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Abstract

If life ever existed on Mars, it may have developed survival strategies similar to those adopted by extremophiles
living in terrestrial Martian analogs, such as the cryptoendolithic communities found in the rocky substrates of the
McMurdo Dry Valleys or other ice-free areas of continental Antarctica. Nearly thirty years of research on these
super-adapted organisms laid the foundation for the CRYPTOMARS project, which aims to disclose the genomic
and phenotypic features allowing these microbial communities to withstand specific physico-chemical stresses that
may be encountered on the Red Planet. This information will provide tools to outline, in terms of diversity and
competences, a putative microbial community able to survive, adapt or even perpetuate under early or present
Martian conditions. The project and the background information are here presented.
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Introduction

“Is there or has ever been life on Mars?”” and “How can we investigate it?” are two of the most intriguing
questions in modern science. From its early geological stages until now, Mars is the planet most similar
to Earth and, seeing its environmental conditions, it can be considered one of the most interesting
candidates to evaluate the possibility of life beyond Earth (Hansen et al., 2005). In recent years, research
on this fascinating topic has focused on searching for extraterrestrial life by defining its limits on our
planet (Cockell et al., 2016), by adopting a method grounded in our current knowledge of terrestrial life-
forms (Yamagishi et al., 2019) and their different characteristics, geological settings, ecosystems and
environments (Raulin-Cerceau, 2004).

The Martian environment has undergone significant changes throughout its geological history,
spanning three major eras: the Noachian, the Hesperian and the Amazonian (Head ez al., 2001). There is
evidence suggesting that during the pre-Noachian period, Mars may have closely resembled early Earth
and that subsequently, by the late-Noachian, environmental conditions were likely favorable for the
spread of possible life-forms. However, from the Hesperian to the Amazonian period, conditions
progressively deteriorated (Wordsworth, 2016; Wordsworth ef al., 2021; Dong et al, 2018) reducing the
habitability of the planet (Cabrol, 2018). Currently, the surface of Mars results to be uninhabitable for
life, as we know it, primarily due to the loss of its magnetic field and atmosphere resulting in an increase
of radiation caused by unfiltered exposure to Galactic Cosmic Rays (GCRs) and Solar Energetic
Particles (SEPs) (Zeitlin et al., 2010), with varying doses depending on solar activity and latitude
(Hassler et al., 2014). Additionally, it also results in a very tenuous atmosphere (around 6 mbar),
extremely low oxygen levels and temperatures, with a variation from —128.15 °C during the polar night
to 26.85 °C at the equator (Sebastian et al., 2010). Although GCRs are mostly composed of X-rays,
gamma rays, protons and atomic nuclei at very high energies, the total dose due to GCRs is very small
compared to that from the Sun (SEP). The latter are made up of protons, heavier atomic nuclei
(significant up to iron) and electrons with energies up to about 1 GeV. In the case of the Martian surface,
GCRs and SEPs are responsible for a dose rate ranging from 180 to 225 pGy/day (Hassler et al., 2014),
with the SEPs being the major contributors to the absorbed dose. However, high energetic X-rays and
gamma rays are produced as secondary radiation by the ionization processes or interaction of particles
and primary radiation with matter.

