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Abstract

We extend the work of N. Zubrilina on murmuration of modular forms to the case when
prime-indexed coefficients are replaced by squares of primes. Our key observation is that
the shape of the murmuration density is the same.
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1. Introduction

The authors of [HLOP22] were the first to notice the oscillating pattern of the average
value of the pth Dirichlet coefficients of fixed rank elliptic curves for a prime p in a fixed con-
ductor range. This kick-started the study of what is now known as ‘murmurations’ of elliptic
curves. This pattern was then detected in more general families of arithmetic L-functions,
such as those associated to weight k holomorphic modular cusp forms for �0(N) with con-
ductor in a geometric interval range [M, cM] and a fixed root number

1
. A. Sutherland also

made a striking observation that the average of af (P) over this family for a single prime
P ∼ M converges as a continuous looking function of P/M. More recently, N. Zubrilina
established a case of the correlation phenomenon between Fourier coefficients of families of
modular forms and their root numbers in [Zub23]. The purpose of this article is to extend
the main result of Zubrilina to the case of prime power coefficients of modular forms.

†Supported by an AMS–Simons early career travel grant.
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The first main result proven by Zubrilina for weight 2 modular forms is the following:

THEOREM. Let Hnew(N) be a Hecke basis for trivial character weight 2 cusp new forms for
�0(N) with f ∈ Hnew(N) normalised to have lead coefficient 1. Let ε(f ) be the root number
of f, let af (p) be the p-th Fourier coefficient of f, and let λf (p) := af (p)/

√
p. Let X,Y and P

be parameters going to infinity with P prime; assume further that Y = (1 + o(1))X1−δ2 and
P � X1+δ1 for some δ1, δ2 > 0 with 2δ1 < δ2 < 1. Let y := P/X. Then∑

N∈[X,X+Y]
square-free

∑
f ∈Hnew(N)

λf (P)
√

Pε(f )

∑
N∈[X,X+Y]
square-free

∑
f ∈Hnew(N)

1

= 12

π
∏

p

(
1

p(p+1)

)
⎛⎝A

√
y + B

∑
1≤r≤2

√
y

C(r)

(√
4y − r2

)
− πy

⎞⎠
+ Oε

(
X−δ′+ε + 1

P

)
,

where

A =
∏

p

(
1 + p

(p + 1)2(p − 1)

)

B =
∏

p

(
p4 − 2p2 − p + 1

(p2 − 1)2

)

C(r) =
∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)
.

In particular, for any δ1 < 2/9, one can find δ2 for which δ′ > 0.

As explained in op. cit. the formula obtained above (referred to as the murmuration den-
sity) comes from applying the Eichler–Selberg trace formula to the composition of Hecke
and Atkin–Lehner operators. Using this technique allows for interpreting the sum in terms
of certain class numbers, the averages of which in short intervals can then be handled via
the class number formula.

The main result of this paper is Theorem 8·1 which we record below for the convenience
of the reader.

THEOREM. Let Hnew(N) be a Hecke basis for trivial character for weight 2 cusp forms for
�0(N) with f ∈ Hnew(N) normalised to have leading coefficient 1. Let ε(f ) be the root number
of f and let af (p) be the p-th Fourier coefficient of f, and set λf (p) = af (p)/

√
p. Let P be a

prime, and suppose that the parameters P, X and Y go to infinity. Set Y = (1 + o(1))X1−δ and
P2 � X1+δ2 where 0 < δ2 < δ < 9/11 and δ/9 + δ2/2 < 1/9. Set δ′ = δ2 − δ/2. Then for A,
B, and C(r) as defined before and writing y = P2/X,
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N∈[X,X+Y]

∑
f ∈Hnew(N)

Pλf (P2)ε(f )

∑′

N∈[X,X+Y]

∑
f ∈Hnew(N)

1

= 12

π
∏

p

(
1 − 1

p(p+1)

)
⎛⎝A

√
y + B

∑
r≤√

y

C(r)

(√
4y − r2

)
− πy

⎞⎠
+ Oε

(
Xδ′+ε + 1

P

)
.

Here, the notation
∑′

indicates that the sum is over square-free N.

Our key observation is that qualitatively both results are the same. Our approach in prov-
ing the result also uses the trace formula (as explained above). However, as we understand
it, our result cannot be obtained as a corollary of Zubrilina’s result. While Zubrilina’s result
establishes a relation between the P-th Fourier-coefficient of a family of modular forms
and their root numbers, our result proves a relation between the P2-th Fourier-coefficient of
modular forms and their roots number.

1·1. Other results

Our main result mimics [Zub23, theorem 1] qualitatively. It is immediate that other results
proven in [Zub23] have the obvious analogue in our setting.

We prove our result for weight 2 modular forms but we remark that the result can be
proven for any higher weight modular form. We expect similar shape of results if P2 is
replaced by a higher power of P. We refrain from proving the result in more generality
to keep the notation less cumbersome. Also, since our result proves that the shape of the
average size of the P2-coefficients is qualitatively the same shape of the average size of the
P-coefficients, the general result on murmuration density can be easily read from [Zub23].

It will also be straightforward to extend this idea to the case where P is replaced by
products of two (or more) primes. The main difficulty will arise form the fact that the trace
formula result mentioned in Theorem 2·1 will have more terms so the calculations will be
more tedious.

1·2. Outlook

There are examples where one knows that the murmuration density is qualitatively differ-
ent, see [BBLL23]. For this family, the answer is given in terms of a measure and turns out
to be exactly identical (up to constants) to the case of Maass forms (we learned this from
personal communication with Zubrilina).

One question of potential interest is what feature of the family determines the qualitative
shape of the answer. Given the philosophical connection to one-level density, a naïve guess at
an answer would be the symmetry type of the family, but this requires further investigation.
At the moment no ansatz to address this question in some general framework is known but
examples could provide evidence for the above guess.

It might be interesting to understand the murmurations for the family of symmetric
squares of modular forms. Note that for the L-function L(s, sym2 f ), the root number is
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always +1 and conductor is N2 (rather than N). Since this is a symplectic family, we expect
the murmuration function to reflect a different transition in the one-level density. The numer-
ical work of Sutherland also suggests that we expect degree 3 L-functions to have a different
normalization, as in they appear most regular as a function of (P/N)1/3. Studying the case
of symmetric squares will be more delicate.

1·3. Organisation

Including the introduction, this paper has seven sections. In Section 2 we describe the set-
up of the main problem and state our main results. For the purpose of our calculations, we
need to analyse two main terms, this is done is Sections 3 and Section 5. The calculation for
the remainder term(s) is carried out in Section 4. Finally, in Section 6 we handle the terms
which are outside the the range of terms addressed in earlier sections, those involving levels
N when P | N, and those involving the P term in the trace formula. Section 7 is dedicated to
recording technical lemmas involving arithmetic functions.

2. Trace formula set-up
2·1. Set-up

Fix a square-free positive integer N. Set Hnew(N) to denote a basis of the space Snew(N) of
weight 2 Hecke cusp newforms for �0(N), and let af (P) = λf (P)

√
P denote the eigenvalue

under the P-th Hecke operator Tp of f ∈ Hnew(N). Let ε(f ) denote the root number of f and
recall that −ε(f ) is equal to the eigenvalue of f under the Atkin–Lehner involution WN .

In contrast to previous considerations of murmuration behaviour we are interested in the
Fourier-coefficient λf (P2). When P � N, we know that

λf (P2) = λf (P)2 − 1.

