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Abstract. We define a family of discontinuous maps on the circle, called Bowen–Series-like
maps, for geometric presentations of surface groups. The family has 2N parameters, where
2N is the number of generators of the presentation. We prove that all maps in the family
have the same topological entropy, which coincides with the volume entropy of the group
presentation. This approach allows a simple algorithmic computation of the volume
entropy from the presentation only, using the Milnor–Thurston theory for one-dimensional
maps.
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1. Introduction
Let � be a closed compact surface of rank larger than 2 and let P = 〈X|R〉 be a
presentation of its fundamental group G := π1(�). Since the rank is larger than 2,
the surface � is hyperbolic in the geometrical sense, G is a hyperbolic group in the
sense of Gromov [18, 20] and its boundary ∂G is homeomorphic to the circle S1. We
consider the Cayley graph of the group presentation Cay1(G, P) and the Cayley 2-complex
Cay2(G, P). The presentation P is called geometric if Cay2(G, P) is homeomorphic to a
plane. In particular, Cay1(G, P) is a planar graph. This property is satisfied by the classical
presentations of any surface group (see for instance [30]).
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2 L. Alsedà et al

For a hyperbolic group G with a presentation P = 〈X|R〉, let X be the generating set,
defined as the set of generators of the presentation and their inverses (by abuse of language,
sometimes we will use the term generator to refer to any element of X ). For any g ∈ G,
the length of g, denoted by length(g), is the number of symbols of a minimal word in the
alphabet X representing g. It coincides with the number of edges in any geodesic segment
(shortest path) in the Cayley graph Cay1(G, P) connecting the identity element of G to the
vertex g. The growth function

σm := Card{g ∈ G : length(g) = m}, (1)

which is also the number of vertices at distance m from the identity in the Cayley graph,
plays a central role in geometric group theory [15, 17, 19]. Its exponential growth rate is
called the volume entropy, defined as

hvol(G, P) = lim
m→∞

1
m

log(σm). (2)

However, a geometric presentation P of a surface group G allows to define a dynamical
system given by a piecewise homeomorphism of the circle �P : S1 → S1, in the sense that
S1 has a finite partition by intervals and �P , restricted to each interval of the partition, is
a homeomorphism onto its image [21]. The construction of the map �P from a geometric
presentation P is based on an idea initially due to Bowen [11] and Bowen and Series [12].
The dynamical complexity of this map can be measured by its topological entropy, a
notion first introduced in [4, 10] for continuous maps of compact metric spaces that
can be extended to piecewise monotone and discontinuous maps of the circle [25]. The
topological entropy of a map f will be denoted by htop(f ).

Recall that the maps defined in [11, 12] and in [21] satisfy several important
properties.
• The maps are Markov and expanding.
• The maps and the group G are orbit equivalent. For this statement, the group G

is viewed as acting on its Gromov boundary ∂G = S1 by homeomorphisms and is
considered as a discrete subgroup of Homeo(S1).

• For the particular map �P defined in [21], the topological entropy htop(�P ) of the
map and the volume entropy hvol(G, P) of the group presentation are equal.

In the original construction of Bowen and Series [12], a map is defined from the
group G, considered as a Fuchsian group, via a particular action of G on the hyperbolic
plane H

2 and the restriction of this action to the boundary ∂H2 = S1. In this context, the
restriction of each group element to S1 is well known to be a Möbius diffeomorphism and
the Bowen–Series maps are piecewise Möbius diffeomorphisms. A similar construction,
with the same ingredients but with a different class of action, was obtained several years
later by Adler and Flato [3] and much more recently in [1, 2]. In these two works,
a parametric family of piecewise Möbius diffeomorphisms is studied from an entropy
point of view, both measure theoretic and topological. The actions considered in these
constructions are quite interesting; in particular, they are directly related to the classical
Teichmüller space of the underlying surface �, when G is abstractly G = π1(�) (see [29]).
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Entropy stability for Bowen–Series-like maps 3

From a geometric group theory point of view, these actions also define some particular
geometric presentations of the groups G = π1(�).

The Bowen–Series maps have also been of central importance recently in another
context, connected with complex dynamics and geometry, for particular surfaces: the
punctured spheres (see [26, 27]). The orbit equivalence property, satisfied by the classical
Bowen–Series maps, is central in these works.

In this paper, we define, for a given geometric presentation P, a family of
Bowen–Series-like maps �� indexed by a set of 2N parameters �, where N is the number
of generators in P. The map �P above is a particular member of this much wider family.
We prove then that the topological entropy of any map in the family is equal to the volume
entropy (2) of the presentation. As we will see, this result has a strong computational
implication: the volume entropy of any given geometric presentation P becomes easily
computable by a purely combinatorial procedure. To define the family of maps ��, let us
recall some known facts.

The boundary of a hyperbolic geodesic metric space is a topological, metric space [20].
Any point in the boundary is an equivalence class of geodesic rays that remain at a uniform
bounded distance from each of the others. For finitely generated groups, the metric space
is a Cayley graph and the hyperbolic property, as well as the topological boundary, does
not depend on the presentation. For our group G with a given presentation, a geodesic ray
starting at IdG is described as an infinite word W in the generating set X such that any finite
subword of W is geodesic. We denote by [ζ ] a particular expression of a geodesic ray
representing the point ζ ∈ ∂G, and by [ζ ]m the initial word of length m ≥ 1 of the infinite
word [ζ ]. For x ∈ X , the cylinder set (of length one) Cx is the subset of ∂G defined by

Cx = {ζ ∈ ∂G : there exists [ζ ] with [ζ ]1 = x}. (3)

This notion of cylinder set is naturally extended to all lengths. If g ∈ G is an element of
length m ≥ 1 and {g} is the set of all geodesic expressions of g, we denote

Cg = {ζ ∈ ∂G : there exists [ζ ] with [ζ ]m ∈ {g}}. (4)

In combinatorial dynamics, a cylinder set, say of one letter, is the set of infinite words
starting with that letter. Here, the infinite word is replaced by the notion of geodesic ray
and the set of infinite words is replaced by the boundary of the hyperbolic space. The main
difference, if the space is not a tree, is that many geodesic rays might define the same point
on the boundary. Therefore, cylinder sets intersect in general. This notion of cylinder sets
for hyperbolic spaces is sometimes called ‘shadow’ in the geometry literature [13].

In our particular situation of a Cayley graph for a geometric presentation of a surface
group, the cylinder sets satisfy particular properties [21]:
(I) Cx is a connected interval of S1 = ∂G for each generator x ∈ X ;

(II) Cx ∩ Cy 	= ∅ if and only if x and y are two adjacent generators, with respect to
the cyclic ordering induced by the planarity of the Cayley graph Cay1(G, P). In
addition, if this intersection is non-empty, then it is a connected interval.

It is well known that a hyperbolic group acts on its boundary by homeomorphisms.
Here, we obtain that the group G can be seen as a discrete subgroup of Homeo(S1).
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4 L. Alsedà et al

Definition 1. Let � be a closed, compact surface of negative Euler characteristic and let
P be a geometric presentation of G := π1(�). We denote the elements of the generating
set X as x1, x2, . . . , x2N , where the indices are defined modulo 2N (with 1, 2, . . . , 2N

as representatives of the classes modulo 2N) so that xj is adjacent to xj±1. From property
(II) above, there are 2N disjoint intervals

Jj := Cxj−1 ∩ Cxj
⊂ S1.

For each � := (θ1, θ2, . . . , θ2N) ∈ J1 × J2 × · · · × J2N , we consider the intervals
Ij := [θj , θj+1) ⊂ S1 and the map

�� : S1 −→ S1 so that ��(z) = x−1
j (z) if z ∈ Ij . (5)

Such a map is called a Bowen–Series-like map. Each point θi will be called a cutting point
and � will be called a cutting parameter.

The notation x−1
j (z) in Definition 1 stands for the action, by homeomorphism, of the

group element x−1
j on the boundary ∂G = S1. The map �� is, therefore, a piecewise

homeomorphism. More precisely, the intervals Ij define a partition of the space S1 and
��

∣∣
Ij

is a homeomorphism onto its image.
With all these ingredients, we are ready to state the main result of this paper.

THEOREM A. Let � be a closed, compact surface of negative Euler characteristic and
let P be any geometric presentation of G := π1(�). Then, for any cutting parameter
� ∈ J1 × J2 × · · · × J2N , the Bowen–Series-like map �� satisfies:
(a) htop(��) = hvol(G, P) = log(λ), where 1/λ is the smallest root in (0, 1) of an

integer polynomial QP (t) that can be explicitly computed from P;
(b) �� is topologically conjugate to a piecewise affine map �̃� whose slope is constant

for all intervals Ij and is equal to ±λ.

A priori, Theorem A is a surprising result, since the dynamics of two different maps in
the family are quite different; in particular, they are not pairwise topologically conjugate
or even semi-conjugate. For some choices of the parameters �, the map �� satisfies the
Markov property, while for some other choices, the map is not Markov.

In addition, for many geometric presentations (in particular for the classical ones) and
for an open set of parameters �, the corresponding maps �� satisfy the assumptions
of [22], where it is proved that such maps are orbit equivalent to the surface group action
on S1. This implies that for many presentations and many parameters �, two different
maps are orbit equivalent to each other since they are both orbit equivalent to the same
group action. The orbit equivalence is a much weaker relation than the conjugacy and, a
priori, does not preserve the topological entropy. These observations imply that the family
�� shows some surprising stability properties. The question of the orbit equivalence to
the group action for all parameters and all geometric presentations is not considered here.
Some works are in progress on that problem.

Remark 1.1. The map �� is defined by the action of the generators of the group G on some
intervals of the circle, which, as the Gromov boundary of G, is just a topological space.
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Entropy stability for Bowen–Series-like maps 5

After the conjugacy given by Theorem A(b), �̃� is piecewise affine with a constant slope,
the algebraic integer λ. For this new map, the circle, that is, the boundary of the group,
admits a well-defined metric that reflects the growth property of the group presentation.
This is an intriguing property. Recall that for the Bowen–Series maps [12], as well as for
the maps in [1–3], the circle S1 admits a differentiable structure such that those maps
are piecewise-Möbius diffeomorphisms. In our approach, the maps are only piecewise
homeomorphisms and Theorem A(a) is a generalized version of the rigidity result in [2].
Indeed, the particular action considered in that work defines, in our setting, a particular
geometric presentation P of the group G. The equality hvol(G, P) = htop(��) for all �,
which generalizes a previous result in [21], gives a conceptual explanation of the rigidity.
Observe that both results were obtained independently and roughly at the same time.

An interesting part of Theorem A is the computational property stated in part (a).
Since the polynomial invariant of the presentation QP (t) does not depend on the cutting
parameter �, it is possible to choose a particular � for which the Milnor–Thurston
invariants [23] can be easily computed using elementary algebraic operations. The
computation is, in the end, quite ‘simple’ and can be arranged in the form of a purely
combinatorial algorithm that takes as input the presentation of the group and prints out
the polynomial QP (t) and the corresponding volume entropy. The explicit algorithm and
some examples are provided in §9. This algorithm is based on dynamical systems tools and
is, as a consequence, of a completely different nature from the automatic groups approach
[14, 16] (see also [28]), which uses regular languages and finite state automata.