Among the main factors limiting life on the Red planet, are certainly extreme values of temperature
and aridity. On present Mars, although temperatures vary considerably depending on the regions of
the planet and the periods of the year, there is an average atmospheric temperature of —63 °C, and a
surface temperature around 20 °C, with daily variations of up to about 80 °C (Martinez et al., 2017).
On the other hand, although there is no uniformity in the estimates of the temperatures of primordial
Mars (late-Noachian/early-Hesperian period), the most recent models hypothesize a marked
discontinuity in the planet’s climatic conditions, which would have seen colder and drier periods
alternating with more humid and warm periods, the latter with average annual temperature values
ranging from about 0 to 7 °C (Palumbo ef al., 2018; Rapin et al., 2021; Wordsworth et al., 2021). In
addition to the extreme temperature values, the current Martian environment is also characterized by
strong aridity. Early Mars was characterized by a strong climatic discontinuity whose conditions could
have been similar to those described in the McMurdo Dry Valleys (Head and Marchant, 2014). Such
arid conditions would then have been further exacerbated in the more recent history of the planet
where the relative humidity near the surface can reach, depending on the season, values above 90%
and the vapor pressure does not exceed values of 1.4 x 10-5 bar (Martin-Torres ef al., 2015; Fischer
et al.,2019). On the other hand, the low atmospheric pressure and the temperatures reached allow the
presence of liquid water only in the form of transient brines in the superficial layers of the Martian
regolith (Smith et al., 2014; Jones, 2018). Such conditions are not only not compatible with cellular
processes, but can also induce oxidative stress in the microbial community (Franga et al., 2007,
Gostincar & Gunde-Cimerman, 2018).
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Earth’s Planetary Fields Analogs

Earth is characterized by a variety of environmental conditions and, depending on the specific physico-
chemical characteristics of the various geographic locations, it is inhabited by different types of
organisms (Pepper and Gentry, 2015). In some terrestrial areas, environments are so extreme that they
are referred to as Planetary Fields Analogs (Cassaro et al., 2021), including the “Martian analogues on
Earth” (Cary et al., 2010). These regions are mostly uninhabitable (de Los Rios et al., 2014) due to their
very extreme environmental parameters, that are similar to the Martian ones and well known to be
limitant for the development of life (Merino et al., 2019). The only exception is represented by
extremophilic microbial species who display a wide range of strategies and adaptations to survive
otherwise lethal stresses (Horneck, 2008; de Los Rios ef al., 2014). Among the Martian analogs on Earth
there are the ice-free areas of Continental Antarctica, the widest of which are the McMurdo Dry Valleys
in Victoria Land. The geological and climatic evolution of these areas are somehow comparable to that
which led to the environmental conditions on Mars. Indeed, these regions are characterized by extreme
parameters, such as very low temperatures, ranging from —20 °C to —50 °C in winter, fluctuations in
freeze-thaw periods, prolonged dryness stages (Scalzi et al., 2012), high salt concentration, high
oligotrophy and high levels of ultraviolet (UV) radiation (Onofti et al., 2007). These conditions have
been considered as incompatible with active life and these areas have been regarded as devoid of life
until specialized microbial communities were discovered dwelling into rocks, finding a last refuge to
avoid extinction in the endolithic niches (Friedmann and Ocampo-Friedmann, 1976).

Antarctic cryptoendolithic microbial communities

The endolithic environment, the pore and spaces inside of rocks, is a ubiquitous habitat for
microorganisms on the Earth and an important target of the search for life elsewhere in the Solar System
(Walker and Pace, 2007). In fact, the endolithic niche protects from direct exposure to most of the
external environmental stresses, including the large spectrum of energetic radiation characterizing other
planetary bodies. In the most extreme terrestrial climates, such as hot and cold deserts, endolithic
microorganisms are often the main form of life hosting specialized microbial assemblages which endure
the stringent conditions finding an ultimate refuge in the interstices of porous rocks (Pointing and
Belnap, 2012). These communities can mediate inputs and outputs of gases, regulating rock weathering
and soil formation, biomineralization and hydrological and nutrient cycles keeping biologically active
otherwise sterile lands.