Consider the operator (−1)TP2 ◦ WN on Snew(N); its trace is∑
f ∈Hnew(N)

af (P2)ε(f ) =
∑

f ∈Hnew(N)

Pλf (P2)ε(f ).

More generally, if we consider Pk Fourier coefficients, we apply the operator (−1)TPk ◦ WN

on Snew(N) and its trace is∑
f ∈Hnew(N)

af (Pk)ε(f ) =
∑

f ∈Hnew(N)

P
k
2 λf (Pk)ε(f ).

On the other hand, when P | N, we have the equality

λf (Pν) =
(

af (P)√
P

)ν

for all ν ≥ 0.

Recall that af (P) = ±1 so, for ν even we have

λf (P2ν′
) = P−ν′

for all ν′ ≥ 0.

In particular, when ν′ = 1, we have λf (P2) = 1/P.

2·2. Trace formula

We record a result of Skoruppa–Zagier [SZ88, section 2] that will be useful for us. The
following result is a special case of the formula in equation (7) of op. cit. The result there
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is more general but since we restrict ourselves to N square-free, the expression simplifies in
our setting to the following

THEOREM 2·1. With notation introduced above, in the case that P � N for P-power
coefficients∑

f ∈Hnew(N)

af (Pk)ε(f ) =
∑

f ∈Hnew(N)

P
k
2 λf (Pk)ε(f )

= H1( − 4PkN)

2
+

∑
0<r≤2 P

k
2√
N

H1(r2N2 − 4PkN) −
(

k∑
i=0

Pi

)
.

In particular, when k = 2∑
f ∈Hnew(N)

af (P2)ε(f ) =
∑

f ∈Hnew(N)

Pλf (P2)ε(f )

= H1( − 4P2N)

2
+

∑
0<r≤2P/

√
N

H1(r2N2 − 4P2N) − (1 + P + P2).

Remark 2·2. In the notation of [SZ88], the quantity n1 takes the value N and n2 = 1. A priori,
the second term should have a coefficient U0(r

√
N/2Pk/2) but we note that U0(x) = 1. The

final term in the expression is σ1(Pk) =∑d|Pk d = 1 + P + P2 + · · · + Pk.

In the above formula, the Hurwitz class number H1(−d) is the number of equivalence
classes with respect to SL2(Z) of positive-definite binary quadratic forms of discriminant
−d weighed by the number of automorphisms (i.e., with forms corresponding to multiples
of x2 + y2 and x2 + xy + y2 counted with multiplicities 1/2 and 1/3, accordingly). In other
words, H1 can be expressed in terms of the (Gauss) class number h via:

H1(−d) =
∑

f ∈Z>0, f 2|d
h(−d/f 2) + O(1),

with the error term disappearing if d is not of the form 3 or 4 times a square.
Using the relationship between the Hurwitz class number H1(·) and class number h(·)

explained above, we see that

H1(−4PkN)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k/2∑
j=0

h(−4P2( k
2 −j)N) +

k/2∑
j=0

h(−P2( k
2 −j)N) + O(1) when k = even

(k−1)/2∑
j=0

h(−4P2( k−1
2 −j)PN) +

(k−1)/2∑
j=0

h(−P2( k−1
2 −j)PN) + O(1) when k = odd.

Throughout this paper we assume that P �= 2. Since we assume that gcd (P, N) = 1 and that
N is square-free, the square factors of 4PkN are 1, 4, P2, 4P2, . . . , P�k/2
, 4P�k/2
. The above
expression simplifies to the following formula when k = 2 (which is what is required for our
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main result)

H1(−4P2N) = h(−4P2N) + h(−P2N) + h(−4N) + h(−N) + O(1).

If q is any prime and r ≥ 1, we note that q2 | N(r2N − 4Pk) is satisfied if q2 | (r2N − 4Pk) or
if q | N and q | 4Pk. The latter condition is satisfied precisely when q = 2 (i.e., N is even).
Writing N = 2N′ (where N′ must now be odd), if 4d2 | (r2N2 − 4PkN), we can note that

r2N2 − 4PkN

4d2
= r2N′2 − 2PkN′

d2

is not a square modulo 4 and the corresponding class number vanishes. Indeed, we remind
the reader that Dirchlet’s class number formula h(−d) is defined for fundamental discrimi-
nants; in particular, h(−d) is defined to be 0 otherwise. It will therefore be enough to consider
those square-divisors which satisfy d2 | (r2N − 4Pk). In the general case, the trace formula
becomes

∑
f ∈Hnew(N)

Pλf (Pk)ε(f ) =
�k/2
∑
j=0

h(−4P2( k
2 −j)N) +

�k/2
∑
j=0

h(−P2( k
2 −j)N)2 −

(
k∑

i=1

Pi

)

+
∑

0<r≤2
√

Pk
N

∑
d2|r2N−4Pk

h(N(r2N − 4Pk)/d2) + O(1).

When k = 2 the trace formula further simplifies to

∑
f ∈Hnew(N)

Pλf (P2)ε(f ) = h(−4P2N) + h(−P2N) + h(−4N) + h(−N)

2
− (P + P2)

+
∑

0<r≤2P/
√

N

∑
d2|r2N−4P2

h(N(r2N − 4P2)/d2) + O(1).

3. Main term calculation via averages of class numbers I

The aim of this section is to estimate the Hurwitz class number H1(−4P2N) which (as we
have noted above) can be written as a sum of four class numbers.

Recall that if −d ≡ 0 or 1 (mod 4) then the class number can be written in terms of a
special value of an L-function. More precisely,

h(−d) =
√

d

π
L(1, χd),

where χd is the quadratic Dirichlet character of modulus d or 4d which can be calculated
explicitly via the Kronecker symbol and L(1, χd) is the value at 1 of the Dirichlet series
for the Kronecker symbol (d/·). The calculation in this section will be separated into two
cases, first when −d ≡ 1 (mod 4) and second when −d ≡ 0 (mod 4). The first calculation
will allow us to estimate averages of h(−P2N) and h(−N) and the second will allow us to
estimate averages of h(−4P2N) and h(−4N).
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When χ is a non-principal Dirichlet character of modulus d, for a truncation parameter T
we know

L(1, χ) =
T∑

n=1

χ(n)

n
+ O

(√
d log (d)

T

)
.

The main result we want to prove in this section is an analogue of [Zub23, proposition
3·1].

PROPOSITION 3·1. Let P �= 2 be a prime and let [X, X + Y] be an interval of length Y =
o(X). Then as X → ∞,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−P2N)

2
+ h(−N)

2
+ h(−4P2N)

2
+ h(−4N)

2

= AP√
X

+ Oε

((
1√
X

+ P
7
6 X

1
12

Y
5
6

+ PY

X
3
2

)
(PXY)ε

)
.

Here the error term → 0 as P, X → ∞ and Y = o(X/log (P2X)). The notation
∑′

means
that we are summing over all square-free N.

Proof. We prove that for a cut-off parameter T

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−P2N)

2
+ h(−N)

2
+ h(−4P2N)

2
+ h(−4N)

2

= (3·1) + (3·2) + (3·3) + (3.4)

= AP√
X

+ Oε

(
1√
X

+ P√
TX

+ PT
1
5 +εX

1
10 +ε

Y
+ PY log (T)

X
3
2

+ P2 log (P2X)

T

)
.