The paper is organized as follows. In §2, we gather the relevant properties of the
family �� by reviewing some known facts from previous works. In §3, we describe a
new ‘tree-like’ structure associated to each intersection interval Ji . This structure defines
some particular cutting parameters θj ∈ Jj , where the map exhibits possibly different
dynamical behaviours. Section 4 is concerned with the geometric description of the set
of all geodesics connecting two vertices of the Cayley graph. In §5, we define, for each
interval Ji , an open subinterval C(Ji) ⊂ Ji that we call central. We show that when the
cutting parameter � is central, that is, θj ∈ C(Jj ) for all j, the dynamics of �� at each
cutting point is specially simple: for some kj , the kj th iterates of �� from the left and
the right coincide at θj . In §6, we define a particular central parameter, which we call
the middle parameter. In §7, we prove, independently of the parameter �, two inequalities
comparing the rates of increase of the two entropy functions, one for the group presentation
and one for the dynamics of ��. This step, together with the use of the middle parameter
and the techniques from the Milnor–Thurston kneading theory, which are summarized in
§8, leads to the proof of Theorem A. Finally, in §9, we fully describe the algorithm that
computes the polynomial invariant QP (t) and give some explicit examples for several
presentations.

2. Review of the Bowen–Series-like maps ��

In this section, we gather some properties, from [21], of geometric presentations for
hyperbolic surface groups and of the maps of type ��. Recall that a presentation
P = 〈X|R〉 of a surface group is called geometric if the Cayley 2-complex Cay2(G, P)
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6 L. Alsedà et al

FIGURE 1. The clockwise labelling of the generating set associated to the cyclic ordering given by Lemma 2.1(a).

is planar. The next result (from [21, Lemma 2.1]) states some elementary consequences of
this planarity property.

LEMMA 2.1. Let G be a co-compact hyperbolic surface group and let P = 〈X|R〉 =
〈g1, . . . , gN |R1, . . . , Rk〉 be a geometric presentation of G. The following conditions
hold.
(a) The set {g±1

1 , g±1
2 , . . . , g±1

N } admits a cyclic ordering that is preserved by the group
action.

(b) There exists a planar fundamental domain �P .
(c) Each generator appears exactly twice (with + or − exponent) in the set of relations R.
(d) Let a, b be a pair of adjacent generators according to the cyclic ordering given by

condition (a). Then, there is exactly one relation Ri such that a cyclic shift of Ri

contains either b−1a or a−1b as a sub-word.

Here, we recall the standing notation introduced in Definition 1. The elements of
the generating set X := {g±1

1 , g±1
2 , . . . , g±1

N } are denoted as x1, x2, . . . , x2N in such a
way that xi±1 are the elements adjacent to xi with respect to the cyclic ordering from
Lemma 2.1(a). We also adopt the convention that xi is on the left of xi+1 (see Figure 1).
This convention defines a clockwise orientation of the plane Cay2(G, P).

It is easy to see that a presentation containing a relation of the form x2
i does not satisfy

Lemma 2.1(a) and, thus, it cannot be geometric. However, a relation of the form xixj is
simply a trivial identification of the generators xi and x−1

j . So, all presentations considered
in this paper will not contain relations of length two by hypothesis. The following purely
technical observation will be necessary to exclude unwanted particular situations in some
proofs.

Remark 2.2. Assume that our presentation P has N = 3 generators. By Lemma 2.1(c),
the sum of the lengths of all relations in P is 6. It is easy to see that a presentation with
3 generators and 2 relations of length 3 corresponds either to a torus or to a Klein bottle,
the rank 2 cases, that are not hyperbolic. Since we are excluding, by principle, relations of
length 2, it follows that the only possible geometric presentation with N = 3 generators
has only one relation of length 6.
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Entropy stability for Bowen–Series-like maps 7

FIGURE 2. The bigon β(xj , xj+1) and the cutting point θj+1.

A bigon in Cay1(G, P) between two vertices v, w is a pair {γ , γ ′} of disjoint geodesic
segments connecting v to w. We denote by B(x, y) the set of bigons, starting at Id, so that
one of the two geodesics starts with x and the other one starts with y. Note that both words
have the same length, which will be called the length of the bigon. A bigon ray is a pair of
disjoint geodesic rays connecting a vertex in Cay1(G, P) to a point on the boundary ∂G.
The following result is a combination of Lemma 2.8 and Corollary 2.11 of [21].

PROPOSITION 2.3. Let P = 〈X|R〉 be a geometric presentation of a hyperbolic surface
group G. Then, we have the following.
(a) B(x, y) 	= ∅ if and only if x and y are adjacent in the cyclic ordering of X .
(b) If x and y are adjacent generators in X , then there exists a unique bigon β(x, y) ∈

B(x, y) of minimal length.

A point z ∈ ∂G is the limit of possibly many geodesic rays starting at the identity. We
denote by [z] the expression of one geodesic ray in Cay1(G, P) converging to z, this is an
infinite word in the alphabet X .

Recall from (3) that the cylinder set Cx , for a generator x ∈ X , is the subset of points
ζ ∈ ∂G such that there exists [ζ ], a ray at Id converging to ζ , such that [ζ ] starts with x.

The following result is a direct consequence of [21, §3]. It is illustrated in Figure 2.

PROPOSITION 2.4. The cylinder sets satisfy the following.
(a) For any x ∈ X , Cx is connected and Cx ∩ Cy 	= ∅ if and only if x and y are adjacent

generators. In this case, it is an interval.
(b) For any θ ∈ Cx ∩ Cy , there is an infinite word W in the alphabet X so that θ ∈ ∂G

has two geodesic ray expressions [θ ]− = LxW and [θ ]+ = LyW , where {Lx , Ly}
are the two geodesic segments of the minimal bigon β(x, y).

In Proposition 2.4, the infinite word W might not be unique and the possible
non-uniqueness will play a key role later.
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8 L. Alsedà et al

The map �� defined in (5) is a piecewise homeomorphism of S1 = ∂G. Each interval
Ij of the partition of S1 = ⋃2N

j=1 Ij is defined by Ij = [θj , θj+1), where θj ∈ Cxj−1 ∩ Cxj

is called a cutting point. See Figure 12 for a particular example. The map is defined as

��(z) = x−1
j (z) if z ∈ Ij .

The definition implies, for each j ∈ {1, 2, . . . , 2N}, that Ij ⊂ Cxj
and the map ��

∣∣
Ij

is a homeomorphism onto its image. At the cutting points, the map is not continuous. From
the definition of the cylinder sets Cxj

, if z ∈ Ij , then there exists a geodesic ray, starting
at Id in the Cayley graph, denoted by [z] and converging to z ∈ ∂G, such that [z] = xjA,
where A is an infinite word in the alphabet X . The map applied to the point z thus gives

if z ∈ Ij then [z] = xjA and [��(z)] = A. (6)

In other words, �� is a standard ‘shift map’ for the particular coding of the boundary ∂G

obtained from the intervals Ij . Different choices of the cutting parameter � in J1 × J2 ×
· · · × J2N define different maps and thus different codings of ∂G.

There is another important consequence of the results in [21] that will be used to prove
statement (b) of Theorem A. As it has been mentioned in §1, the map �P defined in [21]
is nothing but a Bowen–Series-like map �� for a particular choice of the parameter �.
Among other properties, [21, Proposition 5.3] states that, when no generator appears twice
in a relation of length 3, �P is topologically transitive in the sense that, for any two open
intervals U , V ⊂ S1, there exists n ≥ 0 such that �n

P (U) ∩ V 	= ∅. It is easy to see that the
arguments for proving the transitivity can be directly generalized to any �� independently
of the parameter �, and that the condition about the generators is, from the point of view
of the transitivity, also irrelevant. So, we have the following result.

PROPOSITION 2.5. For any parameter �, the Bowen–Series-like map �� is topologically
transitive.

3. A tree-like structure for each parameter interval
In this section, we study some particular sequences of points in the intervals
Jj = Cxj−1 ∩Cxj

. These points are limits of a tree-like set in the Cayley graph. They
are interpreted as the parameters where the dynamics of the map could potentially
change, so in some sense, they are like ‘bifurcation’ parameters. The starting point is
a characterization of the extreme points of Jj obtained in [9]. To simplify the notation
and avoid too many indices, we consider a pair of adjacent generators (x, y) and the
corresponding minimal bigon β(x, y) with the convention that the generator x is on the
left of y in the cyclic ordering induced by our clockwise orientation of S1. We consider
also the minimal bigons βv(x, y) starting at a vertex v, possibly different from the identity,
with length denoted by k(x, y). To fit with this notation, we denote J (x, y) as the interval
Cx ∩ Cy .

Assume that the minimal bigon β(x, y) = {Lx , Ly} given by Proposition 2.3(b) is

Lx = x · xj2 · · · xjk
and Ly = y · yj2 · · · yjk

, with k = k(x, y), (7)

where the various xjm , yjn are generators in X .
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Entropy stability for Bowen–Series-like maps 9

FIGURE 3. The left (0) and right (1) extensions of a minimal bigon.

Consider the last edge along the geodesic segment Lx , with label xjk
. It starts at the

vertex v0
k−1, which is also the terminal vertex of the geodesic path labelled x · xj2 · · · xjk−1

starting at the identity. Symmetrically, consider the last edge, labelled yjk
, starting at the

vertex v1
k−1 along the segment Ly .

Consider the minimal bigon βv0
k−1

(x0
j1

, xjk
), based at v0

k−1, where we denote by x0
j1

the

generator that is adjacent to xjk
on the left at the vertex v0

k−1. Symmetrically, we consider
βv1

k−1
(yjk

, y1
j1

), the minimal bigon based at v1
k−1, and the generator y1

j1
adjacent to yjk

on
the right.

We define now two binary operations on bigons that are called extensions:

E(0; β(x, y)) := β(x, y) ⊗xjk
βv0

k−1
(x0

j1
, xjk

),

E(1; β(x, y)) := β(x, y) ⊗yjk
βv1

k−1
(yjk

, y1
j1

),
(8)

where the symbol ⊗a means the concatenation of the two bigons along their common edge
a. More precisely, if βv0

k−1
(x0

j1
, xjk

) = {x0
j1

x0
j2

· · · x0
j
k0

; xjk
y0
j2

· · · y0
j
k0

}, the 0-extension is

E(0; β(x, y)) = {x · xj2 · · · xjk−1 ∗ x0
j1

x0
j2

· · · x0
j
k0

; y · yj2 · · · yjk
∗ y0

j2
· · · y0

j
k0

}, (9)

where the symbol ∗ represents the location where the paths are concatenated.
Symmetrically, if βv1

k−1
(yjk

, y1
j1

) = {yjk
x1
j2

· · · x1
j
k1

; y1
j1

y1
j2

· · · y1
j
k1

}, the 1-extension is

E(1; β(x, y)) = {x · xj2 · · · xjk
∗ x1

j2
· · · x1

j
k1

; y · yj2 · · · yjk−1 ∗ y1
j1

· · · y1
j
k1

}. (10)

These operations are represented in Figure 3. Observe that the minimal bigons occurring
above have, a priori, different lengths, denoted as k = k(x, y), k0 = k(x0

j1
, xjk

) and
k1 = k(yjk

, y1
j1

).

PROPOSITION 3.1. The extensions E(0; β(x, y)) and E(1; β(x, y)) are well-defined
bigons in B(x, y).