Endolithic microbial assemblages are the main, and often the sole, form of life colonizing the ice-free
areas of Continental Antarctica where they represent the main standing biomass in the McMurdo Dry
Valleys, occupying approximately 4% of sandstone boulders (Pointing et al., 2009), up to 30% of
granite boulders (Yung et al., 2014), and 100% of sandstone cliffs (Friedmann, 1982). The most
widespread among endolithic adaptations is known as cryptoendolithism (microbial life dwelling within
pores of sedimentary rocks) (Friedmann and Ocampo, 1976; Nienow, 1993; de la Torre ef al., 2003).
Cryptoendoliths survive by exploiting a unique niche that offers thermal buffering, physical stability,
protection from severe UV, solar radiation and, additionally, ensures water retention (Wollenzien ef al.,
1995; Wierzchos et al., 2012, 2018, 2020). Among them, the lichen-dominated cryptoendolithic
communities are the most complex (Friedmann et al., 1982) characterized by a very slow growth, with
an estimated turnover of 10.000 years (Friedmann et al., 1986, 1993); they are very widespread in
Antarctic sandstone (Friedmann ef al., 1982) and one of the most resistant life-forms on Earth (Scalzi
et al., 2012).

Antarctic cryptoendolithic lichen-dominated communities show a high diversity in terms of
abundance of both eukaryotic and prokaryotic species, which in most cases only colonize these peculiar
habitats on Earth (Coleine et al., 2018) (Figure 1A). Regarding the eukaryotic component, they are
mainly composed by non-lichenized black fungi, lichenized fungi and algae; instead, the prokaryotic
counterpart is mostly represented by cyanobacteria and heterotrophic bacteria (de Los Rios et al., 2014).
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Figure 1. (4) Sandstone cliffs at Linnaeus Terrace, McMurdo Dry Valleys, Antarctica; (B) biological
weathering: patchwork colored surface of sandstone due to rock exfoliation as consequence of
endolithic microbial activity; (C, D) typical stratification of cryptoendolithic lichen-dominated
communities at different magnification. Scale bar (C) =1 cm, scale bar (D) = 0.5 cm.

These assemblages show a tiny organization with a typical stratification in different colored and
biologically distinct bands, developing within the first centimeter below the rocky surface; different
microbial compartments are driven at specific depth and segregated from the others, like a
chromatographic separation driven by specific physiological needs and requirements.

The survival capability in such extreme conditions of the cryptoendolithic communities is due to
important adaptations strategies they adopted like, for example, the development of a melanized cell-
wall system improved by the microcolonial black fungi (MCF) constituting the first layer of these
assemblages. MCF act as a screen against the harmful intense solar radiation which can damage the
photosystems of chlorophycean algae and cyanobacteria displayed in the lower green and sometime
blue/green bands, acting as primary producers sustaining the whole community, while lichenized fungi
and algae sit in the white band in the middle (Friedmann, 1982) (Figure 1B, C, D).

Hypothesizing that on Mars, during the late-Noachian, there were life-permissive environmental
conditions (McKay, 2010; Westall ef al., 2013; Cockell, 2014), putative microorganisms living there
may have adopted survival strategies similar to the ones engaged by these terrestrial extremophiles
before their extinction or, theoretically, they could still endure Martian conditions in protected niches of
the Red Planet. Moreover, terrestrial contamination cannot be excluded caused by human activities
through contaminated spacecrafts on the ground (Baqué et al., 2016) and rovers inadequately sterilized,
or even through accidental impact of orbiters (Mancinelli and Klovstad, 2000).

New advances on Antarctic cryptoendolithic communities

The study of Antarctic cryptoendolithic microbial communities spans over three decades and has taken
advantage of progressive advances in scientific approaches and available techniques which have
improved impressively over this timeframe, especially for what concerns molecular approaches.

The geographic and genetic isolation over a timescale of evolutionary significance, coupled with
the exacerbated environmental pressure, promoted speciation of highly adapted guilds; to date,
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phylogenetic studies led to the description of 8 and 18 fungal genera and species, respectively
(Selbmann et al., 2005, 2008; Egidi ef al., 2014; Muggia et al., 2021; Turchetti et al., 2015, 2018).
Metabarcoding analyses confirmed that fungi are abundant guilds in these communities being
composed mainly by Lecanoromycetes, Dothideomycetes and Eurotiomycetes (Coleine et al., 2018); for
bacteria the phyla Actinobacteria and alpha-Proteobacteria largely prevail (de la Torre et al., 2003;
Coleine et al., 2019).

