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Abstract

Tree-based methods are widely used in insurance pricing due to their simple and accurate splitting rules.
However, there is no guarantee that the resulting premiums avoid indirect discrimination when features
recorded in the database are correlated with the protected variable under consideration. This paper shows
that splitting rules in regression trees and random forests can be adapted in order to avoid indirect dis-
crimination related to a binary protected variable like gender. The new procedure is illustrated on motor
third-party liability insurance claim data.

Keywords: Demographic parity; insurance risk classification; random forests; regression trees

1. Introduction

Discrimination is an important issue in the insurance industry because applicants and policy-
holders are subject to differentiation through risk classification at every stage of their customer
relationship, from underwriting to possible cancelation. This paper is motivated by gender-based
discrimination within the European Union (EU). In 2011, the European Court of Justice con-
cluded that any gender-based insurance discrimination must be prohibited. From December 21,
2012, after the Test-Achats ruling, all insurers operating in the EU are required to offer unisex
premiums and benefits. However, as part of the guidelines on the application of the 2011 ruling,
the use of true risk factors that might be correlated with gender remains permitted. Precisely, if the
candidate rating factor enters the model because of its predictive power in the presence of gender,
then it can still be used by the insurers operating in the EU, in application of these guidelines.
The latter only prohibits the use of proxies without impact on the premium in presence of the
protected variable.

Let us justify this interpretation of Article 17 in the “Guidelines on the application of Council
Directive 2004/113/EC to insurance, in the light of the judgment of the Court of Justice of the
European Union in Case C-236/09 (Test-Achats),” together with its footnote (3). The first exam-
ple given in these guidelines refers to power of the car in motor insurance, which is likely to be
an example of true risk factor because actuarial analyses consistently report higher claim frequen-
cies associated with more powerful cars in motor third-party liability insurance, corrected for the
effect of gender. In such a case, the guidelines still allow insurers to use power as a rating factor
even if it may capture part of the gender effect when this protected attribute is removed from the
analysis (because men generally drive more powerful cars). The second example in these guide-
lines considers driver’s height and weight, which have never been considered as risk factors in
motor insurance, as far as we know. Both height and weight are obviously correlated to gender,
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so the guidelines prohibit their use as rating factors because they would not qualify as risk factors
once gender is included in the analysis. They only become statistically significant when gender is
omitted, resulting in prohibited indirect discrimination.

Indirect discrimination resulting from proxy discrimination may thus still be present on the
market in application of these guidelines. Proxy discrimination originates from the relationship
between a protected variable and a set of one or more surrogate variables recorded in the database.
This occurs when premiums vary according to a facially neutral risk factor correlated with the
protected variable. For instance, amounts of motor insurance premiums often differ according to
the power of the vehicle or the distance traveled. If these features are correlated to gender, e.g.
because men tend to drive more powerful cars over longer distance, then the insurer’s price list
still indirectly discriminates according to gender.

The present paper demonstrates that demographic parity-adjusted prices are theoretically pos-
sible with tree-based techniques. The insurance premiums resulting from the proposed approach
avoid indirect discrimination and thus strictly comply with the Gender EU Directive. This is
achieved by adapting the splitting rules so that each risk class is gender-balanced. Therefore,
it would theoretically be possible to enforce the prohibition of gender-based discrimination by
adopting these techniques. In practice, some complications nevertheless remain, as explained in
the final section of this paper.

The discrimination originating from insurance risk classification is an important topic in the
literature. Let us briefly review some contributions related to the contents of the present paper.
Abraham (1985) proposed five criteria to evaluate risk classification plans: separation, reliabil-
ity, incentive value, homogeneity, and admissibility. The last one emphasizes possible indirect
discrimination by the use of “characteristics that are admissible on their face but that have a dis-
parate impact on the members of one race or sex.” In a more general context, Avraham (2018) and
Prince and Schwarcz (2020) proposed different properties that any rating factor should possess,
irrespective of its discriminatory character. Frees and Huang (2021) discussed the predominant
role of the actuary in the pricing process by choosing which information should be restricted or
prohibited.

Discrimination has also been studied in relation to premium calculation algorithms. Lindholm
et al. (2022) characterized direct and indirect discrimination and proposed discrimination-free
premiums. Kusner et al. (2017), Kilbertus et al. (2017), Tschantz (2022), and Coté et al. (2024a)
demonstrated that indirect discrimination issues can be formulated within the causal inference
framework. Lindholm et al. (2022) and Araiza Iturria et al. (2024) illustrated the connection
between discrimination-free price and the back-door adjustment formula of Pearl (2009) under
Markovian Directed Acyclic Graph assumptions. Interestingly, Zhao and Hastie (2019) indicated
that the definition of the Partial Dependence Plot (PDP-plot) introduced by Friedman (2001) is
similar to the back-door adjustment of Pearl (2009). In this regard, the difference between the
discrimination-free price and the unawareness price of Lindholm et al. (2022) is similar to the
difference between the PDP-plot and the marginal plot (M-plot) of Cooks et al. (1997), used to
identify a posteriori the relationship between the features and the predictions made by black-box
models.

In the machine learning literature, several group-fairness criteria have been proposed in rela-
tion to discrimination. This paper considers independence, also referred to as demographic parity.
Different approaches have been followed in order to reestablish model’s fairness:

— Pre-processing approaches focus on removing discrimination in the input data by using
appropriate transformations. See e.g. Kamiran and Calders (2012) and Calmon et al. (2017).