Proof. We first observe that the four concatenations of paths in (9) and (10) are well
defined, that is, the terminal vertex of the initial path coincides with the initial vertex
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10 L. Alsedà et al

of the next one. The four concatenations of (9) and (10) start at the identity. For the
0-extension, the terminal vertex of the two paths in (9) is the terminal vertex of the bigon
βv0

k−1
(x0

j1
, xjk

) and, similarly, the terminal vertex of the 1-extension in (10) is the terminal

vertex of βv1
k−1

(yjk
, y1

j1
).

It remains to check that each concatenation is a geodesic. This is a direct consequence
of [21] (see Lemma 2.9), more details can be found in [9]. The two extensions are thus two
bigons in the set B(x, y).

To simplify the notation, we now write the two extensions as E(0/1; β). The extension
operations start with a bigon β ∈ B(x, y) and give two well-defined bigons in B(x, y).
Therefore, we can iterate the extension construction.

We simplify again the notation and we denote

E(ε2, ε1; β) := E(ε2; E(ε1; β)) for (ε1, ε2) ∈ {0, 1}2,

and by a finite iteration, we obtain

E(εn, . . . , ε1; β) := E(εn; E(εn−1, . . . , ε1; β)) for (ε1, . . . , εn) ∈ {0, 1}n. (11)

LEMMA 3.2. Let (x, y) be a pair of adjacent generators. Then, we have the following.
(a) For all n ∈ N and all (εn, . . . , ε1) ∈ {0, 1}n, the collection of level n extensions

E(εn, . . . , ε1; β(x, y)) are well-defined bigons in B(x, y).
(b) The limit sequences, when n → ∞, define a collection of bigon rays in B(x, y) and,

for each E ∈ {0, 1}N, the limit is a well-defined point

�(E; β(x, y)) ∈ Cx ∩ Cy ⊂ ∂G.

Proof. By Proposition 2.3, there is a unique minimal bigon for each pair of adjacent
generators. There are thus finitely many minimal bigons, each one with a length k(j) ≥ 2.
Let us prove part (a). For each n ∈ N and each (εn, . . . , ε1) ∈ {0, 1}n, the finite extension
E(εn, . . . , ε1; β(x, y)) is well defined by repeatedly applying Proposition 3.1. The length
of each such bigon is an explicit additive function of the lengths of the various bigons βv

occurring in the finite extension E(εn, . . . , ε1; β(x, y)). For instance, in (8), the length
is k(x, y) + k(x0

j1
, xjk

) − 1. The length of the bigons E(εn, . . . , ε1; β(x, y)) is strictly
increasing with n, since k(j) ≥ 2 for each j.

To prove part (b), note that E(εn, . . . , ε1; β) define sequences of bigons in B(x, y)

whose lengths go to infinity when n → ∞. For each E ∈ {0, 1}N, the set of geodesic
rays in E(E; β(x, y)) remains at a finite distance from each other. More precisely, let
K := max

{
k(m); m ∈ {1, 2, . . . , 2N}}, where k(m) is the length of a minimal bigon.

Then, two points, at distance M from the identity along the geodesic rays of E(E; β(x, y)),
remain at a distance less than K from each other, for all M. By definition of the Gromov
boundary [18, 20], the geodesic rays in E(E; β(x, y)), for each E ∈ {0, 1}N, converge to the
same point in ∂G. In addition, each E(εn, . . . , ε1; β(x, y)) is a bigon in B(x, y) and, by
definition of the cylinder sets, the limit point �(E; β(x, y)) belongs to Cx ∩ Cy ⊂ ∂G.

As it is clear from the definition, the infinite extension construction is a ‘tree-like’
process and the underlying tree is rooted and binary.
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LEMMA 3.3. For any adjacent pair of generators (x, y), there is a well-defined map

� :
{
0, 1

}N −→ Cx ∩ Cy ⊂ ∂G,
E ∈ {0, 1}N −→ �(E; β(x, y))

satisfying:
(a) � is injective;
(b) � is order preserving on ∂G for the ordering of {0, 1}N induced by 0 < 1.

Proof. The fact that � is a well-defined map is a direct consequence of Lemma 3.2.
Let us prove item (a). The fact that � is injective comes from Proposition 2.3(a).
Indeed, if E 	= E′ in {0, 1}N, then there is a first integer n so that εn 	= ε′

n. From
the extension construction, there is a vertex vn in the Cayley graph such that
vn ∈ E(εn, . . . , ε1; β(x, y)) ∩ E(ε′

n, . . . , ε′
1; β(x, y)) and, starting from vn, the geodesic

rays, say γ and γ ′, are different in E(E; β(x, y)) and in E(E′; β(x, y)). Here, being
different means that the two geodesic rays based at vn start by two non-adjacent generators
(see Figure 3 for n = 1). These two geodesic rays cannot converge to the same point in ∂G

since otherwise, they would define a bigon ray, which is impossible by Proposition 2.3(a).
Let us prove item (b). If E < E′, then, by the arguments above, there is n such that

εn < ε′
n, meaning εn = 0 and ε′

n = 1. The two geodesic rays γ and γ ′ described above and
based at the vertex vn are such that γ starts at vn by a generator y0∗

j2
and γ ′ starts at vn

by a generator x1∗
j2

, with the notation (9) and (10) (for n = 1, see Figure 3). By the cyclic
ordering at vn and with our conventions, we observe that y0∗

j2
< x1∗

j2
. By Proposition 2.3(a),

the two geodesic rays γ and γ ′ cannot intersect after the vertex vn since otherwise, they
would define a bigon starting with non-adjacent generators at vn. Therefore, the two rays
converge to two points on ∂G and the cyclic ordering at vn is preserved on the boundary.
Thus, we obtain �(E; β(x, y)) < �(E′; β(x, y)).

The idea of the extension construction appeared in [9] for the special cases E(0∞; β)

and E(1∞; β), where they are called ‘ladders’.

THEOREM 3.4. With the above notation, �(0∞; β(x, y)) and �(1∞; β(x, y)) are the two
extreme points of the interval J (x, y) = Cx ∩ Cy ⊂ ∂G.

This result from [9] is a characterization of the intersection of cylinder sets and therefore
of the cylinder sets. These special points are thus quite important for the study of the
family ��.

4. Staircases and galleries
In this section, we analyse the geometric structure of the subgraph of the Cayley graph
composed by all geodesics joining two given elements of G. The characterization of this
subgraph will be one of the tools to prove statement (a) of Theorem A.

For any pair v, w ∈ G, consider a geodesic segment in the Cayley graph Cay1(G, P)

connecting the vertices v and w. We keep the same notation v, w for the corresponding
elements in the group G. It is represented as a word W of minimal length in the generating
set X . The distance between v and w, denoted as d(v, w), is the number of symbols in W.
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(a) (b)

FIGURE 4. (a) An extension E(0, 1; β(x, y)) between v and w. The dashed edges do not belong to the extension.
(b) Corresponding staircase between v and w.

Let v, w ∈ G. A subgraph S of Cay1(G, P) will be called a staircase between v and
w if S is either a minimal bigon between v and w or the union of all minimal bigons
concatenated in an extension (see Lemma 3.2) between v and w. See Figure 4 for an
example. Note that if Sv,w is a staircase between v and w, and d(v, w) = n, then for all
1 ≤ j < n, there are exactly two vertices in Sv,w at distance j from v.

Remark 4.1. Let L and R be the left and right geodesic segments connecting v to w
and defining a staircase between v and w. For every vertex x ∈ L ∪ R, the number of
edges in the Cayley graph departing from x and contained in the bounded component
of R

2 \ (L ∪ R) is at most two. Having two of such edges is only possible when the
presentation P has relations of length 3.

Let Sv,w be a staircase between v and w associated to an extension E from v to w. By
Lemma 3.2(a), E is a bigon between v and w. The left and right geodesic segments from
v to w defining this bigon will be respectively denoted by SL

v,w and SR
v,w. Note that, in

general, Sv,w contains other geodesics going from v to w.
A gallery between v, w ∈ G is a subgraph of the Cayley graph given by a finite set of

k staircases Sv1,w1 , . . . , Svk ,wk
and k + 1 simple paths γv,v1 , γw1,v2 , . . . , γwk ,w (some of

them possibly degenerated to a point) such that

γv,v1S
L
v1,w1

γw1,v2 . . . SL
vk ,wk

γwk ,w and γv,v1S
R
v1,w1

γw1,v2 . . . SR
vk ,wk

γwk ,w

are geodesics. See Figure 5 for an example.
If Fv,w is a gallery between v and w, we denote by FL

v,w and FR
v,w the corresponding

geodesic paths defined above, and call them the left and right sides of Fv,w.
Note that if Fv,w is a gallery between v and w, and d(v, w) = n, then for all 1 ≤ j < n,

there are at most two vertices in Fv,w at distance j from v.

LEMMA 4.2. Let L be a geodesic path between v, w ∈ G. Then, there are at least three
different edges xi1 , xi2 , xi3 such that Lxi1 , Lxi2 , Lxi3 are geodesics paths.

Proof. This result is a direct consequence of [21, Lemma 2.9].
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FIGURE 5. A gallery Fv,w between v and w. The fat edges correspond to the geodesic path FL
v,w .

LEMMA 4.3. Let L1, L2 be two geodesic paths between v, w ∈ G such that L1 ∩ L2 =
{v, w}. Then, the bounded component of R2 \ {L1 ∪ L2} does not contain vertices of the
Cayley graph.

Proof. Assume, for the sake of contradiction, that there exists a vertex g in the bounded
component of R2 \ {L1 ∪ L2}. Let W be a geodesic path between v and g. By Lemma 4.2,
there exist at least three different edges xi1 , xi2 , xi3 such that Wxi1 , Wxi2 , Wxi3 are still
geodesic paths. By applying iteratively Lemma 4.2, each of these three geodesic paths can
be continued up to a point in L1 ∪ L2. From each of these three points, we can continue
along L1 or L2 up to w. We get then three geodesics from v to w passing through g.
It follows that we have three different geodesics from g to w starting respectively with the
edges xi1 , xi2 , xi3 . Two of these edges are not adjacent. As a consequence, we have obtained
a bigon associated to a pair of non-adjacent edges, in contradiction with Proposition 2.3.

LEMMA 4.4. Let L1, L2 be two geodesic paths between v, w ∈ G such that L1 ∩ L2 =
{v, w}. Then, L1 and L2 are the left and right sides of a staircase between v and w.

Proof. Let n = d(v, w). For all 1 ≤ i < n, let vi (respectively wi) be the point in L1

(respectively L2) satisfying d(vi , v) = i (respectively d(wi , v) = i).
We prove the lemma by induction on n. So, assume that the result is true for all lengths

less than n. Let A be the bounded component of R
2 \ (L1 ∪ L2). By Lemma 4.3, any

path of the Cayley graph contained in A reduces to a single edge. Since L1 and L2 are
geodesics, there are no edges contained in A joining points in L1 (respectively L2). So, if
there exists some edge in A, it must connect a point in L1 to a point in L2. Again, since
L1 and L2 are geodesics, any edge that begins at vi and ends at L2 must go either to
wi , and we call this edge horizontal, or to wj with j ∈ {i + 1, i − 1}, and we call this
edge sloping. If there are no sloping edges, then the pair {L1, L2} defines a minimal bigon
and there is nothing to prove. See Figure 6(a). Otherwise, let i be the smallest index such
that there is a sloping edge beginning at vi . Assume for instance that there is an edge
from vi to wi+1 (the other case follows by a symmetric argument). See Figure 6(b). Then,
the paths L̃1 := vi+1 · · · vn−1 and L̃2 := wi+1 · · · wn−1 between vi and w satisfy the
hypothesis of the lemma and have length less than n. By the induction hypothesis, they are
the left and right sides of a staircase. However, the pair {L̂1, L̂2}, where L̂1 := v1v2 · · · vi

and L̂2 := w1w2 · · · wi , defines a minimal bigon between v and wi+1, since there are no
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(a) (b)

FIGURE 6. The two cases in the proof of Lemma 4.4.

sloping edges in the interior of the bounded component of R2 \ (L̂1 ∪ L̂2). So, the result
follows from the definition of a staircase.