The rock substrate has a significant role on the endolithic inhabitants: sandstone appears as the most
protective substratum, allowing the communities to push toward higher altitudes and longer sea
distances (Selbmann et al., 2017), while granites maintain higher biodiversity, particularly for the
bacterial component and higher presence of cyanobacteria (Larsen et al., 2024; Stoppiello et al., 2025).

Recent metagenomic and phylogenomic studies revealed the presence of a myriad of new
prokaryotic species, exceeding 2,600 new candidates, some of which with very ancient roots dating
back to the Precambrian period (Albanese et al., 2021; Coleine et al., 2024). Others belong to new
candidate bacterial classes and show peculiar alternative metabolic capabilities that appear fundamental
for the fitness of a microbial community adapted at the edge of water stress tolerability in one of the
driest and coldest environments on Earth (Williams et al., 2024). These metabolisms include the
capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy
and metabolic water required for survival and persistence (Ji et al., 2017). Furthermore, some
Metagenome Assembled Genomes encode the capacity to couple the energy generated from H, and CO
oxidation to support carbon fixation (atmospheric chemosynthesis); differently from photosynthesis,
this autotrophic metabolism does not require water, an issue of utmost importance for the success of
organisms living under constant and very strong water stress. Moreover, it is becoming evident that a
conspicuous presence of a largely undescribed, highly diverse and spatially structured virome, of which
the final viral catalog was constituted of 14,796 viral sequences mainly associated with the endolithic
bacteria and 15.2% of vOTUs only, may represent eukaryotic viruses. The predicted Auxiliary
Metabolic Genes of these phages are enriched with functions indicating that they may potentially
influence bacterial adaptation and biogeochemistry, playing a possible key role in the fitness of the
whole community (Ettinger ef al., 2023). Recent metabolomic studies on cryptoendolithic communities
reanimated using appropriate wetting, light and temperature, indicate that several metabolic pathways
are significantly differently up- or down-regulated in opposite sun-exposed communities suggesting a
critical role in the adaptation to contrast intensities of environmental pressure (Fanelli et al., 2021).
These results supplied the first insight about the process through which Antarctic endolithic
communities respond to stresses, maintaining biological activities under the harshest conditions
accounted for as a Martian analog on Earth and that are typically incompatible with active life. Finally,
these communities, and the microorganisms isolated from them, are incredibly resistant and capable of
surviving, if dehydrated, both in space, exposed outside the International Space Station, and in
simulated Martian conditions over a period of 18 months (Onofti et al., 2012, 2015; Selbmann
et al., 2015).

Altogether these recent advances are giving unprecedented insights on these unique microcosms
about “who is there, what are they doing, and what they are potentially able to do” and supplying tools
for unraveling the evolution and adaptability of these communities, representing a very new wave of
research with intriguing implications of astrobiological relevance, and have been of inspiration for the
Jfoundation of the CRYPTOMARS Project.

The CRYPTOMARS project

CRYPTOMARS is a multi-disciplinary and interdisciplinary project aiming to unravel, applying a
multi-omic approach, the metabolic responses and mechanisms of resistance of these communities after
prolonged exposure to selected stresses characterizing the environment of early and present-day Mars.
By integrating genomic, metabolomic and lipidomic data, the project aims to clarify how these
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communities have adapted to live, spread and even survive in Mars-like conditions on Earth. Data
integration will unravel their structures, responses and adaptability at a level of accuracy and depth that
would not have even been conceivable until very recently.

