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Abstract

Plants respond to stresses like drought and heat through complex gene regulatory networks
(GRNs). To improve resilience, understanding these is crucial, but large-scale GRNs (>100
genes) are difficult to model using ordinary differential equations (ODEs) due to the high
number of parameters that have to be estimated. Here we solve this problem by introducing
BADDADAN, which uses machine learning to identify gene modules—groups of co-expressed
and/or co-regulated genes—and constructs an ODE model that predicts gene module dynamics
under stress. By integrating time-series gene expression data with prior co-expression data it
finds modules that are both coherent and interpretable. We demonstrate BADDADAN on heat
and drought datasets of A. thaliana, modelling over 1,000 genes, recovering known mechanistic
insights, and proposing new hypotheses. By combining machine learning with mechanistic
modelling, BADDADAN deepens our understanding of stress-related GRNs in plants and
potentially other organisms.

1. Introduction

Climate change poses significant challenges to global food security due to its negative impact
on crop growth and productivity (Suter & Widmer, 2013). With a growing world population,
especially in climate-vulnerable areas (Dai, 2011), it becomes essential to develop crop varieties
that are resilient to stresses, such as pests, heat and drought, particularly when these occur
simultaneously or in rapid succession. To understand these plant environmental response mech-
anisms, as well as their potential trade-offs, we aim to understand the underlying gene regulatory
networks (GRNs) (Quint et al., 2016), i.e., sets of genes which influence each other’s expression.
The temporal dynamics of these GRNs are commonly modelled using ordinary differential
equations (ODEs) (Cao et al., 2012; de Luis Balaguer et al.,, 2017; Valentim et al., 2015) fit to
time-series datasets. Importantly, such ODE models can reflect biological prior knowledge and
enable causal insights through formal mathematical model analysis and human interpretation.
They have successfully been used to describe the influence of a small group of genes on flowering
time (Chew et al,, 2022) or hypocotyl elongation (Nieto et al., 2022) in response to different
temperature and light regimes, and enhanced our mechanistic understanding of these processes.

However, these models typically only include a small number of genes (<100) (Frohlich et al.,
2018) because they cannot (yet) be constructed for genome-scale plant stress response networks
due to a lack of extensive, mechanistic, biological knowledge. On top of that, a large number
of input genes makes parameter estimation prohibitively complex, as this requires significant
amounts of data (Cao et al., 2012; Segal et al., 2003; Shaik & Ramakrishna, 2013) and results in
exponentially more possible gene network topologies. To overcome these issues and enable ODE
modelling of large-scale regulatory networks from time-series data, we focus on gene modules
(also known as gene clusters or gene sets): groups of co-expressed and/or co-regulated genes
(Saelens et al., 2018; Segal et al., 2003). By modelling temporal behaviour of gene modules instead
of individual genes, we significantly reduce the number of interactions that require parameter
estimates. Additionally, gene modules can help bridge the gap between single-gene expression
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levels and high-level phenotypes by linking these modules to
broader biological processes or well-studied plant hormones.
Finally, modules improve our ability to convert novel knowledge
from model plants, such as A. thaliana to agronomically relevant
crops, since module-level insights are easier to translate between
species than individual genes (Ficklin & Feltus, 2011; Julca et al.,
2021; Shaik & Ramakrishna, 2013; Sreedasyam et al, 2023).
Machine learning (ML) is a promising approach to extract gene
modules from expression measurements, as it has demonstrated the
ability to infer complex patterns from large amounts of (biological)
data (Alber et al, 2019). Nonetheless, ML approaches do not
elucidate interactions between biological mechanisms that underlie
a plant’s response to environmental influences, and therefore fall
short in delivering the detailed understanding that is needed
to improve plant stress resilience. Thus, recently there has been
an increasing interest in combining mechanistic models with
ML approaches (Alber et al., 2019; Baker et al., 2018; Noordijk
et al., 2024). In our context, this involves combining ML-derived
modules, which extract relevant patterns from large amounts of
biological data, with mechanistic models to provide interpretability
and causal insights.