LEMMA 4.5. Let L1, L2 be two different geodesic paths between v, w ∈ G. Then, L1 and
L2 are the left and right sides of a gallery between v and w.

Proof. We prove the lemma by induction on n, the length of the geodesics. If n is less
than the minimum length of a minimal bigon, then there is nothing to prove. If n is the
minimum length of a minimal bigon, then the pair {L1, L2} defines a minimal bigon and
the result follows. Assume now that the result is true for all lengths smaller than n. If
L1 ∩ L2 = {v, w}, then the result follows from Lemma 4.5. If not, let z ∈ L1 ∩ L2. Then,
the result follows by applying the induction hypothesis to L̃1 and L̃2, the portions of L1 and
L2 joining v and z, and applying also the induction hypothesis to L̂1 and L̂2, the portions
of L1 and L2 joining z and w.

PROPOSITION 4.6. The subgraph of all geodesics joining two elements of G is a gallery.

Proof. Let H be the set of all geodesics from v to w. Let L1 and L2 be respectively the
leftmost and the rightmost geodesic paths in H from v to w. From Lemma 4.5, they are the
left and right sides of some gallery Fv,w. From the definition of a gallery, it easily follows
that H = Fv,w.

The results of this section can be naturally extended to infinite geodesic rays. Recall that
a bigon ray has been defined in §2 as a pair of disjoint infinite geodesic rays starting (for
example) at the identity element Id and representing the same point in S1. In Lemma 3.2(b),
we showed that if L and R are respectively the left and right sides of an infinite extension of
bigons, then the pair {L, R} defines a bigon ray. The corresponding point in S1 was denoted
by �(E; β(x, y)) in the statement of Lemma 3.2(b), where E ∈ {0, 1}N is the coding for
the infinite extension and β(x, y) is the initial bigon of the extension. The arguments
used in the proofs of Lemmas 4.3 and 4.4 can be trivially adapted to prove the following
converse result, which states that any bigon ray has precisely this form.
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LEMMA 4.7. Let L, R be two disjoint infinite geodesic rays starting at Id. If L and R
represent the same point ζ ∈ S1, then L and R are respectively the left and right sides of
an infinite extension of bigons. That is, there exist a pair of adjacent generators x, y and
E ∈ {0, 1}N such that ζ = �(E; β(x, y)).

5. Dynamical properties in the family ��

In this section, we study how the dynamics of the maps �� might change with the
parameters � ∈ J1 × J2 × · · · × J2N . We show, in particular, the importance of the points
in the Cantor set �(E; β(x, y)) ∈ J (x, y) as defined in Lemma 3.2.

Let us consider the following interval, called central in J (x, y) (see Figure 7):

C(J (x, y)) := (�(1∞0; β(x, y)), �(0∞1; β(x, y))). (12)

The property (a) in the next result was called the eventual coincidence condition (EC)
in [22] and the two properties in part (b) were called the conditions (E+), (E−) when all
relations in the presentation P have even length.

LEMMA 5.1. (Eventual coincidence of length k) If � ∈ C(J1) × C(J2) × · · · × C(J2N),
then we have the following.
(a) For all j ∈ {1, . . . , 2N}, �

k(j)
� (θj (−)) = �

k(j)
� (θj (+)), where k(j) is the length of

β(xj−1, xj ) and the notation �
k(j)
� (θj (±)) stands for the iterates from the left or the

right of the cutting point.
(b) If β(xj−1, xj ) = {xj−1xj2 · · · xjk

; xjyj2 · · · yjk
}, then, for each 1 ≤ m ≤ k(j) − 1,

�m
�(θj (−)) ∈ Ixjm+1

and �m
�(θj (+)) ∈ Iyjm+1

.

Proof. We use again the notation (x, y) for a pair of adjacent generators, as well as β(x, y)

for a minimal bigon and k(x, y) for its length. Let us write

β(x, y) = {x · xj2 · · · xjk
; y · yj2 · · · yjk

}.
The extension construction defined in (11) is obtained by an infinite sequence of bigon
concatenations from the initial minimal bigon β(x, y). It is well defined by Lemma 3.2,
and is parametrized by E ∈ {0, 1}N.

At a finite step of level n, given by ε = (εn, . . . , ε1) ∈ {0, 1}n, there is a bigon that we
denote by βε=(εn,...,ε1), expressed as

βε = {xε
1xε

2 · · · xε
kε

; yε
1yε

2 · · · yε
kε

}. (13)

There are two bigons at the next level, β(0,ε) and β(1,ε), and the concatenation operation
is obtained by the identifications xε

kε
= y

(0,ε)
1 and yε

kε
= x

(1,ε)
1 .

By Proposition 2.4, the parameter θ(x, y) ∈ Cx ∩ Cy has two expressions as a geodesic
ray:

[θ(x, y)](−) = x · xj2 · · · xjk
· α · W and [θ(x, y)](+) = y · yj2 · · · yjk

· α · W , (14)

where α ∈ X and W is an infinite word in the alphabet X that might not be unique. The
expression α · W is one possible geodesic ray continuation of the two geodesics in β(x, y).
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FIGURE 7. The central interval C(J (x, y)).

This implies in particular that α 	= (xjk
)−1 and α 	= (yjk

)−1. The two extensions of level
1 of β(x, y) are, with the notation above,

β0 = {x0
1x0

2 · · · x0
k0

; y0
1y0

2 · · · y0
k0

} and β1 = {x1
1x1

2 · · · x1
k1

; y1
1y1

2 · · · y1
k1

}.
We start by proving part (b). Definition (5) of �� implies, by (6), that

��([θ(x, y)](−)) = xj2 · · · xjk
· α · W and ��([θ(x, y)](+)) = yj2 · · · yjk

· α · W .

By definition of the cylinder sets, we obtain that ��([θ(x, y)](−)) ∈ Cxj2
. Let us prove

that ��([θ(x, y)](−)) ∈ Ixj2
⊂ Cxj2

. We check that ��([θ(x, y)](−)) cannot belong to the
two adjacent cylinders. The generator xj2 is adjacent to xj2±1.

• On the right side, xj2+1 is either x−1 or another generator x′. This second possibility
occurs only if x and y belong to a relation of length 3 (namely, x · x ′ · y−1 = Id,). In
this case, a direct checking shows that for all � we have ��([θ(x, y)](−)) /∈ Cx−1 or
��([θ(x, y)](−)) /∈ Cx′ . The same conclusion follows similarly when x and y belong
to a relation of odd length. If x and y belong to a relation of even length, then the
hypothesis θ(x, y) ∈ C(J (x, y)) is needed. Indeed, from the expression of θ(x, y) in (14),
the geodesic continuation α · W satisfies α 	= (xjk

)−1 and α 	= (yjk
)−1, but α might

be adjacent to y−1
jk

on the left, this is the worst case. Since θ(x, y) ∈ C(J (x, y)), the
geodesic ray expression [θ(x, y)](+) = y · yj2 · · · yjk

· α · W diverges at some level from
the ray �(0∞ · 1; β(x, y)) on its left. In this worst case, the image ��([θ(x, y)](−)) =
xj2 · · · xjk

· α · W diverges, on the left, from the ray �(0∞; β(xj2 , x−1)). This implies
that ��([θ(x, y)](−)) /∈ Cx−1 .

• The generator on the left side of xj2 is xj2−1 which, together with xj2 , defines
a minimal bigon β(xj2−1, xj2). The point ��([θ(x, y)](−)) = xj2xj3 · · · xjk

· · · could
belong to the adjacent cylinder Cxj2−1 only if the initial part of xj3 · · · xjk

· · · is part of
the bigon β(xj2−1, xj2). This is impossible by Proposition 2.3, since xj3 and the generator
along β(xj2−1, xj2) following xj2 cannot be adjacent. Therefore, we obtain

��([θ(x, y)](−)) ∈ Ixj2
and, symmetrically, ��([θ(x, y)](+)) ∈ Iyj2

. (15)
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Note that for the symmetric case, we swap left and right. The same arguments apply for all
1 ≤ m < k − 1, and we obtain

�m
�(θ(x, y)(−)) ∈ Ixjm+1

and �m
�(θ(x, y)(+)) ∈ Iyjm+1

. (16)

A potential difficulty could occur for the iterate m = k − 1. In this case, the above
arguments, on the left, using Proposition 2.3, do not apply. At this step, the extension
operations in (9) or (10) are used. From (16), we obtain

�k−1
� ([θ(x, y)](−)) = xjk

· α · W and �k−1
� ([θ(x, y)](+)) = yjk

· α · W . (17)

This implies that �k−1
� ([θ(x, y)](−)) ∈ Cxjk

and �k−1
� ([θ(x, y)](+)) ∈ Cyjk

. Observe

that the generator xjk
is adjacent to x0

1 on the left and to x−1
jk−1

on the right. By the argument
giving (15), we get that

�k−1
� ([θ(x, y)](−)) /∈ C

x−1
jk−1

.

The main assumption of the lemma is that θ(x, y) ∈ C(J (x, y)). It implies (see
Figure 7) that �k−1

� ([θ(x, y)](−)) /∈ Cx0
1
, and thus, by definition of the intervals Ix , we

obtain

�k−1
� ([θ(x, y)](−)) ∈ Ixjk

and �k−1
� ([θ(x, y)](+)) ∈ Iyjk

. (18)

This completes the argument for part (b) of the lemma.
The proof of part (a) is direct from (17) and (18), since the definition of the map yields

�k
�([θ(x, y)](−)) = α · W and �k

�([θ(x, y)](+)) = α · W , where k = k(x, y).

Lemma 5.1 shows that for an open set in the parameter space, the family �� satisfies
a strong dynamical property: the eventual coincidence condition of ‘minimal’ length, that
is, the length of the minimal bigon. The dynamics of the maps for parameters not in this
open set is a priori different and quite interesting in its own right.

6. Centred continuations and the middle parameter
In this section, we define a particular cutting parameter �0 that we call middle. As we
will see in §9, this choice of �0 allows us to perform particularly simple computations to
get the volume entropy of the presentation. Many other parameters would allow the same
computations, in particular, many parameters in the central interval defined in §5, but �0

is very simple to define.
For each 1 ≤ i ≤ 2N , we define the opposite to xi as the symbol xi+N (recall that the

subindexes in the generating set {x1, x2, . . . , x2N } are taken modulo 2N , with 1, . . . , 2N

as representatives of the classes modulo 2N).
Let g ∈ G and let W = xi0xi1 · · · xim−1 be a geodesic expression of g. The infinite word

Wximxim+1 · · · such that xij is the opposite to (xij−1)
−1 for each j ≥ m will be called

the centred continuation of W. Note that, from the vertex g of the Cayley graph, the last
generator xim−1 in the word W reads as the edge labelled (xim−1)

−1. See Figure 8. From
[21, Lemma 2.9], the centred continuation of a geodesic expression of g is a geodesic ray.
By definition, the corresponding point in S1 belongs to Cg . It will be called the W-middle
point.
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FIGURE 8. The centred continuation of a geodesic W.