— In-processing approaches enforce a constraint with respect to a fairness measure in the
learning process by introducing a penalization parameter in the objective function. See e.g.
Kamishima et al. (2011), Dwork et al. (2012) and Grari et al. (2022).
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— Post-processing approaches consist of removing discrimination a posteriori from the model’s
predictions. See e.g. Hardt et al. (2016) and Petersen et al. (2021).

Recently, pre- and post-processing approaches have been increasingly developed using optimal
transport theory, see Barrio et al. (2019), Silvia et al. (2020), Chzhen et al. (2020a), Charpentier et
al. (2023), and Lindholm et al. (2024).

While most discussions focus on fair classification, Agarwal et al. (2019) proposed two defini-
tions of fair regression fulfilling demographic parity or bounded group loss. The latter notion
requires that the prediction error for each protected group remains below a defined level. By
considering bounded predictions and responses lying in [0, 1], they transformed the original
regression problem into a classification one and obtained theoretical results on solutions. Chzhen
et al. (2020b) decomposed the problem of finding an optimal predictor fulfilling demographic
parity into two successive optimization problems. The first one is standard risk minimization,
and the second one applies the demographic parity constraint by means of Lagrange multipli-
ers on discretized bins of predictions. This estimation involved the conditional expectation of
the non-discriminatory features given the discriminatory one on an unlabeled data set left aside.
These methods, however, introduce a large number of additional parameters.

This paper adopts the in-processing fairness approach in the insurance pricing framework.
Proxy discrimination arises from the fact that the gender proportion may vary between risk
classes. Therefore, premiums bring some information about gender and thus implicitly dis-
criminate on that basis. This drawback can be eliminated by constraining each risk class to be
gender-balanced. This is the idea explored in this paper with tree-based methods.

In relation to this framework, Kamiran et al. (2010) and Raff et al. (2017) proposed integrating
fairness into decision trees within a classification context. They evaluated discrimination during
split creation by determining information gain concerning the protected variable, alongside the
usual evaluation of accuracy through information gain related to the categorical response variable
(class labels). Kamiran et al. (2010) replaced the standard information gain maximized for the
best split selection with various alternatives, such as difterence, ratio, or sum of information gain
with respect to the class label and the protected class, respectively. They combined this approach
with leaf relabeling as a second step to mitigate discrimination. In contrast, Raff et al. (2017)
introduced a normalized Gini impurity measure and only considered the difference between both
information gains, with the second acting directly as a fairness penalization. These methods con-
trol fairness with respect to demographic parity in a global and implicit manner by incorporating
a penalty based on the information gain computed with respect to the protected attribute during
split selection. Although these approaches highlight the fact that they do not add new parameters
to tune during the learning process for considering fairness, this effectively amounts to consid-
ering a Lagrange multiplier with respect to the fairness constraint equal to one in the objective
function. Indeed, although both information gains lie within [0,1], their typical magnitudes can
differ substantially, potentially limiting the effectiveness and flexibility of these methods without
careful tuning of the Lagrange multiplier.

The approach described in this paper focuses on fair regression considering strong demo-
graphic parity (in distribution) by enforcing fairness locally at each split through a simple and
interpretable constraint on group balance, filling the gap left by classification-only methods and
information-based approaches that do not guarantee distributional fairness. This not only sim-
plifies implementation but also provides explicit fairness guarantees, making the method more
transparent, auditable, and suitable for deployment in regulated or high-stakes decision-making
contexts. By constraining the splitting procedure, it is shown that we can end up with all risk
classes containing the same proportion of men and women policyholders. The knowledge of the
premiums then brings no more information about gender and discrimination is entirely removed
as long as the composition of the portfolio remains unchanged. We refer to this approach as demo-
graphic parity corrected regression tree (DPTree) to emphasize that trees are made such that they
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satisfy demographic parity with respect to a binary protected variable. An extension to ensemble
models allows us to introduce demographic parity corrected random forest (DPForest) built from
DPTrees.

The present paper does not innovate in terms of fairness concepts, as demographic parity is a
classical notion. Its contribution is a practical way to enforce demographic parity with tree-based
machine learning methods, in a situation where the actuary has decided that demographic parity
was the right fairness notion for the situation under consideration.

The remainder of this paper is organized as follows. Section 2 formalizes discrimination issues
in insurance premiums. Section 3 describes the newly proposed DPTree approach, as well as the
extension to random forests DPForest. Section 4 illustrates our new approach using motor insur-
ance data. The final Section 5 briefly summarizes our main findings and concludes the paper with
a discussion.

2. Demographic parity

Consider a claim response Y and a set of non-discriminatory features Xj, ..., Xp gathered in
the random vector X as well as a binary protected variable D. In this paper, we are interested in
policyholder’s gender D, supposed to take values in {0, 1}. The random vector (X, D) gathers all
features at the insurer’s disposal.

The dependence structure inside the random vector (Y, X, D) is exploited for extracting
information about the expected response Y contained in (X, D). Without worrying about discrim-
inatory features, the pure premium would be the conditional expectation (X, D) =E[Y|X, D].
The latter is called the best-estimate price (BEP) by Lindholm et al. (2022). Removing the
protected variable D from the analysis means that the resulting premium is the conditional expec-
tation pu(X) =E[Y]|X]. The latter is called the unawareness price and is further considered in
Section 4.4.1.