Choosing T = (PY)5/6−ε/X1/12, the right-hand side of the above expression becomes

AP√
X

+ Oε

(
1√
X

+ P
7
12

X
11
24 Y

5
12

+ (PY)1+ε

X
3
2 −ε

+ P
7
6 +εX

1
12 +ε

Y
5
6 −ε

)

and the result follows.

3·1. When −d ≡ 1 (mod 4)

Throughout this section P �= 2 and [X, X + Y] is an interval of length Y = o(X). We
provide the following estimate for the first two terms in Proposition 3·1.
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ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−P2N)

2
+ h(−N)

2

= 2A

11

P√
X

+ Oε

(
1√
X

+ P
7

12

X
11
24 Y

5
12

+ P
7
6 +ε

X
1
12 −εY

5
6 −ε

+ P
7
6 +εX

1
12 +ε

Y
5
6 −ε

)
.

Here, the main term contribution is from the estimates in Lemma 3·2. The leading term
of the expression in Lemma 3·3 contributes 1/

√
X to the error term of this summation and

subsumes the error term 1/P
√

X arising in Lemma 3·2.

3·1·1. Averages of h(−P2N)

LEMMA 3·2. With notation as introduced above,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−P2N)

2
= 2AP

11
√

X
+ Oε

(
1

P
√

X
+ P

7
12

X
11
24 Y

5
12

+ (PY)1+ε

X
3
2 −ε

+ P
7
6 +εX

1
12 +ε

Y
5
6 −ε

)
.

The first step is to obtain an expression for (ζ (2)π/XY)
∑

h(−P2N) in terms of a cut-
off parameter T where the sum runs over square-free N ∈ [X, X + Y] such that P � N. To
ensure that the error-term is smaller than the main term, we choose the cut-off parameter
appropriately. The proof of the lemma occupies the remainder of this section.

Proof. We calculate the averages in intervals using the class number formula, i.e.,

1

P
√

X

∑′

N∈[X,X+Y]
P�N

h(−P2N)

= 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
N

X
L(1, χ−P2N)

= 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
N

X

T∑
n=1

(−P2N
n

)
n

+ O

(
P
√

XY log (P2X)

T

)

= 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
T∑

m=1

√
N
X

(−P2N
m2

)
m2

+ 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

T∑
n=1
n �=�

√
N
X

(−P2N
n

)
n

+ O

(
P
√

XY log (P2X)

T

)
,
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where to show the second equality we use the fact that χ−P2N is always a non-principal
character when N is square-free and P � N.

Next, we calculate the two (double) sums appearing in the above expression separately.
Note that the first sum contains principal characters.

Sq = 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
T∑

m=1

√
N
X

(−P2N
m2

)
m2

= 1

π

√
T∑

m=1

1

m2

∑
N∈[X,X+Y]

P�N

N≡3 (mod 4)

μ2(N)

(−P2N

m2

)(
1 +

(√
1 + N − X

X
− 1

))

= 1

π

√
T∑

m=1
gcd (P,m)=1

1

m2

⎛⎝ ∑
N∈[X,X+Y]

μ2(N)

(
N

m2

)
χ1(N) − χ2(N)

2

⎞⎠+ O

(
Y2

X

)

= 1

π

√
T∑

m=1
gcd (P,m)=1

Y

ζ (2)

η(2m)

2m2
+ Oε

(
m

1
5 +εX

3
5 +ε 1

m2

)
+ O

(
Y2

X

)

= 4YA

11πζ (2)
+ Oε

(
Y

P2
+ Y√

T
+ X

3
5 +ε + Y2

X

)
,

by Lemma 7·1 where A := ∏
p (1 + p/(p + 1)2(p − 1)). Here, χ1 and χ2 are characters mod-

ulo 4, and χ1 is principal. The character (N/m2)χ1(N) is principal modulo 2m whereas,
(N/m2)χ2(N) is always non-principal modulo 4m. Note that for the second last equality we
use [Zub23, lemma 6·7]. Next we calculate the non-square term in a manner identical to the
one above.

NSq = 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

T∑
n=1
n �=�

√
N
X

(−P2N
n

)
n

= 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

T∑
n=1
n �=�

1

n

(−P2N

n

)(
1 +

(√
1 + N − X

X
− 1

))

≤ 1

π

T∑
n=1
n �=�

∑′

N∈[X,X+Y]
N≡3 (mod 4)

(−N
n

)
n

+ O

(
Y2 log (T)

X

)
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= 1

π

T∑
n=1
n �=�

(−1
n

)
n

⎛⎝ ∑′

N∈[X,X+Y]

(
N

n

)
χ1(N) − χ2(N)

2

⎞⎠+ O

(
Y2 log (T)

X

)

= 1

π

T∑
n=1
n �=�

1

n
Oε

(
n

1
5 +εX

3
5 +ε
)

+ O

(
Y2 log (T)

X

)

�ε T
1
5 +εX

3
5 +ε + Y2 log (T)

X
.

Since N is not a square, note that (N/n) is non-principal. Since (N/2) is primitive modulo
8, the characters (N/n)χ1(N) and (N/n)χ2(N) are non-principal. For the last equality, we use
[Zub23, lemma 6·7].

In conclusion we obtain that for a truncation parameter T ,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−P2N)

2
= 2AP

11
√

X

+ Oε

(
1

P
√

X
+ P√

TX
+ PT

1
5 +εX

1
10 +ε

Y
+ PY log (T)

X
3
2

+ P2 log (P2X)

T

)
. (3·1)

Choosing T = (PY)5/6/X1/12, completes the proof of the lemma.

3·1·2. Averages of h(−N)

LEMMA 3·3. With notation as before

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−N)

2

= 2A

11
√

X
+ Oε

(
1

(PY)
5
12 X

11
24

+ P
1
6 +εX

1
12 +ε

Y
5
6 −ε

+ PεY1+ε

X
3
2 −ε

+ X
1

12 +ε

P
5
6 −εY

5
6 −ε

)
.

Proof. We begin by calculating the average

1√
X

∑′

N∈[X,X+Y]
P�N

h(−N) = 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
N

X
L(1, χ−N)

= 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
T∑

m=1

√
N
X

(−N
m2

)
m2

+ 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

T∑
n=1
n �=�

√
N
X

(−N
n

)
n

+ O

(√
XY log (X)

T

)
,
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where to show the second equality we use the fact that χ−N is always a non-principal char-
acter when N is square-free. We proceed as before to obtain the estimates. First we work
with the square terms

Sq = 1

π

∑′

N∈[X,X+Y]
P�N

N≡3 (mod 4)

√
T∑

m=1

√
N
X

(−N
m2

)
m2

= 1

π

√
T∑

m=1

1

m2

⎛⎜⎜⎝ ∑
N∈[X,X+Y]

P�N

μ2(N)

(
N

m2

)
χ1(N) − χ2(N)

2

⎞⎟⎟⎠+ O

(
Y2

X

)

= 1

π

√
T∑

m=1

Y

ζ (2)

η(2m)

2m2
+ Oε

(
m

1
5 +εX

3
5 +ε

m2

)
+ O

(
Y2

X

)

= 1

π

4YA

11ζ (2)
+ Oε

(
Y√
T

+ X
3
5 +ε + Y2

X

)
by Lemma 7·1.

Here, χ1 and χ2 are characters modulo 4, and χ1 is principal. The character (N/m2)χ1(N)
is principal modulo 2m whereas, (N/m2)χ2(N) is non-principal modulo 4m. For the third
equality we use [Zub23, lemma 6·7]. Next we calculate the non-square terms.