For insightful ODE modelling, we want to find modules that
are both coherent and interpretable. Here, coherent means that
genes within the same module share an expression pattern in a
given dataset, allowing us to summarise their expression as a single
variable (e.g., the mean) in our ODE model. Interpretable means
that they can be linked to a clear biological process, providing
insight into how plants respond to stress and deepening our
mechanistic understanding. There is a trade-off between these
two desired characteristics, which is related to the way in which
co-expression is calculated in the context of gene clustering.
Firstly, ‘local’ co-expression, calculated from gene expression
measured within only one experiment (i.e., over various time
points), might yield clusters that are coherent but overfit the
data (Mao et al, 2019), resulting in an ill-defined biological
function. On the other hand, ‘global’ co-expression is calculated
from a gene expression compendium which covers a wide range of
different conditions (e.g., developmental stages, tissues or stresses).
Global co-expression should reflect gene-gene relationships more
generally, providing high biological functional similarity within
modules, but potentially overlooking groups of genes that are only
co-expressed in a particular context. In BADDADAN, we address
this coherence-interpretability trade-off by employing a module
finding approach that uses a combination of global and local co-
expressions.

Module detection has been extensively researched and reviewed
(Saelens etal., 2018), and has been used to infer functionally related
groups of genes in various organisms from gene expression data.
For example, modules were found by converting gene expression to
an association network first, disregarding the temporal dimension
(Forster et al.,, 2022; Langfelder & Horvath, 2008; Wang et al,
2008). Moreover, Janky et al. (2014) and Mao et al. (2019) have
extended such methods to incorporate prior biological knowledge.
However, none of these methods explicitly leverage temporal data.
In contrast, methods that exploit the temporal nature of the data
(Han et al., 2021; Heard et al., 2005; McDowell et al., 2018; Schulz
etal., 2012) do not build upon prior biological data, and suffer from
sparse, noisy measurements, common in biology. Additionally, data
integration has been employed to find modules (Depuydt & Vande-
poele, 2021; Forster et al., 2022; Heyndrickx & Vandepoele, 2012;
Sanchez-Munoz et al., 2024), but these methods cannot easily be
applied to new transcriptomics datasets of interest, hampering their
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ability to improve gene module coherence. Finally, Lu et al. (2011),
Soltanalizadeh et al. (2020), and Wu et al. (2014) performed ODE
modelling of gene modules in yeast, mice or human, but did not
build upon existing data, potentially reducing the interpretability
of their modules and failing to leverage prior knowledge available
for these species. Thus, many distinct elements of module finding,
biological data integration, and ODE modelling are available, but
no method yet integrates all these steps.

Here, we present BADDADAN (a Bioinformatics Approach to
Describe Dynamical Activations of a Dimension-reduced A-priori-
informed Network) which integrates existing transcriptomics and
transcription factor (TF) binding data with experiment-specific
expression data to infer a dynamic network model of gene modules
that are coherent and reflect clear biological functions. As a
proof of concept, we show that we can quantitatively model gene
module temporal expression through a system of ODEs with
reasonable accuracy in two real-world datasets, and that these
models recover known biological insight as well as provide novel
hypotheses for drought or heat resilience mechanisms. Taken
together, BADDADAN offers a quantitative and interpretable
framework for studying temporal gene expression responses to
external perturbations, applicable to plants and other organisms.

2. Results

To demonstrate BADDADAN (Figure 1), we apply it to two time-
series transcriptomics datasets in A. thaliana Col-0: 1) a progressive
drought stress dataset of five-week-old plants grown in increasingly
dry soil over a period of two weeks, with transcriptomics of leaf 7
sampled each day (Bechtold et al., 2016) and 2) a dataset where six-
week-old plants were subjected to elevated ambient temperature,
with transcriptomic samples of rosette leaves collected unevenly
over a 24-hour period (Caldana et al., 2011). We chose these
datasets because they contain transcriptomics measurements over
alarge number of time points (>14), making them suitable for ODE
modelling. Furthermore, they represent distinct stress response
pathways, which allows us to test our approach on multiple types
of stresses. Below, we will go over each step in our approach and its
results on both datasets in more detail.