Classical group-fairness criteria include independence, separation, and sufficiency. See e.g.
Corbett et al. (2017), Barocas et al. (2023), Steinberg et al. (2020), Caton and Haas (2020), and
Charpentier (2022) for a discussion. In the literature, group-fairness criteria are often stated
either with the model’s score or with the model’s predictions. Working with regression trees,
model’s scores are equivalent to model’s predictions, so that we only mention model’s predictions
throughout this text to avoid any confusion.

Let 7£(X) denote the model’s prediction for the expected claim response. The independence
criterion focuses on the independence between the model’s predictions 7i(X) and the protected
variable D. This is often referred to as demographic parity, as formally stated next.

Definition 2.1 (Demographic parity). A predictor (X) satisfies demographic parity if (1(X) and
D are mutually independent.

Notice that Definition 2.1 does not require X and D to be independent, only that the candidate
pure premiums (X) are independent from D. This means that the distribution of f(X) must
remain the same for male and female policyholders. Therefore, the knowledge of the premium
1£(X) charged to a policyholder does not bring any information about his or her gender. Denoting
as Fy the distribution function of Z(X) given D =0 and as F; the distribution function of Z(X)
given D = 1, we thus see that

Demographic parity < Fy = Fj.

Equality of the distribution functions can be formally tested using Kolmogorov-Smirnov proce-
dure, for instance.

Let us mention that the relevance of demographic parity as group fairness notion in insur-
ance has been questioned by Baumann and Loi (2023). As pointed out by these authors in the
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introduction to their paper, there is no consensus about the fairness criterion and different con-
texts may call for different criteria. Baumann and Loi (2023) then specify that their analysis
assumes that insurers implement chance solidarity and that there is no need for risk solidar-
ity. In other words, premium transfers from over-priced low risks to under-priced high risks
are prohibited. This point of view thus conflicts with the situation considered in the present
paper, where it is assumed that the use of a risk factor is prohibited, which necessarily results
in risk solidarity, or premium transfers. The equal treatment despite potentially different risk
enforced in the EU in relation to gender is referred to by Baumann and Loi (2023) as another
approach.

While we agree with the analysis conducted by these authors and share their conclusion about
the suitability of sufficiency, or well-calibration, as fairness condition in a context where “chance
solidarity, and no other form of solidarity is meant to be achieved” (Baumann and Loi, 2023, page
45, bottom), this is not the context of the present study where risk solidarity automatically results
from equal treatment despite different risk. The reason why Baumann and Loi (2023) rule out
demographic parity, as stated in the second paragraph of Section 3.3.1 in their paper, does not
apply here since risk solidarity is present.

Notice that the definition of demographic parity adopted in this paper differs from the one
stated in equation (3) of Baumann and Loi (2023). We consider here the stronger indepen-
dence condition corresponding to Definition 8.3 in Charpentier (2024). This does not modify
the reasoning held in the preceding paragraphs, showing that demographic parity may be a desir-
able property under equal treatment despite different risk and that the latter requirement rules
out well-calibration. As another example of proper use of demographic parity in an insurance
context, we refer to Frohlich and Williamson (2024), who consider the independence condi-
tion retained in the present paper in their Definition 4.1 with “having migrant background”
as sensitive feature D. There is thus no contradiction between the interesting study conducted
by Baumann and Loi (2023) and the one in the present paper, which just applies to different
contexts.

3. Demographic parity corrected regression tree
3.1 Regression tree

Let x be the feature space spanned by the non-discriminatory features. Regression trees recur-
sively partition the entire feature space x into a set of disjoint subsets { x:};c through successive
binary splits, where £ denotes the set of terminal nodes.

The database D records observations of the form (y;, x;, d;) for a large number of cases i. It is
divided into a train set D**31% and a validation set D"311¢, that is, D = D**3i% U D314 The train
set D**21% g jtself divided into a training set D**2171%€ and a testing set D518, that is, D**210 =
ptraining |y ptesting Hepceforth,i=1,. .., n refers to the cases included in Dtr2ining

Let x; denote the subset of the feature space x corresponding to node ¢, meaning that an obser-
vation i belongs to node ¢ if x; € x;. Let s be a candidate split for node t. The candidate split s
generates two child nodes, denoted as tf) and tl(;). More precisely, tI(_S) and tg) are the left and right
child nodes of t resulting from split s. Let x £ and x £ denote the subsets of the feature space

x corresponding to nodes t](j) and tl(zs), respectively. By construction, we have x; = x Ho) U x HOR
L R

The optimal split s; at node ¢ is obtained by minimizing a given loss function L, estimated on
p p Y gag
prraining gyer the set of candidate splits S;. Formally,

s¢ = arg min Z L(yi,)_/t(Ls)>+ Z L(yi’}_’tfj)) , (3.1)

SES; iixiEXt(s) i:xiext@
L R
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n

Figure 1. Regression tree “stump” with only one node and two leaves.

where y ) andy ) denote the average response, respectively, in the left and right candidate nodes.
L R

Often in insurance applications, the loss function L corresponds to the deviance associated with a
distribution in the exponential dispersion family with the same support as Y.