NSq = 1

π

∑
N∈[X,X+Y]

P�N
N≡3 (mod 4)

T∑
n=1
n �=�

√
N
X

(−N
n

)
n

= 1

π

T∑
n=1
n �=�

(−1
n

)
n

⎛⎜⎜⎝ ∑
N∈[X,X+Y]

P�N

(
N

n

)
χ1(N) − χ2(N)

2

⎞⎟⎟⎠+ O

(
Y2 log (T)

X

)

= 1

π

T∑
n=1
n �=�

1

n
Oε

(
n

1
5 +εX

3
5 +ε
)

+ O

(
Y2 log (T)

X

)
�ε T

1
5 +εX

3
5 +ε + Y2 log (T)

X
.

We remind the reader that since n is not a square, we have that (N/n) is non-principal.
Also, we know that (N/2) is primitive modulo 8. Therefore, the characters (N/n)χ1(N) and
(N/n)χ2(N) are both non-principal. We apply [Zub23, lemma 6·7] to obtain the last equality.

In conclusion we obtain that for a truncation parameter T , we have

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−N)

2
= 2A

11
√

X
+ Oε

(
1√
TX

+ T
1
5 +εX

1
10 +ε

Y
+ Y log (T)

X
3
2

+ log (X)

T

)
.

(3·2)

https://doi.org/10.1017/S0305004125101515 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101515


12 DEBANJANA KUNDU AND KATHARINA MÜLLER

As in Section 3·1·1, we choose T = (PY)
5
6 /X1/12 to obtain the expression in the statement

of the lemma.

3·2. When d ≡ 0 (mod 4)

As before, we assume that P �= 2 and that [X, X + Y] is an interval of length Y = o(X).
The calculations in Lemmas 3·4 and 3·5 will account for the last two terms in Proposition
3·1. More precisely,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−4P2N)

2
+ h(−4N)

2

= 9A

11

P√
X

+ Oε

(
1√
X

+ P
7
12

X
11
24 Y

5
12

+ (PY)1+ε

X
3
2 −ε

+ P
7
6 +εX

1
12 +ε

Y
5
6 −ε

)
.

3·2·1. Averages of h(−4P2N)

LEMMA 3·4. With notation as above

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−4P2N)

2

= 9AP

11
√

X
+ Oε

(
1

P
√

X
+ P

7
12

X
11
24 Y

5
12

+ (PY)1+ε

X
3
2 −ε

+ P
7
6 +εX

1
12 +ε

Y
5
6 −ε

)
.

Proof. As we have done previously, consider

1

P
√

X

∑′

N∈[X,X+Y]
P�N

h(−4P2N)

= 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X
L(1, χ−4P2N)

= 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1

(−4P2N
n

)
n

+ O

(
P
√

XY log (P2X)

T

)

= 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

√
T∑

m=1

(−4P2N
m2

)
m2

+ 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1
n �=�

(−4P2N
n

)
n

+ O

(
P
√

XY log (P2X)

T

)
.
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As before, we estimate the two double sums separately. First we consider the square terms

Sq = 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

√
T∑

m=1

(−4P2N
m2

)
m2

= 2

π

√
T∑

m=1

1

m2

∑′

N∈[X,X+Y]
P�N

(−4P2N

m2

)
μ2(N) + O

(
Y2

X

1

m2

)

= 2

π

√
T∑

m=1
gcd (m,2P)=1

1

m2

Y

ζ (2)
η(m) + Oε

(
X

3
5 +εmε−2 + Y2

X

1

m2

)

= 1

π

18YA

ζ (2)11
+ Oε

(
Y

P2
+ Y√

T
+ X

3
5 +ε + Y2

X

)
by Lemma 7·1,

The second last equality follows from [Zub23, lemma 6·7]. Next we estimate the other
double sum to obtain

NSq = 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1
n �=�

(−4P2N
n

)
n

= 2

π

T∑
n=1
n �=�

1

n

(−4P2

n

) ∑
N∈[X,X+Y]

P�N

(
N

n

)
μ2(N) + O

(
Y2 log (T)

X

)

= 2

π

T∑
n=1
n �=�

1

n

(−4P2

n

)
Oε

(
X

3
5 +εn

1
5 +ε
)

+ O

(
Y2 log (T)

X

)

�ε T
1
5 +εX

3
5 +ε + Y2 log (T)

X
.

For a truncation parameter T , we have

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−4P2N)

2
= 9AP

11
√

X

+ Oε

(
1

P
√

X
+ P√

TX
+ PT

1
5 +εX

1
10 +ε

Y
+ PY log (T)

X
3
2

+ P2 log (P2X)

T

)
. (3·3)

The lemma follows by choosing T = (PY)5/6/X1/12.
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3·2·2. Averages of h(−4N)

LEMMA 3·5. With notation as before,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−4N)

2
= 9A

22
√

X

+ Oε

(
1

(PY)
5

12 X
11
24

+ P
1
6 +εX

1
12 +ε

Y
5
6 −ε

+ Y1+εPε

X
3
2 −ε

+ X
1
12 +ε

Y
5
6 −εP

5
6 −ε

)
.

Proof. The idea of the proof is exactly the same as before.

1√
X

∑′

N∈[X,X+Y]
P�N

h(−4N) = 2

π

∑
N∈[X,X+Y]

P�N

√
N

X
L(1, χ−4N)

= 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1

(−4N
n

)
n

+ O

(√
XY log (X)

T

)

= 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

√
T∑

m=1

(−4N
m2

)
m2

+ 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1
n �=�

(−4N
n

)
n

+ O

(√
XY log (X)

T

)
.

For the first double sum which are the ‘square terms’, we obtain the following expression
where we note that the sum is over all m that is odd

Sq = 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

√
T∑

m=1

(−4N
m2

)
m2

= 2

π

√
T∑

m=1
gcd (m,2)=1

1

m2

Y

ζ (2)
η(m) + Oε

(
X

3
5 +ε

m2−ε
+ Y2

X

1

m2

)

= 9YA

11πζ (2)
+ Oε

(
Y√
T

+ X
3
5 +ε + Y2

X

)
by Lemma 7·1.

The second double sum which are the ‘non-square’ terms can be estimated as before and we
obtain

NSq = 2

π

∑′

N∈[X,X+Y]
P�N

√
N

X

T∑
n=1
n �=�

(−4N
n

)
n

�ε

(
T

1
5 +εX

3
5 +ε + Y2 log (T)

X

)
.
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Therefore,

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

h(−4N)

2
= 9A

22
√

X
+ Oε

(
1√
TX

+ T
1
5 +εX

1
10 +ε

Y
+ Y log (T)

X
3
2

+ log (X)

T

)
.

(3·4)
The result follows from choosing T = (PY)5/6/X1/12.

Remark 3·6. The main term contribution obtained from calculations in this section would
remain unchanged if we worked with P-power coefficients rather than P2-coefficients.

4. Remainder analysis

In this section, we work under the assumption that P �= 2 is a prime, r is a positive integer,
and X > Y > 0 satisfies r2(X + Y) < 4P2. Given positive integers r and d, define the set

Ar,d ={
N ∈Z

∣∣∣ N square-free, gcd (P, N) = 1, d2 | r2N − 4P2,
r2N2 − 4P2N

d2
≡ 0 or 1 (mod 4)

}
.