The next result will be used to prove one of the two inequalities stated in Proposition 7.3,
a central result of §7.

LEMMA 6.1. Let g ∈ G and let W = xi0xi1 · · · xim−1 be a geodesic expression of g. Let
Wximxim+1 · · · be the centred continuation of W and let ζ ∈ ∂G be the W-middle point.
Then, any geodesic ray representing ζ has the form Ŵximxim+1 · · · , where Ŵ is a geodesic
expression of g.

Proof. Set L = Wximxim+1 · · · and, for 0 ≤ i ≤ m, let us denote by vi the vertex at
distance i from Id inside the geodesic segment W. So, v0 = Id and vm = g. Let us assume,
by way of contradiction, that there exists a geodesic ray R whose vertex at distance m from
the identity is g′ 	= g. Assume without loss of generality, just to fix ideas and fit to the
notation L/R, that g′ is on the right of g in the obvious orientation induced in the Cayley
graph by the clockwise orientation of the circle. Let j be the largest index in {0, 1, . . . , m}
such that vj ∈ R. We are assuming that j < m. Now, we have two cases.

Assume first that L and R intersect beyond vj . Let w be the vertex in L ∩ R at least
distance from Id larger than m. Then, the segments L̄ ⊂ L and R̄ ⊂ R connecting vj and
w are geodesics and L̄ ∩ R̄ = {vj , w}. By Lemma 4.4, they are the left and right sides of
a staircase between vj and w. Remarks 2.2 and 4.1 imply then that, given any vertex in L̄,
there can be at most one edge of the Cayley graph contained in the bounded component
K of R

2 \ (L̄ ∪ R̄). However, by definition of the centred continuation, xim is the edge
opposite to (xim−1)

−1. Since 2N ≥ 6, this implies that there are at least two edges departing
from g ∈ L̄ and contained in K (see Figure 8), which is a contradiction that proves the
result in this case.

Assume now that L and R do not intersect beyond vj . Therefore, the infinite rays L̄ ⊂ L

and R̄ ⊂ R starting at vj define a bigon ray based at vj . Then, from Lemma 4.7, it follows
that L̄ and R̄ are respectively the left and right sides of an infinite extension of bigons
based at vj , and we get a contradiction using exactly the same arguments as in the previous
case.
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The centred continuation allows us to define a particular choice � of the cutting
parameter so that the dynamics of any cutting point by �� is specially simple.

For each 1 ≤ i ≤ 2N , let Ll
i and Lr

i be the left and right geodesic segments of
length k(i) := k(xi−1, xi) defining the minimal bigon β(xi−1, xi). The cutting parameter
�0 = (θ0

1 , θ0
2 , . . . , θ0

2N) such that θ0
i is the Ll

i-middle point for i ∈ {1, 2, . . . , 2N} will
be called the middle parameter.

Remark 6.2. Let �0 = (θ0
1 , θ0

2 , . . . , θ0
2N) be the middle parameter. Then, for each

1 ≤ j ≤ 2N , the cutting point θ0
j belongs to the central interval C(Jj ) defined in §5.

Indeed, if z is the last generator in the word Ll
j , then the next generator along the centred

continuation is the opposite to z−1 that does not belong to the bigon extension (8) of
β(xj−1, xj ).

In view of Remark 6.2, the first k(j) iterates from the left and the right of θ0
j by ��0

are controlled by properties (a) and (b) of Lemma 5.1. The subsequent iterates satisfy the
property stated in the next result.

LEMMA 6.3. Let �0 = (θ0
1 , θ0

2 , . . . , θ0
2N) be the middle parameter. Then, for each

1 ≤ j ≤ 2N , �m
�0(θ

0
j ) is not a cutting point for any m ≥ k(j).

Proof. The definition of the centred continuation implies that �
k(j)

�0 (θ0
j ) belongs to an

interval Ixn and more precisely to Ixn \ (Jxn−1 ∪ Jxn+1). Indeed, along the geodesic ray
[θ0

j ] defining θ0
j , after the initial bigon β(xi , xi+1), there is never two adjacent generators

and thus there is never a subword of a bigon. Therefore, all iterates �m
�0(θ

0
j ), for m ≥ k(j),

belong to some interval Ixr(m)
\ (Jxr(m)−1 ∪ Jxr(m)+1) for some r(m) ∈ {1, 2, . . . , 2N}. As

a consequence, �m
�0(θ

0
j ) is not a cutting point for all m ≥ k(j).

7. Comparison of entropy functions
We start this section by recalling how the topological entropy of a piecewise monotone
discontinuous map of the circle can be computed as the exponential growth rate of a
function Xm that counts the number of itineraries of length m associated to a given
partition of S1 such that the map is monotone on each interval of the partition (Lemma 7.2).
Then, we prove Proposition 7.3, that compares the dynamical counting function Xm with
the growth function σm defined in (1). As a corollary, we get Theorem 7.4 that states
the equality between the topological entropy of any Bowen–Series-like map and the
volume entropy of the group presentation.

The maps in the family �� are defined by a partition S1 = ⋃2N
j=1 Ij , where the intervals

Ij = [θj , θj+1) depend on the cutting parameter and the restriction of �� to each Ij

is a homeomorphism. The intervals Ij will be called basic intervals from now on. The
generating set X of the group G is in bijection with the set of basic intervals, for all
parameters �. Each point z ∈ S1 has an orbit which is described by an itinerary, that is, an
ordered sequence

I t (z) := (j0, j1, . . . , jm, . . .) such that �m
�(z) ∈ Ijm for all m ≥ 0.
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For m ∈ N, the itinerary intervals of level m are defined as

Ij0,j1,...,jm−1 := Ij0 ∩ �−1
� (Ij1) ∩ . . . ∩ �

−(m−1)
� (Ijm−1)

and the dynamical counting function is given by

Xm is the number of non-empty intervals Ij0,j1,...,jm−1 of level m.

Since each �� is a piecewise homeomorphism, there is at most one connected
component in Ij0 such that ��(Ij0) ∩ Ij1 	= ∅. As a consequence, the itinerary intervals
are well defined.

Remark 7.1. Note that if Ij0,j1,...,jm−1 is a non-empty interval, then there exists z ∈ S1

admitting a ��-orbit that visits Ixj0
, Ixj1

, . . . , Ixjm−1
. Therefore, if Ij0,j1,...,jm−1 	= ∅,

then the path xj0xj1 · · · xjm−1 is a geodesic path in the Cayley graph and the element
g = xj0xj1 · · · xjm−1 has length m.

The itinerary intervals satisfy the following properties that follow immediately from the
definitions:
(a) for all z ∈ Ij0,j1,...,jm , �r

�(z) ∈ Ijr for 0 ≤ r ≤ m;
(b) for all z ∈ Ij0,j1,...,jm , �m+1

� (z) = g−1z, where g = xj0xj1 · · · xjm ;
(c) Ij0,j1,...,jm is a subinterval of Ij0,j1,...,jm−1 .

LEMMA 7.2. With the above notation, for each cutting parameter � ∈ J1 × · · · × J2N ,
the following equality holds: htop(��) = limm→∞(1/m) log(Xm).

Proof. The original definition of the topological entropy [4] uses a counting function for
coverings of the space. The definition holds for continuous self-maps on compact spaces.
Bowen in [10] extended this notion to non-necessarily continuous self-maps. In [25],
Misiurewicz and Ziemian showed that, for piecewise continuous and piecewise monotone
interval maps, the entropy can be computed from mono-covers, namely partitions of the
interval by subintervals such that the map restricted to each element in the partition is
continuous and monotone. With this partition, we denote by Ym the number of different
itineraries of length m. Then, Misiurewicz and Ziemian showed that the entropy of the map
coincides with

lim
m→∞

log Ym

m
.

It is straightforward to adapt the previous result to the case of piecewise continuous and
piecewise monotone maps of the circle.

In view of Lemma 7.2 and the definition (2) of the volume entropy, which uses the
counting function σm introduced in (1), we need to compare the rates of increasing with m
of Xm and σm. This is the aim of the next result.

PROPOSITION 7.3. With the above notation, the following inequalities are satisfied for
each parameter � ∈ J1 × J2 × · · · × J2N :

σm ≤ Xm ≤ mσm.
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FIGURE 9. The points gi as defined in the proof of Proposition 7.3.

Proof. Let g ∈ G be an element of length m. We will show that the number of non-empty
intervals Ij0,...,jm−1 such that xj0xj1 · · · xjm−1 = g is between 1 and m.

Consider a geodesic word W = xi0xi1 · · · xim−1 representing g. Let Wximxim+1 · · ·
be the centred continuation of W and let ρ ∈ S1 be the corresponding W-middle point.
For 0 ≤ i < m, let Ixji

be the only interval of the partition {Ixj
}2N
j=1 of S1 containing

�i
�(ρ). Then, the itinerary interval Ij0,j1,...,jm−1 is non-empty and, by Remark 7.1,

xj0xj1 · · · xjm−1 is a geodesic path in the Cayley graph. Then, from Lemma 6.1, it follows
that xj0xj1 · · · xjm−1 = g. This shows that σm ≤ Xm.

Let us prove now the second inequality. Clearly, if Ij0,...,jm−1 	= ∅, then the path in the
Cayley graph corresponding to the word g := xj0xj1 · · · xjm−1 is a geodesic between the
vertices Id and g. So, it is contained in the set of all geodesics joining Id and g which, by
Lemma 4.6, is a gallery that we will denote by HId,g . From the definition of a gallery, there
are at most two edges in HId,g departing from the identity. This implies that the cylinder
set Cg defined in (4) of all infinite geodesic rays passing through g is contained in a set K
that is either a basic interval or the union of two adjacent basic intervals. Since HId,g is a
gallery and the length of g is m, HId,g contains k minimal bigons for some 0 ≤ k < m. We
denote by g1, g2, . . . , gk the vertices at which such bigons are based. See Figure 9. Let
θi1 , θi2 , . . . , θik be the corresponding cutting points associated to each of these bigons. For
1 ≤ j ≤ k, set θ̃j := gj θij . Note that the cardinality of the set {θ̃j }kj=1, which is contained
in K by construction, is between 1 and k (see Figure 9 for an example). Therefore,

K \ {θ̃1, . . . , θ̃k}
is the union of at most k + 1 disjoint intervals that we denote by K1, K2, . . . , Kk+1.

We claim that in each of such intervals, there is at most one non-empty interval Ij0,...,jm−1

satisfying xj0xj1 · · · xjm−1 = g. Indeed, assume in contrast that for some l, there are two
non-empty intervals Ij0,...,jm−1 and Ih0,...,hm−1 contained in Kl such that xj0xj1 · · · xjm−1 =
xh0xh1 · · · xhm−1 = g.

The corresponding geodesic segments are thus contained in the gallery HId,g . Let s be
the least index such that js 	= hs . Then, xj0xj1 · · · xjs−1 = xh0xh1 · · · xhs−1 = gr for some
gr being the origin of a minimal bigon βgr ⊂ HId,g associated to some cutting point θir .
The bigon βgr starts at gr by the edges labelled xjs and xhs . Therefore, the two itinerary
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intervals Ij0,...,jm−1 and Ih0,...,hm−1 contained in Kl have a preimage of order s of the cutting
point θir between them, that is, �−s

� (θir ) = gr(θir ). Thus, gr(θir ) = θ̃ir is contained in the
interior of Kl , which is a contradiction that proves the claim.