Once the optimal split has been found at a node ¢, the feature space x; is divided into two dis-
joint subsets xy, (left node) and xy, (right node). We denote by y,, and y,, the associated average
response, respectively, in the left and right nodes.

At the end of the partitioning process, the regression tree produces predictions of the form

atx) =Y yllxe xl, (32)
tel

where 1[ -] is the indicator function (equal to 1 if the event appearing within the brackets is
realized and to 0 otherwise). In words, 7i(x) is the average response y, in the terminal leaf ¢
corresponding to the risk profile x.

3.2 Demographic parity corrected regression tree

As the tree partitions x into subsets x;, demographic parity holds if the distribution of D remains
the same given that X € x; for all t. This is the essence of the DPTree, where any split must result
in subgroups where the proportion of cases with D = 0 remains equal to the one observed in the
root node. The next example justifies this approach for the simple “stump” tree, which is known
to be the basic building block of all trees.

Example 3.1. Consider the simple one-split regression tree depicted in Figure 1, often referred to
as a stump. The unique split corresponds to the one which leads to the maximum loss function
reduction on Dt*218188 Ty fix the ideas, we suppose in this example that this split is based on the
numerical feature X and a threshold value of 30, say. The observations in the root node are then
divided according to the decision rule X < 30 versus X > 30.

Let n; be the number of observations in the left node and n; in the right node, as shown in
Figure 1. Also, denote as n:o and ny 1, t € {0, 1, 2}, the number of observations in the root node
(t=0), in left node (¢t =1) and in right node (t =2) with protected variable D=0 and D=1,
respectively. In the left leaf, the estimate of the unawareness price is given by

ni1
X <30)= s
( )= yl()n "‘)’11n1

where y, , — Lzl ’Z<30 4= and 7 V1= =1 The corresponding estimate of the

dlscnmmatlon free price maintaining the same proportlon as in the root node writes

oy 1y,]1[x,<30d

— Moy
*(X<30 — +
w(X=30)=y, 0 LA i
The equality of the estimates of the unawareness price and discrimination-free price holds if
n n
e (3.3)
n n
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If we follow the same reasoning for the right leaf, we conclude that the estimates of the
unawareness price and discrimination-free price coincide if
n n
20 0 (3.4)
ny n
As ny o =ngp — n1,0 and np =n — np, conditions (3.3) and (3.4) are in fact equivalent. Notice that
we have silently assumed that n; > 0 and 1, > 0 (one leaf cannot be empty).

Example 3.1 shows that constraining the proportion of observations with D = 0 in the left node to
be equal to the proportion of observations with D = 0 in the root node is enough to characterize
a DPTree. In general, a DPTree can thus be obtained by preserving the proportion of cases with
D = 0 in the whole portfolio along each left node of the regression tree. This leads to the following
definition.

Definition 3.2 (DPTree). Let py, = w be the proportion of cases with D=0 in the root
node ty. The DPTree is built by reducing the set of candidate splits to

St(O) ={ses |Pt<Ls) =Pt}
with
1o o Yimi Llxi e Xy di =0

p (s) = =
o Yoy Lxi € xo]
L L

. . ; ()
where o 0 (resp. ntﬁg),o) denotes the number of cases in the left (resp. right) candidate node t;

(resp. tl(%S)) with D = 0. The optimal split is then determined according to (3.1) by replacing the set S;
of candidate splits with St(o).

By ensuring that in every node, the proportion of cases with D = 0 is the same as in the root node,
the resulting price produced by the regression tree is free of direct and indirect discrimination and

is unbiased. By construction, the resulting predictions fulfill demographic parity from Definition
2.1. Indeed, for j =0, 1, we have

Fj(u) = P[ix(X) < u|D =]
= Z Plx(X) <u, X € x/|D=}]
tel

= Y PIAX) <ulX € xi, D=jIPIX € xs|D=}].
tel

Moreover, {ii(X)|X € xi, D=j} =y, = {(X)|X € x;} and

PID=jIX € x:]P[X € x:]

PX € D=/l = D

Hence, since by construction, @[D =jlXexl= @[D =j] on the training set, it comes

Fw) =) PlaX) <ulXe xPX € x]
tel
= P[A(X) < ul,

so that ﬁo(u) =/151(u).
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Strictly imposing the DPTree constraint may weaken the predictive power of the regression
tree. This is why we propose to consider a margin m on this constraint, allowing for moderate
departures to improve the DPTree performances.

Definition 3.3 (DPTree(m)). The DPTree(m) is obtained by allowing for a margin m such that the
set of candidate splits becomes

5" ={seS | I —ppl=m Ipy—ppl<m}.
The optimal split stm) is then determined according to (3.1) by replacing the set Sy of candidate splits
with St(m).
The margin m in Definition 3.3 is generally expressed in relative terms, as
m=c¢ep;, withe=0,1%,2%,...
Henceforth, m and ¢ will be used interchangeably. Clearly,
sV csmcs =85

and DPTree=DPTree(0). Thus, St(o) corresponds to the constrained set of candidate splits with

no margin (m = 0), while St(l) corresponds to unconstrained regression trees. Let us now come
back to Example 3.1 to see how the constraint is relaxed when growing regression trees.