First, we calculate the size of the above set. We do so by breaking the calculation into several
cases:

(r odd) Assume that r is odd. Then r2N − 4P2 is not divisible by 4 as N is square-free.
Thus, any divisor d satisfying d2 | (r2N − 4P2) has to be odd as well.
Observe that,

r2N2 − 4P2N ≡ 0 or 1 (mod 4).

As d is odd, it suffices to determine whether we can solve the congruence

r2N ≡ 4P2 (mod d2).

There is a unique solution when gcd (d, r) = gcd (d, 2) = 1 and no solutions
otherwise.

(r even) Assume that r is even.
Claim. gcd (P, d) = gcd (P, r) = 1.
Justification. By definition r2N ≤ 4P2. As N ≥ X > 4, we deduce that r < P. If
P | d, we obtain that P2 | r2N. As N is square-free, this implies P | r which is
impossible. This proves the claim.
Let us write r = 2�. The condition

r2N2 − 4P2N

d2
≡ 0 or 1 (mod 4)

is equivalent to the existence of an integer k such that 4�2N − 4P2 = kd2 and kN ≡
0 or 1 (mod 4). This calculation can be further divided into two cases.

(d odd) If d is odd, then 4 | k. Let k = 4k′. Thus, we look for an N that satisfies

�2N − P2 = k′d2
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which is equivalent to �2N ≡ P2 (mod d2). This congruence has exactly one
solution if gcd (�, d) = 1 and zero solutions otherwise.

(d even) Assume that d = 2b is even. As N is square-free it is either odd or congruent to 2
modulo 4.
If N is even, then 4�2N and 4kb2 have to be divisible by 8; but 8 � 4P2.
So N must be odd if d is even. As kN ≡ 0 or 1 (mod 4) we will distinguish two
more cases

(4 | k) In this situation we try to solve

�2N − P2 ≡ 0 mod 4b2.

This congruence has a solution if and only if � is coprime to 2b and no solutions
otherwise.

(4 � k) We now consider the case that N ≡ k−1 ≡ k (mod 4). Writing k = N + 4k′ we
obtain

�2N − P2 = Nb2 + 4k′b2.

This is equivalent to N(�2 − b2) ≡ P2 (mod 4b2). This congruence has a solu-
tion if � and b are coprime and exactly one of them is even. In all other cases
there are no solutions.

In summary we obtain that

Ar,d =
{

N ∈Z
∣∣∣ N square-free, gcd (P, N) = 1, N (mod d2) ∈Rr,d

}
,

where

|Rr,d| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (r, d) = (d, 2) = 1

1 if r even, (r, d) = 1

1 if (r, d) = 2, 4 � d

2 if r even, (r, d) = 2, 4 | d

0 otherwise.

All pairs (r, d) for which Rr,d �= ∅ will henceforth be called an admissible pair. The two
elements in the fourth point appear as we get one solution in case (r even)–(d even)–(4 | k)
and one solution for the case (r even)–(d even)–(4 � k).

5. Main term calculation via averages of class numbers II

Throughout this section we assume that P2 � X1+δ2 .
For N a square-free positive integer and P a prime satisfying gcd (P, N) = 1, the goal

of this section is to calculate
∑

H1(r2N2 − 4P2N) with the sum of running over 0 < r ≤
2P/

√
X + Y . As observed before, the summation can be expressed as a double sum of

class numbers which in turn can be written explicitly in terms of special values of L-
functions. More precisely, for a divisor d2 | (r2N − 4P2) satisfying (r2N2 − 4P2N)/d2 ≡
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0 or 1 (mod 4), the class number formula asserts that

h

(
r2N2 − 4P2N

d2

)
=

√
4P2N − r2N2

πd
L(1, χ r2N2−4P2N

d2
).

Therefore, as r varies in the range 1 to 2P/
√

X + Y , we have

∑′

N∈[X,X+Y]
P�N

H1(r2N2 − 4P2N) = 1

π

∑
d<2P

∑
N∈[X,X+Y]

N∈Ar,d

L

(
1, χ r2N2−4P2N

d2

)
d

√
4P2N − r2N2.

Note that √
4P2N − r2N2 −

√
4P2X − r2X2 � P

Y√
X

+ r
√

Y
√

X.

For a non-trivial character χ of conductor q, we know by Siegel’s bound that |L(1, χ)| �
log (q) (see for example [FI18, p. 2]). Therefore,

∑′

N∈[X,X+Y]
P�N

H1(r2N2 − 4P2N) = 1

π

∑
d<2P

∑
N∈[X,X+Y]

N∈Ar,d

L

(
1, χ r2N2−4P2N

d2

)
d

√
4P2X − r2X2

+ O
(

P1+εX− 1
2 +εY2 + rPεX

1
2 +εY

3
2

)
. (5·1)

We now truncate the main term and obtain

(5·1) = 1

π

∑
d<2P

∑
N∈[X,X+Y]

N∈Ar,d

T∑
n=1

√
4P2X − r2X2

nd

(
(r2N2 − 4P2N)/d2

n

)

+ O

⎛⎜⎜⎝P
√

X
∑

d<2P

∑
N∈[X,X+Y]

N∈Ar,d

P
√

X log (P2X)

d2T
+ P1+εX− 1

2 +εY2 + rPεX
1
2 +εY

3
2

⎞⎟⎟⎠
=

√
4P2X − r2X2

π

∑
d<2P

∑
n≤T

Sn,d,r

nd
+ O

(
P2XY log (P2X)

T
+ P1+εY2

X
1
2 −ε

+ rPεX
1
2 +εY

3
2

)
,

where

Sn,d,r :=
∑

N∈[X,X+Y]
N∈Ar,d

μ2(N)

(
N

n

)(
(r2N − 4P2)/d2

n

)
=

∑
N∈[X,X+Y]

N∈Ar,d

(
N

n

)(
(r2N − 4P2)/d2

n

)
.
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The last equality follows from the fact that μ2(N) = 1. Indeed, N ∈Ar,d forces N to be
always square-free. We can now state the main result of this section; its proof will occupy
the remainder of this section.

PROPOSITION 5·1. Let P �= 2 be a prime, let r be a positive integer, and let X > Y > 0 be
such that 4P2 > r2(X + Y). Then∑′

N∈[X,X+Y]
P�N

H1(r2N2 − 4P2N)

= Y
√

4P2X − r2X2

ζ (2)π

∏
p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O

(
(PXY)ε

(
(P2XY)

3
5 + PY2

√
X

+ r
√

XY
3
2 + PXY

5
18 + P

√
XY

8
9

))
.

Proof. In Proposition 5·6 we show that

∑
d≤2P

∑
n≤T

Sn,d,r

nd
= Y

ζ (2)

∏
p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O
(√

XY
5

18 + T
1
4 +ε

√
Y + Y

8
9 log (T)

)
.

The simplified expression of (5·1) combined with the aforementioned proposition implies
that ∑′

N∈[X,X+Y]
P�N

H1(r2N2 − 4P2N)

= Y
√

4P2X − r2X2

ζ (2)π

∏
p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O

(
P2XY log (P2X)

T
+ P1+εY2

X
1
2 −ε

+ rPεX
1
2 +εY

3
2

)
+ O

(
PXY

5
18 + PT

1
4 +ε

√
X
√

Y + P1X
1
2 Y

8
9 log (T)

)
.

Now, by choosing T = (P2XY)
2
5 gives an error term of

O

(
(PXY)ε

(
(P2XY)

3
5 + PY2

√
X

+ r
√

XY
3
2 + PXY

5
18 + PX

1
2 Y

8
9

))
.