Since k + 1 ≤ m, it follows that there are at most m non-empty intervals Ij0,...,jm−1 such
that xj0xj1 · · · xjm−1 = g.

Finally, we get the desired equality between the entropies.

THEOREM 7.4. Let � be a compact closed hyperbolic surface with a geometric presenta-
tion P for the group G := π1(�). Then,

hvol(G, P) = htop(��) for all � ∈ J1 × · · · × J2N .

Proof. It follows directly from (2), Lemma 7.2 and Proposition 7.3.

8. Proof of Theorem A
The proof of Theorem A strongly uses the Milnor–Thurston theory [8, 23] of kneading
invariants. We start this section by reviewing the main ingredients of the theory. Then,
we see how the results of Milnor and Thurston apply to our context. Finally, we prove
Theorem A.

Kneading theory of Milnor and Thurston was stated for piecewise monotone and
continuous maps of the interval. For such a map f : I −→ I , the lap number l(f ) is
the number of maximal intervals of monotonicity of f. Each point separating different
maximal intervals of monotonicity is called a turning point. In this situation, the limit
s(f ) := lim(l(f n))1/n exists and is called the growth number of f. It is well known [24]
that the topological entropy of f is precisely htop(f ) = log(s(f )).

Let I1, I2, . . . , Il be the laps associated to the map f, numbered in the natural ordering
along I, and let v1 < v2 < · · · < vl−1 be the corresponding turning points. The address
A(x) for a point x ∈ I will be the formal symbol Ij if x ∈ Ij or the formal symbol Cj if
x = vj . The itinerary of x is the infinite sequence of symbols

I (x) = A(x), A(f (x)), A(f 2(x)), . . .

To each address A(x), we assign the number

ε(A(x)) :=

⎧⎪⎪⎨
⎪⎪⎩

1 if f is increasing at x,

−1 if f is decreasing at x,

0 if x is a turning point,

and define a new infinite sequence ω(x) = (ω0(x), ω1(x), . . . , ωn(x), . . .) given by

ωj (x) = εj (x)A(f j (x)), where εj (x) = ε(A(x))ε(A(f (x))) · · · ε(A(f j−1(x))).

Note that

εj (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if f j−1 is increasing at x,

−1 if f j−1 is decreasing at x,

0 if f k(x) is a turning point for some k < j − 1.
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For any x ∈ I and k ∈ N, it is clear that ωk(y) is constant in a neighbourhood
(x − δk , x). We denote the corresponding symbol by ωk(x

−). In the symmetric way, we
define ωk(x

+). Finally, we define the jump at x as the series

�x(t) =
∞∑
i=0

(ωi(x
+) − ωi(x

−))t i .

Note that if for all n ∈ N , f n(x) is not a turning point, then �x(t) is identically zero. The
j-kneading invariant is defined as the jump at the jth turning point, that is,

νj (t) = �vj
(t) =

∞∑
i=0

(ωi(v
+
j ) − ωi(v

−
j ))t i .

It is clear that νj (t) = Nj1I1 + · · · NjlIl for any j ∈ {1, 2, . . . , l − 1}, where Nji belongs
to the ring of formal power series with integer coefficients Z[[t]].

At this moment, we define the (l − 1) × l kneading matrix Mf whose entries are the Nij

power series. Let us denote by Di the determinant of the matrix obtained by deleting the ith
column of the kneading matrix. The following is the first result of the above construction.

THEOREM 8.1. With the above notation, the series D(t) = (−1)i+1(Di/(1 − ε(Ii)t)) is
a fixed element of Z[[t]], independently of the choice of i. It has leading coefficient 1,
converges for |t | < 1 and D(t) 	= 0 if |t | < 1/s(f ). Moreover, the first zero of D(t) in the
interval [0, 1) occurs at (1/s(f )) if s(f ) ≥ 1, while D(t) has no zeros in the open unit
disk if s(f ) = 1.

In short, Theorem 8.1 says that the entropy of a map can be computed knowing the
itineraries of the turning points.

Another important result from the Milnor–Thurston theory is the semi-conjugacy of
any piecewise monotone map f of the interval to a piecewise affine map with constant
absolute value of the slopes. Next, we give a brief explanation on how to construct the
semi-conjugacy. See [23] for details. First of all, consider the series

L(t) =
∞∑
i=0

l(f n)tn.

Clearly, L(t) converges for t < 1/s(f ) and has a pole at t = 1/s(f ). For any subinterval
J of I, we define

L[J ](t) =
∞∑
i=0

l(f n|J )tn,

where l(f n|J ) denotes the number of laps of f n that intersect J. Now, we define

μ(J ) := lim
t→1/s(f )

L[J ](t)
L(t)

.
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It is not difficult to see that μ satisfies the following properties:
(i) 0 ≤ μ(J ) ≤ 1;

(ii) if J1 ∩ J2 reduces to a single point, then μ(J1 ∪ J2) = μ(J1) + μ(J2);
(iii) the number μ(J ) depends continuously on the endpoints of J;
(iv) if J is contained in single lap of f, then μ(f (J )) = s(f )μ(J ).

Properties (i)–(iv) imply that μ gives rise to a measure on the interval I. Now, consider
the map h : I −→ [0, 1] defined as

h(x) = μ([a, x]), (�)

where a is the left endpoint of I. From properties (i)–(iv) above, it follows that h is a con-
tinuous and non-decreasing map from I onto [0, 1]. Moreover, it is not difficult to see that
if f is topologically transitive, then h is a homeomorphism (see for instance [7, Proposition
4.6.9]). Lastly, we have the following result, which is essentially [23, Theorem 7.4].

THEOREM 8.2. Let f : I −→ I be a piecewise monotone continuous map of an interval
I and let h : I −→ [0, 1] be the corresponding non-decreasing map defined by (�). Then,
there exists a unique piecewise linear map F : [0, 1] −→ [0, 1] with constant slope ±s(f )

such that

F(h(x)) = h(f (x)).

Moreover, if f is topologically transitive, then h is a homeomorphism.

In [5], Theorems 8.1 and 8.2 have been generalized to piecewise monotone maps f of
degree one of the circle by considering its lifting f̃ and the map f̂ : [0, 1] −→ [0, 1]
defined by f̂ (x) = f̃ (x) − E(f̃ (x)), where E(y) denotes the integer part of y. The
map f̂ is also piecewise monotone, but it is discontinuous. Therefore, it is necessary to
consider the discontinuity points as turning points. In [8], the same results have been
also generalized to discontinuous piecewise monotone maps of the circle. Now, all the
discontinuities are considered as turning points.

Let us go back to our Bowen–Series-like maps. The next result states that, when � is
the middle parameter as defined in §6, the jump series of �� in all turning points are in
fact polynomials.

LEMMA 8.3. Let �0 = (θ0
1 , θ0

2 , . . . , θ0
2N) be the middle parameter. Then, the jump series

�θ0
i
(t) for the map ��0 is a polynomial of degree at most k(xi−1, xi) − 1 for every

1 ≤ i ≤ 2N . As a consequence, the kneading invariants of the map ��0 are integer
polynomials.

Proof. We denote by �̃�0 a lifting of ��0 . Identifying our topological S1 with the
unit circle in the complex plane, let z1, z2, . . . , z2N ∈ [0, 1) be such that e2πzi = θ0

i .
Without loss of generality, we can assume that z1 = 0. For i = 1, 2, . . . , 2N , we set
Ii := (zi , zi+1) (where z2N+1 = 0). As explained, we will consider the map �̂�0 , denoted
by � from now on to simplify the notation. Observe that some of the intervals Ii may
split into two laps denoted by I l

i and I r
i (standing for left and right) separated by one

pre-image of 0, denoted by mi . The map � has, say, l laps and l − 1 turning points, namely
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z2, . . . , z2N plus the set of points mi . See Figure 13 in §9 for a particular example, where
the crosses in the horizontal axis mark the positions of the points mi .

Recall now the notation X = {x1, x2, . . . , x2N } introduced in Definition 1 for the
elements of the generating set. For each 1 ≤ j ≤ 2N , let βj be the minimal bigon
β(xj−1, xj ) and let us denote its length by kj . Each bigon βj is defined by two geodesics
Ll

j = xj−1xj2 · · · xjkj
and Lr

j = xjyj2 · · · yjkj
. By Remark 6.2, each cutting point θ0

j

belongs to the central interval C(Jj ). As a consequence, we can apply Lemma 5.1(a).
It follows that

lim
h→0+ �kj (zj + h) = lim

h→0− �kj (zj + h) =: πj .

Now, we claim that εkj
(z+

j ) = εkj
(z−

j ). Indeed, since θ0
j ∈ C(Jj ), it can be written as

two different geodesic rays Ll
jW , Lr

jW . At a symbolic level, �kj (θ0
j )(+) corresponds to

shifting the first kj letters of Ll
jW , so giving W (see Lemma 5.1). Now, if we apply

(�−1)
kj

(−), which corresponds to the left multiplication by Lr
j , we get Lr

jW . So, the

composition (�−1)
kj

(−) ◦ �
kj

(+) is the identity map on a neighbourhood of θ0
j ∈ C(Jj ).

At a group theoretic level, this identity is nothing but a relation in the group, seen as a
subgroup of Homeo(S1). As a consequence, �

kj

(−) and �
kj

(+) are either both increasing or
both decreasing. From this fact and the definition of the terms of the jump series, the claim
follows.

From the previous claim, we get that

�zj
(t) =

kj−1∑
i=0

(ωi(z
+
j ) − ωi(z

−
j ))t i + εkj

(zj )t
kj �(πj ).

Since the orbit of πj does not visit any cutting point by Lemma 6.3, then �(πj ) = 0.

With all these ingredients, we are ready to prove Theorem A.

Proof of Theorem A. The equality between the entropies stated in statement (a) follows
from Theorem 7.4. The fact that 1/λ is the smallest root in (0, 1) of an integer polynomial
follows from Lemma 8.3 and Theorem 8.1, which states that for the middle parameter, the
entries of the kneading matrix are integer polynomials.

The proof of statement (b) follows from Proposition 2.5 and the generalization of
Theorem 8.2 to circle maps [5, 8].

9. Effective computations and examples
In this section, we give some examples of computation of the volume entropy associated
to a geometric presentation. The whole process is based on Theorem A and the
Milnor–Thurston theory outlined in §8. Moreover, the power of such techniques has
allowed us to organize the computation in a systematic way to produce an algorithm that
takes as input any presentation P given by a list R of relations, and prints out the associated
volume entropy provided that P is geometric (otherwise, the program reports that P is not
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geometric). The procedure has been written in Maple and is available at https://github.com/
CombTopDynamics-cat/VolEntropyAlgorithm.git. A forthcoming open source version of
the code will be soon available at the same repository. Next, we show the code of the main
program, just because it clearly sets out the main steps of the computation.

VolumeEntropy := proc(R)
# Computes the volume entropy of the presentation R if R

is geometric
# or reports that R is not geometric otherwise
# USES: LinearAlgebra library
# USES: CheckRelations,CyclicOrdering,MinimalBigons,

KneadingMatrix procedures local co,bigons,i,A:
if CheckRelations(R)=false then
print(‘The relations do not satisfy the syntax
conventions‘): return:

end if:
co:=CyclicOrdering(R):
if co=false then print(‘The presentation is not

geometric‘): return: end if:
bigons:=MinimalBigons(R,co):
A:=KneadingMatrix(co,bigons,R):
i:=Determinant(DeleteColumn(A,1)):
return 1/min(fsolve(i,t=0..1));

end proc:

See Table 1 for some examples of execution of the program. The third column shows
the polynomial factor of the kneading determinant with roots in [0, 1).