2.1. Module finding

As a first step of gene module finding, we filter our dataset for
differentially expressed (DE) genes to reduce the chance of fitting
modules to noise. DE filtering is performed using limma (Ritchie
etal., 2015) (see Methods), and we find 2,363 and 4,444 DE genes
(FDR < 0.05) for drought and heat, respectively, with which we
proceed for clustering. The set of DE genes is subsequently clus-
tered. Hereto, we use either the (local) co-expression between the
DE genes in the time-series data or (global) co-expression across a
large compendium of datasets as compiled in ATTED (Obayashi
et al., 2022), and also combine the local and global distances by
summing them to express the similarities between the DE genes
(see Methods). To investigate if clusters derived from the combined
distance can balance coherence and interpretability, we compare
them to clusters derived from either global or local distances alone.
To assess coherence, we calculate the percentage of variance in gene
expression over time explained by the first principal component for
each module. To measure interpretability, we identify the enriched
biological process gene ontology (GO) terms for each module
(see Methods). Coherence is based on expression, which is used
explicitly in the clustering process; in contrast, GO annotations are
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Figure 1. BADDADAN overview. (a) BADDADAN starts with candidate gene module finding based on a combination of experiment-specific (local) expression and
compendium-wide (global) co-expression data (Obayashi et al., 2022). (b) To show this leads to improved coherence and interpretability, we compare these modules to modules
created from either local or global data alone. (c) Our pipeline then selects a subset of the modules based on four criteria reflecting suitability for ODE modelling. (d) Next, it
connects the modules using TFBS enrichment, and (e) creates an ODE model from this intermodular network which is fit to experimental (local) data and allows for biological
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Figure 2. Module finding. (a and b) Per-module coherence, i.e., explained variance of the first principal component of modules in drought and heat stress datasets, respectively.
(c and d) Fraction of gene modules with at least one enriched biological process GO term. The x-axis represents the distances used to form modules: global (derived from
compendium (Obayashi et al., 2022)), local (based solely on the experiment of interest), combined (a sum of local and global) and random (modules formed by random gene
assignment). Error bars indicate the 95% c.i. estimated by bootstrapping. Different letters indicate p < 0.05, based on a two-sided pairwise Mann-Whitney U test between

distributions.

never explicitly used during the clustering, and thus provides an
independent assessment of clustering performance. To prevent bias
(e.g., modules of size 1 are 100% coherent), we also ensure that
the number of modules and their sizes are approximately equal
between different clusterings (see Table S1 in the Supplementary
Material, Figure S1 in the Supplementary Material and Methods).
In both datasets, we see a similar pattern (Figure 2): local
distance-based clusters are more coherent than global distance-
based ones, though fewer are enriched for at least one GO term. We
furthermore find that combined distance-based modules balance

coherence and interpretability, supporting our hypothesis that
combining them can address the trade-oft between the two. How-
ever, most differences between the use of local, combined or global
distances for the drought data are not significant (e.g., combined
versus local GO enrichment, p = 0.07, Mann-Whitney U test). This
could be due to the smaller number of modules in drought (~ 25)
compared to heat (~ 45), which, in turn, reflects the fewer DE genes
in the drought experiment. The total number of GO terms per mod-
ule follows a trend similar to the fraction of modules with at least
one annotated GO term (Figure S3 in the Supplementary Material).


https://doi.org/10.1017/qpb.2025.10017
https://doi.org/10.1017/qpb.2025.10017
https://doi.org/10.1017/qpb.2025.10017

We also assess GO term functional relatedness per module using
mean pairwise semantic similarity (Wang et al., 2007) (Figure S4
in the Supplementary Material and Supp. Methods in the Supple-
mentary Material), showing that clustering on combined distances
increases interpretability without reducing functional relatedness.