COROLLARY 5·2. Let P �= 2 be a prime, let r be a positive integer, and let X > Y > 0 be
such that 4P2 > r2(X + Y) for each r < 2P/

√
X. Then
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ζ (2)π

XY

∑
r< 2P√

X

∑′

N∈[X,X+Y]
P�N

H1(r2N2 − 4P2N)

=
∑

r≤ P√
X

⎛⎝√4P2

X
− r2

⎞⎠∏
p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O

(
(PX)ε

(
P

11
5

X
9

10 Y
2
5

+ P2Y

X2
+ P2Y

1
2

X
3
2

+ P2

X
1
2 Y

13
18

+ P2

XY
1
9

))
.

Proof. The claim follows easily by rearranging the terms in Proposition 5·1 and summing
over r.

Comparing the conditions from each of the error terms, we see that the most restrictive one
arises from the last term. It yields the relation δ2/2 + δ/9 < 1/9. So a strict condition would
be to choose

2
δ2 < δ < 2/11. A more relaxed bound on δ is mentioned in the statement of

the main theorem.
The main task is now to estimate Sn,d,r.

5·1. Some preliminary calculations

Let a be an integer such that a (mod d2) ∈Rr,d. The character ((r2x − 4P2)/d2)/n is a
character modulo fnd2 where f = 4 if n is even and f = 1 otherwise. Thus, we have

∑
N∈[X,X+Y]

P�N
N≡a (mod d2)

μ2(N)

(
N

n

)(
(r2N − 4P2)/d2

n

)

=
∑

b (mod fd2n)
a≡b (mod d2)

(
b

n

)(
(r2b − 4P2)/d2

n

) ∑
N∈[X,X+Y]
gcd (P,N)=1

N≡b (mod fnd2)

μ2(N).

Note that P2 > X/4 and throughout our calculations we also have that P > (d/2). If
gcd (P, fnd2) > 1, then P | n and (N/n) = 0 for all N satisfying P | N. If gcd (P, fnd2) = 1,
then the number of elements in [X, X + Y] that are divisible by P and congruent to b
(mod fnd2) are O(X/fd2nP). Thus, deleting the condition P � N in the inner sum gives

∑
b (mod fd2n)

a≡b (mod d2)

(
b

n

)(
(r2b − 4P2)/d2

n

)⎛⎜⎜⎜⎝ ∑
N∈[X,X+Y]

N≡b (mod fnd2)

μ2(N) + O

(
X

fd2nP

)⎞⎟⎟⎟⎠ .

Now using a result of C. Hooley (see also [Zub23, lemma 6·4]) the above expression can be
rewritten as

2 The condition that δ2 < δ will arise naturally from the calculations in Section 6.
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Yη(d2n)

ζ (2)f ϕ(d2n)

∑
b (mod fd2n)

a≡b (mod d2)

(
b

n

)(
(r2b − 4P2)/d2

n

)
+ O

(√
Xn/d + d1+εn

3
2 +ε + X

Pd2

)
.

Definition 5·3. Define the functions

θr(m) =
∑

a (mod m)

( a

m

) (ar2 − 4P2

m

)

ϕ̃r,d(g) =
∑

a (mod d2g)
a (mod d2)∈Rr,d

(
a

g

)(
ar2 − 4P2

g

)
.

LEMMA 5·4. Let g = (d∞, n) and set n′ = n/g. Then∑
b (mod fd2n)

b (mod d2)∈Rr,d

(
b

n

)(
(r2b − 4P2)/d2

n

)
= f ϕ̃r,d(g)θr(n′).

Proof. Assume first that f | d2 (i.e either f = 1 or d is even). Then (d∞, fn) = fg and
moreover, 2 | g if f = 4. Here, we recall that f = 4 precisely when n is even.∑

b (mod fd2n)
b (mod d2)∈Rr,d

(
b

n

)(
(r2b − 4P2)/d2

n

)
=
∑

a∈Rr,d

∑
b (mod fd2n)

a≡b (mod d2)

(
b

n

)(
(r2b − 4P2)/d2

n

)

=
⎛⎝ ∑

b (mod n′)

(
b

n′

)(
(r2b − 4P2)/d2

n′

)⎞⎠
⎛⎜⎜⎜⎝ ∑

a∈Rr,d

∑
b (mod d2gf )
b≡a (mod d2)

(
b

gf

)(
(r2b − 4P2)/d2

gf

)⎞⎟⎟⎟⎠
= θr(n′)ϕ̃r,d(fg).

If f = 1, this is the desired result. If f = 4, then g and d are even and ϕ̃r,d(fg) = f ϕ̃r,d(g).
It remains to consider the case that n is even and d is odd.∑
b (mod fd2n)

b (mod d2)∈Rr,d

(
b

n

)(
(r2b − 4P2)/d2

n

)
=
∑

a∈Rr,d

∑
b (mod fd2n)

a≡b (mod d2)

(
b

n

)(
(r2b − 4P2)/d2

n

)

=
⎛⎝ ∑

b (mod fn′)

(
b

fn′

)(
(r2b − 4P2)/d2

fn′

)⎞⎠
⎛⎜⎜⎜⎝ ∑

a∈Rr,d

∑
b (mod d2g)

b≡a (mod d2)

(
b

g

)(
(r2b − 4P2)/d2

g

)⎞⎟⎟⎟⎠
= ϕ̃r,d(g)θr(fn′).

As n′ and f are even in this case, we obtain θr(fn′) = f θr(n′) finishing the proof.
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LEMMA 5·5. Let (r, d) be an admissible pair. Then

ϕ̃r,d(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(g)δg=� 2 � g, 4 � d

2ϕ(g)δg=� 2 � g, 4 | d

2ϕ(g)δg=� 2 | g, 4 | r, gcd (d, r) = 2

2ϕ(g)δg=� 2 | g, 4 | d, gcd (d, r) = 2

0 else.

Let p be a prime coprime to P. The function θr is a multiplicative function satisfying

θr(pα) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−pα−1 2 �= p, 2 � α, p � r

pα−1(p − 2) 2 �= p, 2 | α, p � r

0 p | r, 2 �= p, 2 � α or p = 2, 2 | r

pα−1(p − 1) p | r, p �= 2, 2 | α
(−1)α2α−1 p = 2, 2 � r.

Proof. The definition of the functions θ and ϕ differ from the ones given in [Zub23].
Nevertheless, the proofs of Lemmas 6·2 and 6·3 in loc. cit. still apply with minimal changes
(substitute P by P2).

In nutshell, the calculation we have done so far yields

Sn,d,r :=
∑

N∈[X,X+Y]
N∈Ar,d

μ2(N)

(
N

n

)(
(r2N − 4P2)/d2

n

)

= Yη(d2n)

ζ (2)ϕ(d2n)
ϕ̃r,d(g)θr(n′) + O

(√
Xn/d + d1+εn

3
2 +ε + X

Pd2

)
.

This is an approximation of Sn,d,r in terms of multiplicative functions which are easier to
manipulate. In the remainder of this section we will prove the following result.

PROPOSITION 5·6. Let d and r be positive integers and let X > Y > 0. Let P be a prime
satisfying 4P2 > r2(X + Y). Then for a cut-off parameter T � Y

∑
d≤2P

∑
n≤T

Sn,d,r

nd
= Y

ζ (2)

∏
p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O
(√

XY
5
18 + √

YT
1
4 +ε + Y

8
9 log (T)

)
.