9.1. Checking relations. The procedure CheckRelations(R) checks whether R verifies
the following syntax conventions. The set R of relations must be a list of lists of integers.
Any generator is entered as a positive integer k, while its inverse is −k. The set of
absolute values of all integers in R has to be {1, 2, . . . , n} for some n ≥ 3. By Remark 2.2,
we exclude presentations having relations of length 2, and also the presentation having
3 generators and 2 relations of length 3. As an example, next, we show the inputs satisfying
the conventions of the program for the following presentations (from now on, the inverse
of an element a will be written as ā):

P1 = 〈a, b, c, d | adac, cbdb〉 −→ R = [[1, 4, 1, 3], [3, 2, 4, 2]],

P2 = 〈a, b, c, d , e | abc, ceā, bc̄d2〉 −→ R = [[1, 2, 3], [3, 5, −1], [2, −3, 4, 4]],

P3 = 〈a, b, c, d | abab̄d , c2d〉 −→ R = [[1, 2, 1, −2, 4], [3, 3, 4]].

9.2. Computing the cyclic ordering. Once we have a syntactically admissible list of
relations R, we have to test whether it corresponds to a geometric presentation. This task
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TABLE 1. Some outputs of the algorithm.

Presentation (relations) Program output Polynomial

[acded̄b̄, ēc̄bā] log(8.50591006) t4 − 7t3 − 12t2 − 7t + 1

[acdeb̄, d̄ec̄bā] log(8.78515105) t4 − 8t3 − 6t2 − 8t + 1

[abac̄d, ce2, dbf 2] log(9.91984307) t20 − 4t19 − 44t18 − 122t17

−206t16 − 280t15 − 381t14 − 484t13

−579t12 − 606t11 − 606t10 − 606t9

−579t8 − 484t7 − 381t6 − 280t5

−206t4 − 122t3 − 44t2 − 4t + 1

[aihlkc̄a, c̄e2,
dbf 2k, gh̄j2, idgbl̄] Non geometric –

[aiac̄h, ce2, dbf 2, gh̄j2, idgb] log(17.9527833) t20 − 13t19 − 80t18 − 149t17

−187t16 − 196t15 − 252t14 − 348t13

−370t12 − 426t11 − 312t10 − 426t9

−370t8 − 348t7 − 252t6 − 196t5

−187t4 − 149t3 − 80t2 − 13t + 1

is assigned to the procedure CyclicOrdering(R), based on properties (a), (c) and (d)
of Lemma 2.1, which is in fact a characterization of the geometric presentations of
co-compact hyperbolic surface groups. As a first test of geometricity, we check whether
each generator appears twice (with + or − sign) in R (Lemma 2.1(c)). This test excludes
the presentation P2 above as non-geometric, while P1 and P3 pass the test. It turns out,
however, that P3 is geometric while P1 is not. The reason is that P3, unlike P1, satisfies
property (a): it is possible to find a cyclic ordering in the generating set that is preserved by
the action of the group. Let us briefly sketch how to decide whether such a cyclic ordering
exists for a presentation P = 〈X|R〉 and, in the affirmative, how to find it.

First, we fix the identity element Id of the group as the base vertex of the Cayley
2-complex Cay2(G, P). If this 2-complex is planar, then the boundary of each cell adjacent
to Id is a closed path from Id to itself that, read in the clockwise direction, is (a cyclic
shift of) a relation in R ∪ R̄. We choose an arbitrary relation g1g2 · · · gk in R and think of
it as the first cell, drawn in the clockwise direction. So, we are fixing g1 as the first generator
in the cyclic ordering, while the second one (to the right in the plane and read from the
base vertex Id) is ḡk . Now, to get the next generator to the right in the cyclic ordering, we
have to choose a cyclic shift of a relation in R ∪ R̄ starting by ḡk , say ḡkf2 · · · fl . The
next right generator will be f̄l . The condition is that f̄l must not be a previously found
generator.

As an example, take for instance the presentation P1 above. Set R1 = adac, R2 = cbdb.
The process is illustrated in Figure 10. After three steps, we get the generators a, c̄, b, d̄ ,
but in the fourth step, it is not possible to continue: we cannot use the shift d̄ b̄c̄b̄ of R̄2

(previously used in step 3) and we are forced to use the shift d̄āc̄ā of R̄1, which gives rise
to a as the next generator. Since a was the starting generator and we have not yet completed
the round (of all 4 generators and their inverses), it follows that the presentation P1 cannot
be geometric.
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FIGURE 10. A non-geometric presentation. The circles numbered by i indicate the angles used to attach the cell
at step i of the algorithm.

(a) (b)

FIGURE 11. (a) Cells adjacent to the base vertex Id and the cyclic ordering associated to the presentation P3.
(b) Attaching cells to get the minimal bigons.

However, the previous procedure applied to the presentation P3 above does give a
complete cycle of all 4 generators and their inverses. The obtained cyclic ordering, together
with all cells adjacent to the base vertex Id, are shown in Figure 11(a).

9.3. Computing the minimal bigons. Once a cyclic ordering has been found for a presen-
tation, the next step is to compute what we call the minimal bigons (see Proposition 2.3).
Given two generators x, y consecutive in the cyclic ordering, Proposition 2.3(b) states that
there exists a unique bigon β(x, y) of minimal length. Such a bigon is given by a pair of
geodesics γ1, γ2 connecting the base vertex Id and another vertex w, with γ1 starting at Id
by the edge labelled x and γ2 starting at Id by y. Since both geodesics must have the same
length, γ1γ̄2 is a closed path of even length that, read clockwise, starts with the edge x and
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ends with the edge ȳ. Recall that the length of the bigon β has been defined as the length
of any of the two geodesics γ1, γ2 and is denoted by k(x, y).

The existence of the minimal bigons is proved in [21, Proposition 2.6]. The proof is
algorithmic and is implemented in the procedure MinimalBigons(R,co). In short and
taking the above presentation P3 as an example: consider the cell of the 2-complex
Cay2(P3) adjacent to a, whose boundary B reads clockwise as abab̄d (Figure 11(a)). Since
its length is odd, it cannot define a minimal bigon. So, we take its central symbol, a, look
for the shift of a word in R ∪ R̄ starting by a, and glue together both cells along a. By
Lemma 2.1(c), there are exactly two of such shifts in R ∪ R̄, in this case, Y := abab̄d and
Z := ab̄dab. Since Y is in fact a shift of B̄, using Y would yield a boundary containing the
cancellation bb̄ that cannot be geodesic. So, we are forced to use Z. From Lemma 2.1(d),
it easily follows that using Z cannot produce cancellations. Once both cells are attached,
in this case, the obtained boundary has length 8, which thus defines a minimal bigon of
length 4. See Figure 11(b). If the length of the boundary was odd, this procedure can be
iterated and yields the minimal bigon after a finite number of steps.

9.4. Choosing the cutting points and computing the kneading invariants. The final
stage of the whole process is the computation of the kneading matrix introduced in
§8. This task is assigned to the procedure KneadingMatrix(co,bigons,R). According
to Theorem A, the volume entropy of the presentation equals the topological entropy of
the Bowen–Series-like map �� for any choice of the set of cutting points � (note that
specifying a particular map �� is equivalent to specifying �). As a consequence, we are
free to choose the set of cutting points � for the kneading matrix of the corresponding map
�� to be particularly simple. However, it is remarkable that a lot of information about any
map �� in the family is independent of � and can be algorithmically extracted just from
the combinatorial data encoded in the set of minimal bigons.

To illustrate it, we continue with the presentation P3 above, whose minimal bigons are
shown in Figure 11(b). The cyclic ordering reads clockwise as O = (a, d̄, c, c̄, d , b, ā, b̄).

Assume that for any pair x, y of adjacent generators, we have an (unspecified) cutting
point θy in the intersection of the cylinders Cx ∩ Cy ⊂ S1, and set Ix := [θx , θy) ⊂ S1.
See Figure 12. Let us see how to find the left and right images of any cutting point by a
Bowen–Series-like map �. As an example, the reader will find it useful to get �(θa)(−)

and �(θa)(+) following the picture shown in Figure 12. By the characterization of the
intersection of cylinders given by Theorem 3.4, the cutting point θa has to be represented
by two infinite words of the form ab̄c̄ · · · and b̄āc · · · . Considering θa as ab̄c̄ · · · (a point
of the cylinder Ca) and taking into account that, by definition, � acts as a shift, it follows
that �(θa)(+) is an infinite word starting by b̄c̄ · · · . In other words, �(θa)(+) ∈ Ib̄ by
Lemma 5.1(b). Analogously, �(θa)(−) can be read as an infinite word starting by āc · · · .
Thus, �(θa)(−) ∈ Iā . As a quick recipe and after some practice, the reader will find
it easy to be convinced that, for any interval Ix = [θx , θy), the right image of the left
endpoint θx belongs to Iz, where z is the generator following x along the bigon that, read
counterclockwise, starts by x, while the left image of the right endpoint θy belongs to Iw,
where w is the generator following x along the bigon that, read clockwise, starts by x.
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FIGURE 12. The definition of the interval Ia for the geometric presentation P3.

At this moment, we know which intervals contain the right and left images respectively
of the left and right endpoints of any interval Ix . Since we know that � is a homeomor-
phism on each Ix , we can simply connect the dots to get an approximate graph of �.
However, when connecting the dots, the question arises whether the map is increasing
or decreasing on each interval. For instance, take the interval Ic = [θc, θc̄). The previous
recipe using the minimal bigons tells us that �(θc)(+) ∈ Id̄ and �(θc̄)(−) ∈ Ib. Now, check
Figure 11(b) to see that three clockwise consecutive edges c̄, c, d̄ depart from the group
element (vertex) c. Note that these three symbols are consecutive in the cyclic ordering
O, but in the counterclockwise direction. In other words, the cyclic ordering of the edges
departing from c is the reverse of O. It easily follows that the map has to be orientation
reversing in Ic. See Figure 13 for a sketch of a Bowen–Series-like map � corresponding to
the presentation P3, where the horizontal axis, which represents S1, has been duplicated in
the vertical direction. The reader can use again Figure 11 to check that the edges departing
from vertices c, c̄, b, b̄ are organized clockwise as the reverse of the cyclic ordering O, and
so the map is decreasing on the corresponding intervals Ic, Ic̄, Ib, Ib̄.

To apply the theory of Milnor–Thurston invariants, we have to consider the lifting �̃ of
� and the map �̂ : [0, 1] −→ [0, 1] defined by �̂(F )(x) = �̃(x) − E(�̃(x)), where E(y)

denotes the integer part of y (for simplicity and abuse of language, �̂ will be denoted by �

from now on). It is then clear that � is a piecewise monotone and discontinuous map. The
set of points separating maximal intervals of monotonicity (turning points) is precisely the
set � of all cutting points plus the set of preimages of the leftmost cutting point, θa . There
is at most one of such preimages, mx , in any interval Ix , and in this case, the interval Ix

splits into two subintervals separated by mx , which we will call I l
x and I r

x (standing for left
and right). See Figure 13. The ordered set of turning points for our presentation P3 is then

θa < ma < θd̄ < md̄ < θc < mc < θc̄ < mc̄ < θd < md < θb < θā < θb̄ < mb̄.
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FIGURE 13. A sketch of the graph of � for the geometric presentation P3, where each interval Ix has been labelled
by x. The preimages of the leftmost point are marked with crosses in the horizontal axis.