2.2. Module selecting

Not all found candidate modules may be relevant to include in
our dynamic model. We select modules most suitable for ODE
modelling based on four characteristics, expressed as z-scores (see
Methods): 1) activity, i.e., a high average expression over all sam-
ples; 2) coherence, as this facilitates representation of the expres-
sion pattern by a single variable; 3) relevance, i.e., differing in
expression between control and treatment conditions; and 4) regu-
latory relevance, hypothesising that modules with a high number of
enriched TF binding sites (TFBSs) are more likely to be involved in
stress response GRNs (Heyndrickx et al., 2014). There is no strong
correlation between these four scores (Figures S5 and S6 in the
Supplementary Material), suggesting their complementary nature.
We use a combined Stoufter z-score of these four characteristics to
proceed with the top 50% of all candidate modules (see Methods),
resulting in 12 modules for drought and 26 modules for the heat
stress datasets. A breakdown of the scores per module shows that
the highest scoring modules score well on coherence, relevance and
activity, but not always on the regulatory relevance (Figure S7 in the
Supplementary Material).

2.3. Module connecting

To incorporate a set of modules into an ODE model of inter-
modular regulation, we need to find regulatory interactions, i.e.,
determine which modules influence which other(s). Since such
interactions cannot trivially be inferred from co-expression pat-
terns and methods based on, for example, mutual information
(Huynh-Thu & Geurts, 2018) do not always perform well (Aibar
etal., 2017; Saelens et al., 2018), we choose to find these interactions
based on existing knowledge of TFs and their TFBSs in A. thaliana.
To this end, we used TF2Network (Kulkarni et al., 2018), which
is based on extensive prior research (e.g., yeast one-hybrid and
ChIP-Seq studies). However, connecting modules solely based on
TFBSs can yield false positives, because TFs might not actually bind
to a potential binding site due to, e.g., low chromatin accessibility
(De Clercq et al.,, 2021; Khamis et al., 2018; Kulkarni et al., 2018).
Thus, we additionally require that a module can only be connected
to another module when the TF that has a potential binding site
to the target module is part of the source module and that this
TF has an absolute correlation > 0.75 with the target module
expression average (Figure S8 in the Supplementary Material and
Methods). The sign of the correlation is then used to infer whether
the TF activates or inhibits the target module. Moreover, we only
consider a TF when the correlation between its expression and the
average expression of its source module is above 0.3 (Figure S9 in
the Supplementary Material and Methods). Finally, we only keep
modules that have at least one ingoing or outgoing connection to
other modules. The resulting intermodular networks are shown
in Figure 3b and d for the drought and the heat stress network,
respectively.

2.4. Model fitting

Next, to evaluate whether BADDADAN is able to capture module
expression dynamics, we construct ODEs based on the inferred
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module network, save them in SBML format (Hucka et al., 2003),
and fit these using multi-start optimisation (see Methods). For
the heat stress dataset, we explicitly model the circadian clock as
input for the modules (see Methods) because the time points cover
24 hours and without the circadian clock as input our model was
not able to attain an adequately accurate fit. For both datasets,
the optimisation problem is hard; i.e., starting from 5,000 initial
parameter sets, we rarely achieved the best objective value (Figure
S10 in the Supplementary Material).

Nevertheless, the resulting ODE models match the dynamics of
the experimental data, with a mean squared error of 0.15 and 0.05
for drought stress (Figure 3a) and heat stress (Figure 3c), respec-
tively. However, they do not capture some of the early dynamics
in the treatment condition (e.g., the peaks in modules 3, 4 and 6
for drought stress or the dip of module 27 for heat stress). In the
drought stress experiment, the conditions are expected to be highly
similar between control and treatment for the first few days, so what
causes these peaks is not a priori clear. The fact that early peaks
are not fitted well could be due to the way the external input is
modelled. For drought, this is a linear increase from 0 to 1 over two
weeks. Consequently, the drought condition does not have a strong
signal initially in the model. For the heat stress dataset, the external
input into our model is a constant 1, even though the influence of
the heat stress on certain modules might change over time (Kappel
et al,, 2023). Hence, further exploring the representation of the
external input might enhance these fits. Alternatively, the fit may
be improved by including additional module interactions or by
adopting a more flexible ODE formulation (Eq. (7) in Methods).