Proof. The equality is obtained by combining the results obtained in Propositions 5·8 and
5·9, and the calculation in Section 5·4.
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5·2. Small d and small n

In this section, we estimate the sum of Sn,d,r/nd in the range n ≤ Yσ and d ≤ Yτ (where
σ , τ are parameters in the interval [0,1]) by explicitly examining equidistribution of square-
free numbers in residue classes modulo n.

LEMMA 5·7. Let σ , τ be parameters with 0 ≤ σ , τ ≤ 1. Let d, n, r ≥ 1 be integers.

∑
n≤Yσ

d≤Yτ

η(d2n)ϕ̃n,d(r)θr(n′)
ϕ(d2n)nd

=
∏

p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)

+ O
(

Y−2τ + Y− σ
5

)
.

Proof. The proof follows as in [Zub23, lemma 6·6]. Note that we can apply the computa-
tions in loc. cit. because of Lemma 5·5.

For the ease of notation, set

Bc(r) :=
∏

p

p4 − 2p2 − p + 1

(p2 − 1)2

∏
p|r

(
1 + p2

p4 − 2p2 − p + 1

)
.

PROPOSITION 5·8. Let σ , τ be parameters with 0 ≤ σ , τ ≤ 1. Let d, n, r ≥ 1 be integers
such that P � n, 4P2 > r2(X + Y), and (r,d) is an admissible pair. Then

∑
n≤Yσ

d≤Yτ

Sn,d,r

nd
= YBc(r)

ζ (2)
+ O

(√
XY

σ
2 + Yτ+ε+ 3

2 σ + Y1−2τ + Y1− σ
5

)
.

Proof. With notation introduced above, we have

∑
n≤Yσ

d≤Yτ

Sn,d,r

nd
=
∑

n≤Yσ

d≤Yτ

(
Yη(d2n)ϕ̃r,d(g)θr(n′)

ζ (2)ϕ(d2n)nd
+ O

(√
Xn

nd2
+ d1+εn

3
2 +ε

nd
+ X

Pd3n

))

= Y

ζ (2)

(
Bc(r) + O

(
Y−2τ + Y− σ

5

))
+
∑

n≤Yσ

d≤Yτ

O

( √
X

d2
√

n
+ dεn

1
2 +ε + X

Pd3n

)

by Lemma 5·7

= YBc(r)

ζ (2)
+ O

(√
XY

σ
2 + Yτ+ε+ 3

2 σ + Y1−2τ + Y1− σ
5 + X

P
log (Yσ )

)
.

Recall that P2 > X/4. Equivalently, we have that X/P < 2
√

X. The claim follows immedi-
ately.
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5·3. Small d and large n

The main result of this section is the following. The proof of [Zub23, proposition 3·9]
goes through almost verbatim even in our setting. We give a sketch of the proof to show that
the shape of the error term is the same.

PROPOSITION 5·9. Let P be an odd prime and d,r be positive integers such that (d,r) is an
admissible pair. Let X > Y > 0 satisfying (X + Y)2 < 4P2. For parameters σ , τ between 0
and 1, ∑

n∈[Yσ ,T]
d<Yτ

Sn,d,r

nd
� √

X log (T) log (Y) + Y1− σ
2 +ε + T

1
4 +ε

√
Y log (Y) as X → ∞.

LEMMA 5·10 ([Zub23, lemma 3·12]). Let Y ≤ X, let n,w, D be positive integers and q be
any integer. Let a be an integer satisfying wa ≡ q (mod D) and gcd (a, D) = 1. Define the
set

P = {p | n odd : 2 � valp(n), p � gcd (q, n), and gcd (D, w, p) = 1
}

.

Then

∑
N∈[X,X+Y]

N≡a (mod D)

μ2(N)

(
N

n

)( wN−q
D

n

)
� √

X + Y

D
∏

p∈P
√

p
2

+ log (Y)√
D

⎛⎜⎝
√√√√ nY∏

p∈P
√

p
2

⎞⎟⎠ .

Proof of Proposition 5·9. Choose w = r2, D = d2, q = 4P2 in the above lemma, and
choose a to be an integer such that a (mod d2) ∈Rr,d. If Y ≤ X, (d, r) is an admissible pair
of positive integers, n is any positive integer, and P is a prime satisfying 4P2 > r2(X + Y)
then the set

P = {p | n : 2 � valp(n), p �= 2, P
}

.

This is precisely the set Pn in [Zub23, corollary 3·13]. Thus, the calculations in [Zub23,
proof of proposition 3·9] go through without change. We explain some of the calculations in
more detail than in [Zub23]

Sn,d,r =
∑

N∈[X,X+Y]
P�N

N≡a (mod d2)

μ2(N)

(
N

n

)(
(r2N − 4P2)/d2

n

)

� √
X + Y

d2
∏

p∈P
√

p
2

+ log (Y)

d

⎛⎜⎝
√√√√ nY∏

p∈P
√

p
2

⎞⎟⎠ .

Hence,∑
n∈[Yσ ,T]

d<Yτ

Sn,d,r

nd
� √

X log (T) log (Y) + Y
∑

n≥Yσ

1

n
∏

p∈P
√

p
2

+ √
Ylog (Y)

∑
n≤T

1√
n
∏

p∈P
√

p
2

.
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We write n = x2y2αPβ , where y is square-free and gcd (x, 2P) = gcd (y, 2P) = 1.
Therefore P = {p : p | y}. We now focus on the second term of the expression

∑
n≥Yσ

1

n
∏

p∈P
√

p
2

≤
∑

n≥Yσ

x2y
1
2 +ε2αPβ

x4y222αP2β

�
∑
α,β

∑
x≤Y

σ
2

1

2αPβx2

∑
y>Yσ/2

y
−3
2 +ε +

∑
α,β

∑
x>Y

σ
2

1

2αPβx2

� Y
−σ
2 +ε .

Next, we focus on the third term.

∑
n≤T

1√
n
∏

p∈P
√

p
2

�
∑
α,β:

2αPβ≤T

∑
x≤
√

T
2αPβ

∑
y≤ T

2αPβ x2

1

2αPβx2y
× 2

α
2 P

β
2 xy

1
2 +ε

y
1
4

� T
1
4 −ε .

Putting this together we get that as X → ∞,

∑
n∈[Yσ ,T]

d<Yτ

Sn,d,r

nd
� √

X log (T) log (Y) + Y1− σ
2 +ε + T

1
4 +ε

√
Y log (Y).

5·4. Large d and error terms

The first main task of this section is to estimate the sum Sn,d,r/nd over all n when d � Yτ .
We will observe that this also contributes (only) to the error term.

For Yτ � d � P and truncation parameter T , we have that

∑
n

Yτ �d�P

Sn,d,r

nd
=

∑
Yτ �d�P

1

d

∑
n

1

n

∑
N∈[X,X+Y]

P�N

N≡a (mod d2)

μ2(N)

(
N

n

)(
(r2N − 4P2)/d2

n

)

�
∑

Yτ �d�P

1

d

(
Y

d2
+ 1

)
log (T)

� log (T)
(

Y1−2τ + log (P)
)

.

We obtain the second line by the trivial inequality μ(N)2(N/n)(((r2N − 4P2)/d2)/n) ≤ 1.
The term ((Y/d2) + 1) comes from the sum over N.