Example 3.4 (Example 3.1 Ctd). When the margin m is allowed, equality is weakened into the
following inequality:

nLo Moo

ny n

<m = |non — nopn| < mnn. (3.5)

Similarly,
[naon — noona| < mnon & |(no — ni0)n — nop(n — ny)| < m(n — ny)n,
resulting in

[non — noont| < mn(n — ny). (3.6)

Example 3.4 shows that inequality (3.6) is different from inequality (3.5), so the margin constraint
should be respected in each node of the tree and not only in left nodes. The DPTree(m) approach
has been implemented in Python following the approach of Breiman et al. (1984). The following
algorithm describes the optimal split research at a node t of the DPTree(m):

3.3 Demographic parity corrected ensemble methods

As mentioned in Denuit et al. (2020), regression trees often suffer from instability. For instance,
the tree may sometimes exhibit a completely different structure in case of only slight modification
of the training set D**218188 Ensemble methods aim to improve stability by averaging predictions
obtained from trees resulting from perturbed training set. The perturbations of D**2181n8 are
obtained from resampling and random selection of features used in the splitting process of each
individual tree. Precisely, consider an ensemble of B different training sets denoted as Dt*2iring.1,
ptraining,2 ~ ptraining,B The predictions obtained from the random forest are expressed as

B
~ 1 —~
Mgtraining (x) = E //LDtraining,b (x)

where each [ ptraining,b(x) is of the form (3.2).

https://doi.org/10.1017/51748499525100092 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499525100092

Annals of Actuarial Science 9

Algorithm 1. DPTree(m) algorithm at node ¢

Input: (x;,y;,d;) € 2**31718 margin m.
Output: Optimal split s; at node ¢.

S // Set of candidates splits %

Xt // Feature space at node t
T 11d;=0] . .

Pty = 55— // Proportion D=0 in root node

min_loss — +oo;

for each s in .%; do

Xe=X,0UX,e; // Split observations between candidate left
L R

and right nodes

B nzf),o 3 Zflzlﬂ[xiE)([]ES),di:O] ' ' B .
Py = o = Z?zll[xieltis)l ; // Proportion D=0 in left node
”tl(;)_o Z?=11[xi€)([}(§),di=0] . . .
p[}(;) = o = ST Tmer o] ; // Proportion D=0 in right node

=

loss— Y L(yi’?tf))"' Y L(yi’?tg))

DX €Y (s) DX €Y (s)
L R

ifloss<min_lossand |py, —p.w|<mand |p; —p.v| < m then
L R

min_loss — loss;
St — S

return s;;

The approach leading to DPTree() described in Section 3.2 can be applied to any tree in the
forest. An ensemble of discrimination-free regression trees can thus be obtained, depending on
the number of trees B included in the ensemble, from the sampling rate s used to generate the B
random training sets, and the number of features k < p randomly selected at each node.

The predictions of the discrimination-free random forest are given by

B
L g () = 1 3 A i o)

Dtraining - B Dtraining,b
b=1

wherc.e T;Z%'?ramng,b(x) denotes the DPTree(m) prediction for risk profile x on the training set
ptraining,b When the number of features k is equal to the number of explanatory variables p, the
random forest is equivalent to the bagging model. This approach is referred to as DPForest(m).

4. Numerical application
4.1 Database

The approach proposed in this paper is illustrated on a Belgian motor third-party liability port-
folio, which comprises 234, 178 individual policies observed over one year. For each policy i,
p = 14 non-discriminatory features are available. The response variable Y; represents the num-
ber of reported claims for policy i. Gender is the protected variable D, with D =0 for men and
D=1 for women. The data set is partitioned into a training set D* 318188 composed of 64% of
the observations, a testing set D*®S*188 with 16% of the observations, and a validation set D’311¢
with the 20% remaining observations. Table 1 provides the summary statistics of the numerical
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Table 1. Summary statistics of the numerical features in Dt*212i%€: power of the vehicle, weight of the vehi-
cle, price of the vehicle, age of the vehicle, number of drivers mentioned in the contract, age of the main
driver, and seniority of the contract

Men Women

Features mean std mean std

veh_power 80.07 30.55 69.16 24.55
veh_weight 1907.46 901.33 1752.03 854.60
Veh_value [ 2077594 e 951104 e 1715553 S 773330
vehiage S 1005 R 499 [ 994 F 432
d'ri'\,v_vﬁum'be} S 121 S 050 S 125 [ ,.0;.55,
driv_m_age 49.94 16.05 48.47 15.92
Cont_semo”ty e 577 [ 903 e 543 e 312

features on the training set. Vehicle characteristics (power, weight, and value) tend to be higher
for men than for women, whereas other variables remain similar for each gender. Tables 2-3 dis-
play the conditional distributions of the categorical features given gender. Table 2 shows little
differences in terms of vehicle use (with more professional users among men). Premium cars (like
Mercedes, BMW, Audi, or Volvo) are more frequent for men. Considering Table 3, we see some
differences between men and women with respect to gasoil and petrol as fuel oils, as well as for
monthly payments. These summary statistics suggest some degree of association between avail-
able features and gender, producing the kind of indirect discrimination discussed in the preceding
sections.