2.5. Mechanistic insights

We end up with ODEs for networks of eight and nine modules
that represent 1,203 and 1,335 genes in total for drought and heat
stress, respectively. Edges between modules are derived from one
TF in most cases (12 edges for both drought and heat), with some
edges representing two to six TFs (five and two edges for drought
and heat, respectively). While comprehensive investigation of all
interactions in these models is beyond the scope of this article,
below we select some hypotheses from our models and relate these
to earlier work (Datasets S1 and S2 in the Supplementary Material).

2.5.1. Drought. For the drought stress experiment, the original pub-
lication (Bechtold et al., 2016) found that many genes only become
DE from day eight onwards, as this likely marks a shift from mild
to severe drought stress. We see a similar pattern in our data
(Figure 3a); many modules behave similarly in drought and control
for approximately the first half of the experiment, and only diverge
after that. Only two modules (25%) in our network could not be
functionally annotated using GO terms (see Methods and Dataset
S1 in the Supplementary Material), a far lower fraction than found
in the original paper (Bechtold et al., 2016) where roughly 50% of
the modules could not be annotated.

The interpretability of our approach helps generating hypothe-
ses. For example, module 12, the only one with decreased
expression levels in drought compared to control, is enriched
for GO terms related to organismal-level ion homeostasis, iron
ion starvation and nutrient availability, suggesting that in the late
phases of drought stress these can play a significant role, which has
been found before (Mukarram et al., 2021; Mulet et al., 2020, 2023).
According to BADDADAN, genes related to this homeostasis
are inhibited by module 4 through the GBF3 (AT2G46270)
TE, a bZIP G-box binding protein that has been found to be
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Figure 3. Intermodular networks and ODE fits. (a and c) Best ODE fit for the drought and heat stress experiments, respectively. Error bars indicate the 95% confidence interval
of the mean module expression. (b and d) Intermodular network for drought and heat stress dataset, respectively. Arrows indicate activation, ‘T’-shaped ends indicate inhibition.
Each edge can represent more than one TF. Module numbering is discontinuous due to the module selection step.

induced by water deprivation and was originally found in a finger
millet drought transcriptome analysis (Ramegowda et al., 2017).
Additionally, overexpression of this gene in A. thaliana has been
shown to increase drought resistance (Ramegowda et al., 2017). As
a potential mechanism, the authors suggest altered ABA signalling,
but BADDADAN raises the possibility that GBF3 expression could
be associated with ion homeostasis in drought resistance, which
would be interesting to validate experimentally.

Module 4 and module 15 are enriched for terms related to oxida-
tive stress and salicylic acid (SA) production or response, which

are known to be involved in drought stress (Ortega et al., 2024).
Analysis of the original paper’s data confirms that SA abundance
correlates with the average expression of these modules in our
ODE, with Pearson correlations of 0.61 and 0.66 for modules 4 and
15, respectively (Figure S14 in the Supplementary Material). This
demonstrates how modules can be successfully linked to higher-
level phenotypic traits, such as plant hormone levels. SA has been
shown to induce stomatal closure (Okuma et al., 2014), and there
seems to be a negative correlation between stomatal conductance
(Bechtold et al., 2016) and the expression of modules 4 and 15.
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Unfortunately, given the absence of the original raw measurement
data, this is hard to quantify. Module 4 is also enriched for terms
associated with biotic stress, in line with a role for stomatal closure
in preventing water loss as well as bacterial entry (Okuma et al,,
2014), and SA plays important roles in both biotic and abiotic stress
(Ortegaetal,, 2024). Okuma et al. (2014) notes that stomatal closure
is light dependent, which matches our model in that module 4 is
regulated by module 2, which contains GO terms associated with
light response. Module 4 has the highest closeness centrality of 1 in
the network, which suggests it is more likely to play a key role in
the overall response mechanism. Finally, module 16 is regulated by
both modules 2 and 4 and enriched for starch, glucan and maltose
metabolism. This suggests that these metabolic processes could
be controlled through, e.g., circadian rhythm and light—all from
module 2—but also stress-related processes from module 4, all of
which have been reported (Lu et al., 2005; MacNeill et al., 2017;
Skryhan et al., 2018). Knocking out iz silico (see Methods) the CBF3
(AT4G25480) TF that connects module 2 to module 4 results in
altered expression of, e.g., module 16 (Figure S15 in the Supplemen-
tary Material), and in literature, it is indeed reported that changed
CBF3 expression can impact sugar metabolism (Gilmour et al.,
2000). All in all, these findings show that BADDADAN recovers
known mechanisms and TFs, and can link module expression to
other measurements such as plant hormone abundance.