The Mycological Section of the National Museum of Antarctica (MNA), housed at the Department of
Ecological and Biological Sciences (DEB) of the University of Tuscia, hosts the largest repository of
rocks collected in the Antarctic desert, colonized by cryptoendolithic communities. This unique
collection was built over a period of about 30 years in the frame of Antarctic expeditions funded by the
Italian National Program for Research in Antarctica (PNRA). The sampling campaigns were carried out
mainly in Northern and Southern Victoria Land, and covered a latitudinal gradient of 72°~77° South, an
altitudinal gradient from 0 to 3,200 m above sea level, from 0 to 100 km distance from the coast and at
different solar exposures (north-south), allowing to select communities, exposed and adapted to
increasingly prohibitive environmental conditions up to the limit of extinction. The huge number of
samples, and the related sequencing data, constitute together the KNOW HOW/HERITAGE of which
this project takes advantage, allowing its notable valorization with the new experiments and analyses
that will lead to a new vision and interpretation.

The innovation and originality of the project idea lies in unraveling the response to environmental
challenges of microbial communities as a whole, rather than focusing on individual extremophiles,
using cutting-edge experimental techniques, highlighting the adaptations coming out from emergent
properties and synergies of microbial interactions. The multi-disciplinary nature of the project will
provide, for the first time, a comprehensive characterization of the mechanisms and characteristics that
allow microbial communities to adapt and survive in conditions similar to those that are found on Mars.
Antarctic endolithic communities are perfectly suited to the proposed study: they are very stable due to
the hard nature of rocks compared to soils and soil biological crusts; they display a physiologically very
slow growth rate, with a calculated turnover of 10,000 years, due to the permanent sub-optimal
conditions of their natural environment; their structure and functionality are tightly tailored and adapted
to the features of the conditions in the locations where they have been collected, chosen along a scale of
increasing environmental pressures, giving the picture of the optimal adaptation to specific
environmental conditions acquired over an evolutionary timescale.

CRYPTOMARS work plan

Colonized rock samples from 5 selected ice-free sites of Victoria Land, Antarctica, and distributed at
increasing environmental pressure over an altitudinal range from 834 to 3100 m asl were selected for the
experiments (Figure 2).

Before the exposure to selected stresses, the rocks will be reactivated by rehydration and kept at
optimal growth temperature (Selbmann et al., 2005, 2008) in an incubator equipped with a white light
lamp (Fanelli ef al., 2021). Viability after metabolic reactivation will be tested before proceeding with
the subsequent experiments (Pacelli ez al., 2017).

In the frame of CRYPTOMARS, Antarctic cryptoendolithic communities will be exposed to
environmental factors characterizing two specific intervals of Martian geological history related to the
late-Noachian/early-Hesperian period and to present-day Mars (Amazonian period). This will allow to
understand how putative Martian life-forms may have been able to adapt and respond to the Martian
environment i) when the environmental conditions of the planet began to become more discontinuous
and hostile (late-Noachian/early-Hesperian), similarly to what happened in the geological history of
Antarctica; ii) when the conditions on the surface of Mars became extremely inhospitable for life
(Amazonian). To achieve our goal, a number of climatic and radiative stresses have been considered and
detailed as follows.

To experimentally simulate the Martian environment irradiation for what concerns gamma radiation,
the Calliope Facility (ENEA Research Centre, Casaccia Rome, Figure 3), which also allows simulating
the gamma component associated with the presence of neutrons as primary radiation, will be used. The
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Figure 2. Sampling map. (A) Map of Victoria Land (from Google Earth) indicating sampling locations
selected for CRYPTOMARS. Landscapes of the sampling areas: (B) Timber Peak; (C) Mt New Zealand;
(D) Pudding Butte; (E) Battleship Promontory, (F) Linnaeus Terrace.

irradiation experiments will also be implemented with protons, which represent about 90% of the GCRs
hitting the Martian surface (Simpson, 1983), using the TOP-IMPLART facility (ENEA Research
Centre, Frascati, Rome, Figure 4). The characteristics of these facilities make it possible to modulate
specific parameters (absorbed dose, dose rate). During the exposure, 1.8 cm discs of colonized Antarctic
sandstone will be maintained at a temperature of 15 °C and a humidity of 65% to keep an active
metabolism of the microbial communities during the experiment. At the end of the exposure, the
samples will be immediately frozen in liquid nitrogen to have an unaltered picture of the metabolic
responses during exposure to stress until downstream analyses.