4.2 Learning model

We assume that the observations (Y, X;, D;) are independent and identically distributed, sampled
from the population of drivers in the portfolio. The expected number of claims is learned by
assuming that, given X; = x; and D; =d;, Y; is Poisson distributed with mean p(x;), so that we
adopt the Poisson deviance as loss function.

The procedure can be described as follows. In accordance with Section 4.7 in Denuit et al.
(2020), where a similar data set has been studied, we set B to 1000 (this choice is supported by
Figure 4.3 in that book) and check afterwards on the testing set that this value is large enough by
considering predictive accuracy of the forest in function of the number of its constituent trees.
Trees are grown on D'r318ing and Presting jq yiged to fine-tune hyperparameters of constrained
random forests with different margins m. Precisely, the hyperparameters are the maximum inter-
action depth (henceforth denoted as id) and the number of features randomly selected at each
node (denoted as k). We consider models M (m, id, k) or M(e, id, k) with

id € {1,2, 3,4, 5}
ke{l,2,...10}

for increasing margins. Precisely, we consider regular random forests corresponding to m = 1.
Then, we start from m =0 and gradually increase the margin as long as the null assumption
Fo=F) is not rejected when tested on D24, To this end, we use the Kolmogorov-Smirnov
distribution-free test for differences in two continuous distribution functions, implemented in
the R function gKolSmirnLSA. All margins m for which the null is not rejected at confidence level
of 95% are said to be tolerable in the remainder of the text.

For each tolerable relative margin ¢, best models are listed in Table 4 together with the null
model (same prediction for every policy). Increasing the margin leads to lower out-of-sample
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Table 2. Categorical features with associated levels and proportions according to gender on Dt*2iring; yse
of the vehicle, ADAS (Advanced Driver Assistance Systems) equipped vehicle, and make of the vehicle

Features Modalities Prop. man (%) Prop. woman (%)

veh_use personal 84 73 % 85.25%
It persvonal&commme S 129% e e 1291% _—
professional 2.37% 1.86 %
veh_adasno 9921%........................ 9948%.....
yeso79%052%
\/eh_make vo[kswagen v.v.”.lzo%.v. v.vlz 18%,.”
opel 10.21 % 10.86 %
cmoen 883%........... .................946%.... n
peugeOt,.. ..,............,..814%... .....v...........9430/0. .
. o ,.v.v.8140/o.v.,.v.,.v ,.v.,.v.v.v.v.v.v929%,”,.,
ford 7.08 % 7.89 %
....mercec'es ......7750/0........... .................487%.... n
. bmw ...,............,..6730/0........,...........3760/0...
toyOta ,.v.v.4540/o.v.,.v.,.v ,.v.,.v.v.v.v.v.v621%,”,.,
audi 4.82 % 3.16 %
,..VOIVO v..v..v..v.......v...v..237o/o..........v..v.....,..164%..v..,
,.SkOda.H.v,.v,.v.,.v.,..m.ﬂ.lm%.,..,..v.v.vv.v.,.v.,.v.,l'gso/o.vv.v
seat 1.79% 1.66 %
daua ..164%... ...147%....
mssan 12%162%
k|a118%122%
hyundai 0.92% 1.07 %
. m|n| e ..053 %... e ..144%.. _—
m|tsub|5h| e ”032 %.” e 0_3% S—
'a[faromeo”m B ,.Y.H.ogg% e 059% ,,,,,,
mazda 0.72% 0.87 %
[androvef ..079%... ....044%....
chevrolet e ..057%.,. e '073%" ]
suzuk. e v.v.,v.os% e vo_790v/(; ,,,,,,
other 0.61 % 0.34%
honda ..054%... ....045%....
. porsche ..047%.,. ,..018%”,.
”snﬁartv e vozg% e v042%
lar‘1ciab o o >018% - ‘ 0.34%
Jaguar ..026%... ...013%....
. chrysler ..02% ,..015%”,.
Hsa'abv e v018% e vo,14%
lexus - o >012% - ‘ 006%
Other |uxe e ..009 %... e .002 %.. _—
e ..0.01%.,. e 00%
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Table 3. Categorical features with associated levels and proportions according to gender on Dtrainine;
parking in a garage, fuel of the vehicle, mileage limit specified in the policy, and premium payment

Features Modalities Prop. man (%) Prop. woman (%)
veh_garage no 92.28 % 93.09 %
yes 772% 691%
veh_fuel gasoil 65.85 % 49.52 %
e Hb‘é{r‘dl ..... R 3358% e 5006% .
.éa.s.... R 033% 026%
electricity 0.02% 0.02 %
Other o cecceeccnen 001% 00%
.\)e.h;rhi.[éa.gé;lih{.it ............. no ................... 8.4.1.4.% ................... 3157 0}0. .
e yes ,,,,, . 1586% T 1843%
cont_paysplit annual 45.82 % 44.24 %
et e e e eecccepeeesseseccecceeeees monthly R 3007% 3659%
e Biéﬁn.u.a[ ................ 1.4.1.7.0/,[.) ................... 1049 0}0. .
quartely 992% T 866%
other 0.02% 0.02 %

Table 4. Best random forests and associated O0S deviances (00S dev) computed on DVvalid for different
relative margins € together with the OOS deviance of the null model and the normalized deviances (norm.
dev). The null hypothesis Hy:Fg = F; supporting demographic parity is rejected when J* > 1.358

