and outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