For what concerns the spectrum of non-ionizing electromagnetic radiation (visible and UV light) on
early and current Mars, as well as in the natural environment in which the communities live, it will be
experimentally simulated using a UV lamp (250-400 nm) with a maximum intensity of 618 W/m? (61,8
mW/cm?). The maximum UV irradiance values estimated for the three conditions (Cockell, 2000; Patel
et al., 2002) have been considered: chronic dose of 25 W/m?, which corresponds to a maximum
exposure value in primordial Martian conditions; chronic dose of 55 W/m?, which corresponds to a
maximum exposure value in current Martian conditions; chronic dose of 2.30 W/m?, which corresponds
to a maximum exposure value in natural conditions in Antarctica (from NASA Earth
Observations [NEOY]).

The ability of communities to cope with periods of extremely cold temperatures or low water
availability could require the activation of ad hoc metabolic functions, the understanding of which is of
primary importance in the study of possible life-forms on Mars. To study the effects and responses of the
climatic parameters previously mentioned, we set =70 °C/+10 °C as thermal fluctuations to allow the
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Figure 3. Calliope facility.
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Figure 4. TOP-IMPLART Accelerator.

rocks to reach temperatures like those observed on Mars at present. For early Mars, conditions of
thermal fluctuations were set as —5 °C/+15 °C and, for simulating Antarctic natural conditions, we
referred to what was reported as the average thermal fluctuations in the month of December which is the
mildest (—18°C/+6°C) (Friedmann et al., 1987). Water stress (in terms of dehydration and rehydration
cycles characterizing both early and present Mars conditions), will also be tested. UV exposure and
climatic tests will be implemented in the Climatic Chamber (ENEA Research Centre, Casaccia Rome,
ACS Angelantoni DM-340-C) (Figure 5).

Selected testing conditions and number of samples to be treated are displayed in Table 1 and include:
(1) exposure to simulated natural Antarctic conditions; (ii) the spectrum of electromagnetic radiation
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Table 1. Selected stress conditions and replicates of treated colonized rocks

Gamma rays

Protons irradi-

UV-vis irradia-

Thermal cycles

Hydration-
dehydration

Mars simula-
tion chamber

Untreatable

irradiation (nr) ation (nr) tion (nr) (nr) cycles (nr) (nr) samples (nr)
Samples sites EM PM ADEM PM A DEM PM A DEM PM A D EM PM A D Light Dark D
Linnaeus Terrace - 00 -2 - 10 — 2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
Battleship Promontory - 10 -2 - 10 -2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
(Northern sun-exposition)
Battleship Promontory - 00 -2 - 10 — 2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
(Southern sun-exposition)
Pudding Butte (Northern sun-  — 00 -2 - 10 — 2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
exposition)
Pudding Butte (Southern sun-  — 0 -2 - 10 -2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
exposition)
Timber Peak - 00 -2 - 10 — 2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
Mt New Zealand - 00 -2 - 10 — 2 10 10 10 6 10 10 10 6 10 2 5 5 2 30
Sub-tot 84 84 252 252 84 84 210
Tot 1050

EM: Early Mars; PM: Present Mars; A: Antarctica; D: Dosimetry.
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Figure 5. Climatic Chamber.

(visible and UV light) present in early and current Martian environments; (iii) part of the spectrum of
ionizing radiation that characterizes the Martian radioactive environment, represented by gamma rays
and accelerated protons, which represent 90% of the cosmic rays (Galactic Cosmic Rays [GCR] and
Solar Energetic Particles [SEP]) that strike the Martian surface; (iv) the temperature variation during the
Martian day (sol); (v) water stress (dehydration and rehydration cycles); (vi) the effect of concomitant
exposure to the atmosphere, temperature and spectrum of electromagnetic radiation (visible and UV
light) of early Mars and present-day Mars in Mars simulation chambers (Figure 6).