Parameters

e/m id k 00S dev norm. dev J*

€ =0.01 4 8 0.355880 39.52% 1.739
. 6 :003 S 5 . . 6 . . 0355557 S 2560% S 2561
€ =0.04 5 5 0.355393 18.58% 1.100
€=0.05 5 5 0355336  1609%  1.063
. m: e 5 . 5 . 0354962 R 000% S 7092
BE 5 6 0.354830 —5.64% 6.259
N‘uuhﬁod‘elu R S R 0357285 [ ..16.0%.. e

(00S) deviance on D314, as expected since the demographic parity constraint becomes less
binding. Table 4 also displays the normalized deviance, defined as the difference between the
OOS deviance and the OOS deviance of DPForest(m = 1) divided by the difference between
the OOS deviance of the null model and the OOS deviance of DPForest(m = 1), so that the
normalized deviance of the null model is 1 and the one of DPForest(m = 1) is 0. We can see
from Table 4 that the values of the test statistic J* first lead to reject demographic parity up to
€ =0.03 before falling below the critical level for ¢ = 0.04 and 0.05. This may seem surprising
since decreasing ¢ strengthens the demographic parity constraint, which should result in a smaller
J*. However, this is not the case here because the optimal choices of id and k also vary with ¢. The
null assumption supporting demographic parity is not rejected for £ =0.04 and 0.05. The lat-
ter appears to be the largest tolerable relative margin, so we continue the analysis with a relative
margin of 5%.
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Figure 2. In-sample deviance (left panel) and out-of-sample deviance on D*®sti%¢ (right panel) for each best model listed in
Table 4.

The evolution of in-sample and OOS deviances according to the number of trees in the random
forest is visible in Figure 2. All deviances stabilize when forests include about 400 trees and almost
flatten when more trees are added, so that the choice B = 1000 appears to be large enough for the
data set under consideration.

4.3 Impact of the demographic parity constraint

Figure 3 displays pairs of predicted claim frequencies for each individual for the largest tolerable
relative margin & = 5%, along with those for the unconstrained model corresponding to m = 1.
We see there that the majority of pairs are located near the 45-degree line of equality. The
constrained random forest creates two groups: the first one, with a majority of women, lies above
the main diagonal and is therefore overpriced compared to the unconstrained random forest,
while the second group, with a majority of men, lies below the main diagonal and is therefore
underpriced.

Feature importance is displayed in Figure 4 for both constrained and unconstrained random
forests. The results are relatively similar between both models.

4.4 Comparison of DPForests with alternative methods

4.4.1 Discrimination-free insurance premiums

Often, insurance companies just remove the protected variable D considered to be discriminatory
from the pricing process. This means that the resulting premium is the conditional expectation
u(X) = E[Y|X]. The latter is called the unawareness price. In our setting, the unawareness price
writes

w(X) =E[Y|X] =E[Y|X, D=0]P[D =0|X] + E[Y|X, D= 1]P[D = 1|X].

Thus, 1(X) is a weighted average of the BEPs E[Y|X, D= 0] and E[Y|X, D = 1], but the weights
entering the calculation correlate with X, and thus possibly with the protected variable D.

The simple strategy leading to unawareness prices does not prevent indirect discrimination if
there exists a dependence between D and X, that is, if the distribution of X given D =0 differs
from the distribution of X given D = 1. This generally induces dependence between ((X) and D
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Figure 3. Pairs of predictions for unconstrained random forest (m = 1) and constrained random forest with the largest
tolerable relative margin & = 5% on DValid,

so that the protected variable implicitly enters the calculation of the unawareness price, resulting
in indirect discrimination.

In order to remove indirect discrimination, Lindholm et al. (2022) suggested to derive the
discrimination-free price from a weighted average using arbitrary weights wy and w; =1 — wy
both in the interval [0, 1]. The discrimination-free price is thus given by

w*(X) =E[Y|X, D=0]wp + E[Y|X, D= 1]w.

Lindholm et al. (2022) proved that the discrimination-free price is not unbiased in the sense
that E[u*(X)] #E[Y] in general. Equality only holds in the special case where D and X are
independent and the weights reflect the gender balance inside the portfolio, that is, wy = P[D = 0].

4.4.2 Wasserstein barycenters

Charpentier et al. (2023) suggested to restore the equality in distribution of 71(X) given D=0
and D = 1 by using Wasserstein barycenters. Precisely, these authors define a discrimination-free
predictor as

flw(x, D=0) =P[D = 0]fi(x, D=0) + P[D = 1]F; " o Fy(fi(x, D=0))
fiw(x, D=1)=P[D=0]F;" o Fy(fi(x, D=1)) + P[D = 1]i(x, D= 1).

It corresponds to averaging the model’s predictions using the same quantile for both conditional
distributions of the model given the value of the protected variable.
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Figure 4. Feature importance for the unconstrained random forest (corresponding to m = 1) in the bottom panel and for the constrained random forest with the largest tolerable relative
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Table 5. Best and constrained random forests and associated 00S deviances (00S dev) on Dvalid for the
largest tolerable relative margins € =0.05 together with the OOS deviance obtained with discrimination-
free prices (DFP) and Wasserstein barycenters correction (WBC). The null hypothesis Hy:Fo = F1 supporting
demographic parity is rejected when J* > 1.358

Parameters
€ id k 00S dev norm. dev J*
0.05 5 5 0.355336 16.09% 1.063
BE 5 6 0.354830 —5.64% 6. 259
s e ._5 o
e 0355012..” R 217%. e
T
a1
s .