Now, we must choose the set of cutting points �. Recall the notation {x1, x2, . . . , x2N }
introduced in Definition 1 for the elements of the generating set. For each 1 ≤ i ≤ 2N ,
let Ll

i and Lr
i be the left and right geodesic segments of length k(xi−1, xi) defining the

minimal bigon β(xi−1, xi). Let � be the middle parameter according to the definition
introduced in §6. This means that, for any 1 ≤ i ≤ 2N , θi is the Ll

i-middle point. To see
how this notation fits to our example, consider for instance the generator d̄ . We have that
(x1, x2, . . . , x8) = (a, d̄ , c, c̄, d , b, ā, b̄), so that d̄ = x2. Then, β(x1, x2) = β(a, d̄) =
{Ll

2, Lr
2} = {abd̄b, d̄bba} (see Figure 14). Now, we consider the centred continuation of
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FIGURE 14. Computing the left and right itineraries of the turning point θd̄ .

Ll
2 = abd̄b, which reads as abd̄bc̄ · · · since the opposite to b̄ is c̄. Although this is all the

information we will need to proceed, one can check that, in fact, the centred continuation
of Ll

2 is abd̄b(c̄ādb)∞. The cutting point θ2 = θd̄ is the point of S1 corresponding to this
geodesic ray.

Now, it is time to compute the kneading invariants for all turning points. To do it, we
have to find the left and right itineraries of each turning point. We can use Lemma 5.1(a,b)
to find the first k symbols of the itinerary, where k is the length of the corresponding bigon.
For an example, consider again the point θd̄ . Moving along the minimal bigon β(a, d̄), of
length k = 4 (see Figure 14), Lemma 5.1 states that the first four right iterates of θd̄ are

θd̄(+) ∈ Id̄ , �(θd̄)(+) ∈ Ib, �2(θd̄ )(+) ∈ Ib, �3(θd̄ )(+) ∈ Ia .

Analogously, the first four left iterates are

θd̄(−) ∈ Ia , �(θd̄)(−) ∈ Ib, �2(θd̄ )(−) ∈ Id̄ , �3(θd̄ )(−) ∈ Ib.

When an iterate belongs to an interval Ix that splits into I l
x ∪ I r

x , we can precise
whether the iterate belongs either to I l

x or to I r
x simply taking into account the graph

of the map shown in Figure 13. For instance, �2(θd̄ )(−) ∈ Id̄ but, since �3(θd̄ )(−) ∈ Ib,
then �2(θd̄ )(−) belongs to the subinterval of Id̄ that is mapped onto Ib, which is I l

d̄
.

Analogously, we have that

θd̄(−) ∈ I r
a , �(θd̄)(−) ∈ Ib, �2(θd̄ )(−) ∈ I l

d̄
, �3(θd̄ )(−) ∈ Ib,

θd̄(+) ∈ I l

d̄
, �(θd̄)(+) ∈ Ib, �2(θd̄ )(+) ∈ Ib, �3(θd̄ )(+) ∈ I l

a ∪ I r
a .
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Now, we should determine whether �3(θd̄ )(+) belongs either to I l
a or to I r

a . This fact
depends on the next symbol (the fifth one) in the infinite geodesic ray representing the
cutting point θd̄ . Since this symbol is c̄, then �3(θd̄ )(+) ∈ I r

a .
See Figure 14 for the complete set of symbols continuing the infinite rays at the vertices

opposite to the identity in all minimal bigons. Now, we can compute the first k terms of
the jump series. Going back again to the turning point θd̄ , using the notation introduced
in §8 and taking into account the increasing/decreasing character of � on each interval,
we get

ω0(θ
+
d̄

) = I l

d̄
, ω1(θ

+
d̄

) = Ib, ω2(θ
+
d̄

) = −Ib, ω3(θ
+
d̄

) = I r
a ,

ω0(θ
−
d̄

) = I r
a , ω1(θ

−
d̄

) = Ib, ω2(θ
−
d̄

) = −I l

d̄
, ω3(θ

−
d̄

) = −Ib.

Let us summarize what we have. Our algorithm has chosen a set of symbols Z :=
{z1, z2, . . . , z2N } such that zi is the opposite to the inverse of the last symbol in Ll

i .
Note that Z is totally determined by the minimal bigons. From this information and the
previous paragraphs, we have been able to compute the first k(xi−1, xi) terms of the jump
series �θi

(t). By Lemma 8.3, all the remaining terms vanish in all cutting points. Since,
by Theorem A, the volume entropy of the presentation is independent from �, it follows
that, from an algorithmic point of view, the information encoded in the minimal bigons is
all we need to compute the volume entropy.

Here follows the complete list of kneading invariants for all turning points that results
from our particular choice of the cutting points. For brevity, Ix , I l

x and I r
x will be

respectively denoted by x, xl and xr from now on:

νθa (t) = (al − b̄r ) + (b̄l + ā)t + (−c̄r + cr)t
2;

νma (t) = (ar − al) + tνθa (t);

νθd̄
(t) = (d̄l − ar) + (−b + d̄l)t

2 + (ar + b)t3;

νmd̄
(t) = (d̄r − d̄l) + tνθa (t);

νθc (t) = (cl − d̄r ) + (−d̄l − cr)t ;

νmc(t) = (cr − cl) + tνθa (t);

νθc̄
(t) = (c̄l − cr) + (−ar + b)t + (−b − ā)t2;

νmc̄
(t) = (c̄r − c̄l) + tνθa (t);

νθd
(t) = (dl − c̄r ) + (c̄r + dl)t ;

νmd
(t) = (dr − dl) + tνθa (t);

νθb
(t) = (b − dr) + (−ā − ar)t + (−ā − dr)t

2 + (−b̄l − ar)t
3;

νθā
(t) = (ā − b) + (d̄l + ar)t + (ā + al)t

2 + (d̄r + b̄l)t
3;

νθb̄
(t) = (b̄l − ā) + (−dl − b̄r )t + (−b̄r + b̄l)t

2 + (ā − dl)t
3;

νmb̄
(t) = (b̄r − b̄l) + tνθa (t).
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Finally, we formally write the above kneading invariants as a linear combination of
the base (al , ar , d̄l , d̄r , cl , cr , c̄l , c̄r , dl , dr , b, ā, bl , br) and organize the coefficients of
all invariants but the first one in matrix form, obtaining the following 13 × 14 kneading
matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + t 1 0 0 0 t3 0 −t3 0 0 0 t2 t2 −t

0 −1 + t3 1 + t2 0 0 0 0 0 0 0 −t2 + t3 0 0 0
t 0 −1 1 0 t3 0 −t3 0 0 0 t2 t2 −t

0 0 −t −1 1 −t 0 0 0 0 0 0 0 0
t 0 0 0 −11 + t3 0 −t3 0 0 0 t2 t2 −t

0 −t 0 0 0 −1 1 0 0 0 t − t2 −t2 0 0
t 0 0 0 0 t3 −1 1 − t3 0 0 0 t2 t2 −t

0 0 0 0 0 0 0 −1 + t 1 + t 0 0 0 0 0
t 0 0 0 0 t3 0 −t3 −1 1 0 t2 t2 −t

0 −t − t3 0 0 0 0 0 0 0 −1 − t2 1 −t − t2 −t3 0
t2 t t t3 0 0 0 0 0 0 −1 1 + t2 t3 0
0 0 0 0 0 0 0 0 −t − t3 0 0 −1 + t3 1 + t2 −t − t2

t 0 0 0 0 t3 0 −t3 0 0 0 t2 −1 + t2 1 − t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, we delete any column (for instance, the first one) and compute the determinant
D of the obtained 13 × 13 matrix. The only factor of D containing real roots in
[0, 1) is

t10 − 3t9 − 14t8 − 13t7 − 17t6 − 12t5 − 17t4 − 13t3 − 14t2 − 3t + 1,

and the smallest root is λ ≈ 0.170554162. From Theorem 8.1, it follows that the volume
entropy of the presentation P3 is log(1/λ) ≈ log(5.86324007).

We end this section providing the relevant computation details for the classical
presentations for the orientable and non-orientable surfaces of genus 2, which are
respectively

P4 = 〈a, b, c, d | abāb̄cdc̄d̄〉, P5 = 〈a, b, c, d | a2b2c2d2〉.

The above presentations are minimal in the sense that the number of generators equals
the rank of the group. Note first that the volume entropy of any minimal presentation has to
be the same. Indeed, the number of vertices at distance m from the identity vertex depends
only on the shape of the Cayley graph as defining a tiling of the plane. Since any minimal
presentation of a surface of genus 2 has one single relation of length 8, the Cayley graph
gives a tiling of the plane by octagons in all cases.

For P4, the cyclic ordering is (a, d , c̄, d̄ , c, b, ā, b̄). In this case, all minimal bigons
have length 4. The set of cutting points defines a partition

θa < ma < θb̄ < mb̄ < θā < θb < mb < θc < mc < θd̄ < θc̄ < mc̄ < θd < md

and the map is orientation preserving in all intervals. The kneading matrix is
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + t 1 0 −t3 + t4 0 −t4 0 0 0 −t2 0 t3 t2 −t

0 −1 1 0 0 t3 t2 0 t 0 −t −t2 0 −t3

t 0 −1 1 − t3 + t4 0 −t4 0 0 0 −t2 0 t3 t2 −t

t2 −t3 0 −1 1 −t 0 −t2 0 0 t 0 0 t3

t 0 0 −t3 + t4 −11 − t4 0 0 0 −t2 0 t3 t2 −t

0 −t2 + t3 0 0 t −1 1 −t 0 0 t2 − t3 0 0 0
t 0 0 −t3 + t4 0 −t4 −1 1 0 −t2 0 t3 t2 −t

0 −t 0 0 t2 0 t −1 1 0 −t2 + t3 −t3 0 0
t 0 0 −t3 + t4 0 −t4 0 0 −1 1 − t2 0 t3 t2 −t

t 0 0 −t 0 −t2 −t3 0 0 −1 1 t3 t2 0
0 0 t 0 0 0 t3 0 t2 − t3 0 −1 1 − t 0 −t2

0 0 t2 − t3 0 0 0 0 0 t3 −t2 0 −1 + t 1 −t

t 0 0 −t3 + t4 0 −t4 0 0 0 −t2 0 t3 −1 + t2 1 − t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The relevant polynomial factor of the determinant obtained after deleting the first
column is

t4 − 6t3 − 6t2 − 6t + 1,

the well-known growth polynomial for the minimal geometric presentations of surface
groups [6, 15], whose smallest root is approximately 0.143269846. The volume entropy
of presentation P4 (and, thus, of P5) is then approximately log(6.97983577). The same
is true for the following minimal and geometric presentations P6 and P7 corresponding
respectively to the orientable and non-orientable surfaces of genus 2. These presentations
were called symmetric in [6]:

P6 = 〈a, b, c, d | abcdāb̄c̄d̄〉, P7 = 〈a, b, c, d | abcdcbad̄〉.
It is worth noticing that previous computations of the volume entropy via

Bowen–Series-like maps [6, 21] require to deal with determinants of much bigger matrices
(for instance, a 57 × 57 matrix for the presentation P4 above).
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