Viability pre- and after-treatments will be tested with culturomic, colorimetric and molecular
approaches that will be implemented as part of the experimental work plan of the project (Del Franco
et al., 2025, this issue).

A metagenomic study will display the genetic and functional characteristics of the analyzed
communities, and how they vary according to the environment in which they have been collected to
display their diversity, the functional genes and the potential metabolic pathways, tailored to the
environmental pressure in which they are found and potentially involved in the stress response.
Additionally, alternative metabolic pathways (i.e. atmospheric chemosynthesis, far-red photosynthesis)
will also be identified and related to specific skills that can promote the ability to live and perpetuate in
these terrestrial and possible extraterrestrial limit environments helping to define the possible genetic
and predictive functional properties of hypothetical Martian microbial communities. These first data
will also provide the necessary information for the scheduled metabolomic and lipidomic analyses.

The complete characterization of the metabolome of cryptoendolithic communities, both in optimal
and stressed conditions, represents an essential contribution for understanding the genetic and molecular
bases of their adaptability. Indeed, it is reasonable to hypothesize that the study of its composition
represents an ideal proxy to evaluate and compare the mechanisms of response/resilience/adaptation of
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Figure 6. Mars simulation facility in PASLAB at Berlin DLR (Lorenz et al., 2023).

each community, allowing, at the same time, the identification of sets of metabolites that may be
integrated into metabolic functions or associated with specific metabolic pathways that could constitute
the basis for the survival of potential communities in extraterrestrial environments. For these reasons,
the activities focus on the direct measurement of the metabolic/lipid profile of microbial communities
by applying untargeted metabolomics and lipidomics techniques. These analyses will be performed
using high-resolution mass spectrometry techniques coupled to liquid chromatography: (U) High-
Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry [HPLC-
HRMS] is one of the best choices for untargeted analysis techniques, given the versatility in metabolite
coverage and the sensitivity of these instruments (Letertre, 2021), by detecting and profiling hundreds to
thousands of metabolites with different chemical properties in a biological sample. All the experimental
procedures for the metabolomic and lipidomic analyses will be implemented and optimized as part
of the experimental work plan of the project, adapting the methods previously developed at the
Metabolomics Research Unit of the Fondazione E. Mach (Garcia-Aloy et al., 2020, 2023).

The effect of each stress applied to the communities will be studied individually first and then by
integrating all the responses together with other applied stresses and with the vitality and diversity data,
in order to define in detail what the possible genetic and functional properties of hypothetical Martian
microbial communities are.

An integrated approach, based on multivariate analysis and machine learning models, will be
implemented to combine the relative abundance of genes and metabolic pathways predicted with
metabolomic/lipidomic data and vitality tests to outline specific characteristics of communities that
exhibit different responses to the applied stresses. Finally, the results obtained will allow the
construction of ecological models predictive of the habitability of extraterrestrial environments, such as
those of early and present-day Mars.

Expected results

The integrated application of -omic approaches and advanced bioinformatics strategies will enable the
identification of metabolites, potentially linked to specific pathways, that allow a community to remain
active, both in the limiting conditions of their natural environment and under selected Martian stresses to
which they will be exposed, and to identify the genetic bases of such responses and adaptations. This
information will also deepen our level of knowledge of the evolutionary mechanisms that have led to
the establishment of microbial communities capable of being successful in Mars-like terrestrial
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environments. All together these results will provide new awareness of the genetic and functional
characteristics that determine the “resilience” and “resistance” of cryptoendolithic communities, both at
the level of single organisms and of the whole community and to outline the feature of a putative
microbial community, in terms of diversity and competences, theoretically able to have colonized Mars
or Mars-like bodies.
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