0.08

0.07

[l pee

0.05

0.04

0.040 D.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080
Fxhincorsraned D uncons ramed

Figure 5. Pairs of predictions on Dva'id for unconstrained random forest (m = 1) and those obtained with Wasserstein
barycenters corrections in the left panel. Corresponding pairs with discrimination-free prices in the right panel.

4.4.3 Comparison

Table 5 compares the performances of the different models on the validation set, while Figure 5
displays the corresponding predictions. Remember that the normalized deviance percentages are
expressed with respect to the unconstrained random forest model (m =1). In terms of OOS
deviance on DValid we see in Table 5 that discrimination-free prices achieve the same OOS
deviance as best estimates, despite their respective predictions differing (as will be seen below).
Wasserstein barycenters correction and DPForest (0.05) exhibit higher OOS deviances as well as
markedly different predictions. The 16.09% increase in OOS deviance appears to be the price to
pay to achieve fairness in terms of demographic parity using constrained random forests. In terms
of OOS deviance, DPForest is thus inferior to its competitors considered in this section. We nev-
ertheless show next that the way predictions are modified may be preferable and that DPForest is
the only approach fulfilling demographic parity with the data set under consideration.

The pairs of predictions between the unconstrained random forest and the Wasserstein
barycenters correction are displayed in Figure 5. We observe that Wasserstein barycenters cor-
rections overcharge (resp. undercharge) women (resp. men). Wasserstein barycenters corrections
push predictions for men below the main diagonal and those for women above it. This is similar to
DPForest(0.05) shown in Figure 3, except that this effect is more nuanced: the majority of women
move in this way, but not all, and similarly for men.
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Figure 6. Empirical distribution functions Fg and Fy of (X) given D =0 and D = 1, respectively, computed on D214 for the
unconstrained random forest (m = 1, left), the constrained random forest (¢ = 0.05, middle left), the Wasserstein barycenters
corrections (middle right), and the discrimination-free price (right).

Considering discrimination-free prices, we see that the predictions for women now tend to be
located below the main diagonal.

The constrained random forest appears to be the only one respecting the demographic parity
constraint on the data set under consideration. This is reflected in the empirical cumulative distri-
bution functions of Figure 6. The reported Kolmogorov-Smirnov statistic /* decreases from 7.092
to 6.434 when moving from the unconstrained DPForest(m = 1) to discrimination-free prices
and to 2.210 when moving to the Wasserstein barycenters corrections. The minimum 1.063 is
obtained with the constrained random forest DPForest(0.05). The latter is the only method for
which demographic parity is not rejected.

5. Discussion

The DPTree approach proposed in this paper has been implemented in Python. Note that the
libraries Rpart and Scikit-learn, often used by actuaries to build unconstrained regression
trees, make use of native C for speeding up the best split research. The extension to DPForest,
including DPTrees, has been implemented in Python as well. We aim to make use of native C for
DPTree and DPForest in order to speed up the current computation time. This is currently under
development. To the best of our knowledge, this is the first attempt to correct discrimination
within the regression trees framework. In the proposed examples, Poisson deviance is the objec-
tive function to be minimized, as is typically the case when modeling expected claim frequency in
actuarial sciences. Extensions to other deviance functions are straightforward. The main advan-
tage of the methodology developed in this paper is that the margin parameter allows the actuary
to define the desired degree of fairness.

The approach proposed in this paper has been compared with the alternative methods devel-
oped in Lindholm et al. (2022) and Charpentier ef al. (2023). In all cases, reestablishing fairness has
a cost for some risk profiles, especially when considering a small margin constraint in DPForest,
but also has an impact on the model performance. Insurance companies must thus determine the
optimal trade-off between accuracy and fairness.

Adverse selection certainly remains an issue. See e.g Thomas (2012) and Huang and Shimao
(2025). Any change in the composition of the portfolio may induce indirect discrimination
because gender balance does no more hold within risk classes, producing correlation between
(X) and D. Since premiums resulting from DPTree and DPForest will be attractive for some risk
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profiles and not for others, we may expect that the introduction of the demographic parity cor-
rected premiums by a single insurer leads to a change in the composition of its portfolio. See also
Coté et al. (2024b) for a discussion of portfolio compared to market. The same phenomenon is
likely to occur if insurers resort to the DPForest approach but learned on the basis of different sets
of features. Hence, it seems to be extremely difficult to reach truly discrimination-free insurance
pricing.

Among the strategies listed in Frees and Huang (2021), allowing insurers to use only a list of
approved variables may be a good compromise, ensuring transparency and a reasonable degree
of fairness. As documented in that paper, this is the strategy taken in the US individual health
insurance market under the Affordable Care Act. Specifically, insurers may vary premium rates
based on only four factors: (1) whether a plan covers an individual or family, (2) geographic area,
(3) age, and (4) smoking status. If the regulator determines a limited number of rating factors
and insurers use techniques as those derived in this paper or in Charpentier et al. (2023), then we
may expect to protect consumers by ensuring high transparency and charge discrimination-free
premiums.
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