We now collect all the error terms. The cumulative error terms from Propositions 5·8 and
5·9, and the above calculations is
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XY

σ
2 + Yτ+ε+ 3

2 σ + Y1−2τ + Y1− σ
5

)
+
(√

X log (T) log (Y) + Y1− σ
2 +ε + T

1
4 +ε

√
Y log (Y)

)
+ log (T)

(
Y1−2τ + log (P)

)
Throughout this section we are assuming that P2 � X1+δ2 where δ2 is chosen as in the

statement of the main theorem. In particular, we may always choose δ2 < 2/11. Therefore,
we may assume that Pε � √

X and choose the cut-off parameter T � Y , we can rewrite the
cumulative error term as(√

XY
σ
2 + Yτ+ε+ 3

2 σ + Y1−2τ + Y1− σ
5

)
+
(√

X log (T) log (Y) + Y1− σ
2 +ε + T

1
4 +ε

√
Y
)

+ log (T)Y1−2τ .

Choosing τ = 1/18, σ = 5/9 and assuming that log (T) � Y , the above expression is
bounded by(√

XY
5

18 + Y
8
9 +ε + 2Y

8
9

)
+
(√

X log (T) log (Y) + Y
13
18 +ε + T

1
4 +ε

√
Y
)

+ Y
8
9 log (T)

� √
XY

5
18 + T

1
4 +ε

√
Y + Y

8
9 log (T).

Remark 5·11. The calculations in this section rely crucially on the fact that we are work-
ing with P2-coefficients. If we were to work with higher P-power coefficients, there would
be many more terms to analyse which would make the calculations more cumbersome.
However, we expect that the shape of the contribution would remain unchanged.

6. The remaining terms

To complete the proof of the main theorem, we are still left to bound the following terms:

(1) those in the range of r not covered in Corollary 5·2;

(2) those involving levels N when P | N;

(3) those involving the P term in the trace formula.

First, we evaluate

ζ (2)π

XY

∑′

N∈[X,X+Y]
P�N

∑
2P√
X+Y

≤r≤ 2P√
N

H1(r2N2 − 4P2N) � Y

XY

(
P

(
1√
X

− 1√
X + Y

)
(P2X)

1
2 +ε

)

� Xδ2− δ
2 +ε .

This follows from the assumptions that Y = (1 + o(1))X1−δ , that P2 � X1+δ2 , and that

Pε � √
X. Since the main term is P/

√
X which is of size X

δ2
2 , it follows that we require

δ2 < δ.
When P | N, we have noted before that

λf (P2) = 1

P
.

https://doi.org/10.1017/S0305004125101515 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004125101515


26 DEBANJANA KUNDU AND KATHARINA MÜLLER

In other words, at the ramified primes P, we notice that using the trivial bound

ζ (2)π

XY

∑′

N∈[X,X+Y]
P|N

∑
f ∈Hnew(N,2)

Pλf (P2)ε(f ) ≤ ζ (2)π

XY
X

∑
N∈[X,X+Y]

P|N

|ε(f )|

≤ ζ (2)π
#{N : P | N and N ∈ [X, X + Y]}

Y

= O

(
1

P
+ 1

Y

)
.

Finally, note that

ζ (2)π

XY

∑′

N∈[X,X+Y]

(P + P2) = ζ (2)π

XY
(P + P2)

⎛⎝ ∑
N≤X+Y

μ2(N) −
∑
N≤X

μ2(N)

⎞⎠
= ζ (2)π

XY
(P + P2)

(
Y

ζ (2)
+ O(

√
X + Y − √

X)

)

= πP2

X
+ O

(
P

X
+ P2

XY
1
2

)
.

7. Arithmetic functions

The purpose of this section is to record technical results required in the calculations
performed above.

LEMMA 7·1. Let P be an odd prime and K be a cut-off parameter. Define

A :=
∏

p

(
1 + p

(p + 1)2(p − 1)

)
and η(m) :=

∏
p|m

p

p + 1
.

Then:

K∑
m=1

η(m)

m2
=
∏

p

(
1 + p

(p + 1)2(p − 1)

)
+ O

(
1

K

)
= A + O

(
1

K

)
(7·1)

K∑
m=1

gcd (m,2)=1

η(m)

m2
=
∏
p �=2

(
1 + p

(p + 1)2(p − 1)

)
+ O

(
1

K

)
= 9

11
A + O

(
1

K

)
(7·2)

K∑
m=1

η(2m)

m2
= 8

11
A + O

(
1

K

)
(7·3)

K∑
m=1

gcd (m,2P)=1

η(m)

m2
=
∏

p �=2,P

(
1 + p

(p + 1)2(p − 1)

)
+ O

(
1

K

)
= 9

11
A + O

(
1

P2
+ 1

K

)
(7·4)
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K∑
m=1

gcd (m,P)=1

η(2m)

m2
= 8

11
A + O

(
1

P2
+ 1

K

)
. (7·5)

Proof. We leave the proof as an exercise. A useful observation for these calculations is the
following:

∞∑
m=1

η(m)

m2
=
∏

p

( ∞∑
k=0

η(pk)

p2k

)
=
∏

p

(
1 + 1

p(p + 1)
+ 1

p(p + 1)3
+ . . .

)
.

Note that (7·4) and (7·5) are already stated in [Zub23, lemma 6·5].

8. Main result and proof

The main result we prove in this paper is the following

THEOREM 8·1. Let Hnew(N) be a Hecke basis for trivial character for weight 2 cusp forms
for �0(N) with f ∈ Hnew(N) normalised to have leading coefficient 1. Let ε(f ) be the root
number of f and let af (p) be the p-th Fourier coefficient of f, and set λf (p) = af (p)/

√
p. Let

P be a prime, and suppose that the parameters P, X, and Y go to infinity. Further suppose
that Y = (1 + o(1))X1−δ and P2 � X1+δ2 where 0 < δ2 < δ < 9/11 and δ/9 + δ2/2 < 1/9.
Set δ′ = δ2 − δ/2. Then writing y = P2/X,∑′

N∈[X,X+Y]

∑
f ∈Hnew(N)

Pλf (P2)ε(f )

∑′

N∈[X,X+Y]

∑
f ∈Hnew(N)

1

= 12

π
∏

p

(
1 − 1

p(p+1)

)
⎛⎝A

√
y + B

∑
r≤√

y

C(r)

(√
4y − r2

)
− πy

⎞⎠
+ Oε

(
Xδ′+ε + 1

P

)
.

Proof. In [Zub23, section 3·4], it is proven that for N square-free∑′

N∈[X,X+Y]

∑
f ∈Hnew(N)

1 = XY

12ζ (2)

∏
p

(
1 − 1

p(p + 1)

)
+ O

(
XεY + X

8
5 +ε + Y2

)
.

Set y = P2/X. It will follow from Proposition 3·1, Corollary 5·2 and calculations in
Section 6 that

ζ (2)π

XY

∑′

N∈[X,X+Y]

∑
f ∈Hnew(N)

Pλf (P2)ε(f ) = A
√

y + B
∑

r≤√
y

C(r)

(√
4y − r2

)

− πy + Oε

(
Xδ′+ε + 1

P

)
.
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The error terms in Proposition 3·1, Corollary 5·2, and the calculations in Section 6 gives that

the cumulative error term is of size O
(

Xδ′+ε + 1/P
)

where δ′ = δ2 − δ/2 and we have used

the fact that δ2 < δ < 2/11 and δ2 + 9δ < 2.
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