Note that the expression profiles of some modules appear rel-
atively similar (e.g., those of modules 2 and 4). Recall that the
modules are created by clustering both the local distances as well
as the global distances that came from a compendium of data. The
latter reflects that the two modules will have different biological
functions. This is indeed true as the GO enrichments of modules
2 and 4 are different; module 2 is related to light response, circa-
dian rhythm and organic hydroxy compound biosynthetic process,
whereas module 4 is related to biotic and abiotic stress. This shows
the potential benefit of clustering based on a combination of local
and global expression measurements.

2.5.2. Heat. The heat stress dataset shows a large variety in up-
and down-expression of modules over time, which is reflected in a
large number of edges representing inhibition in the intermodular
network (six inhibiting edges and eight activating ones versus one
inhibiting and 16 activating in drought).

Module 4 displays interesting dynamics, initially lower in heat
than control but higher at the last time point. Module 4 is linked
to heat and temperature stress responses as well as protein folding.
Potentially, module 4 might be involved in longer-term thermotol-
erance, as found recently for one of its constituent genes (HSFA2)
(Pan et al., 2024). BADDADAN suggests this is potentially through
protein-folding-related processes, evidence for which can be found
(Wang et al., 2024). The expression pattern of module 4 seems to
result from the type-2 coherent feed-forward loop (Alon, 2007)
from module 9 through module 11. Module 9 inhibits module
4 through the LCL1 (AT5G02840) TF, which has been found to
be involved in heat shock response (Kidokoro et al., 2023). Mod-
ule 11 stimulates modules 4, 5, 14, and 29 through the ABF1
(AT1G49720) TF, which is linked to ABA response as well as heat
(Song et al,, 2017), highlighting it as a potential key regulator.
Unfortunately, ABA was not measured in this experiment, so we
cannot study how its abundance correlates to module expression.
Nonetheless, knocking out ABF1 in silico (see Methods) reveals a
stronger influence on modules 4 and 29 compared to modules 5
and 14 (Figure S15 in the Supplementary Material). Specifically,
the parameters 11,4 ~ 195 and (311,29 ~ 20 are much higher than
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Bi1,5~7-10 *and B11,14 ~4-10~*, highlighting that not all inferred
intermodular edges represent equally strong relationships. This
underscores the value of the interpretable parameters provided by
our approach.

Module 5 is initially downregulated in both conditions, with a
slightly higher expression in heat in the first 10 hours, after which
we observe a higher expression in the control condition. This
module is associated with defence response, stomatal movement
and response to biotic (bacterial) stimulus. As we also found
in the drought dataset, the biotic stimulus is likely related to
the stomatal movement (Okuma et al.,, 2014). Module 5 is also
enriched for programmed cell death, glucosinalate catabolism and
callose localisation, which have been linked to (a)biotic stress
responses (Janda et al., 2019; Hopkins et al., 2009). Overall, this
shows how BADDADAN leverages prior knowledge to identify
modules potentially related to combined stresses, and suggests that
module 5 is an interesting target for studies on interactions between
them.

Finally, Module 29 exhibits a similar response in control and
heat during the initial phase of the heat shock, but at later time
points is more active in heat. This could again be through a type-2
coherent feed-forward loop (Alon, 2007), this time from module 5.
Module 29 is related to cellular homeostasis, glucosinolate trans-
port and sulphur compound transport, all related to heat stress
(Thsan et al., 2019; Sugio et al., 2009). An increase in catabolism
of glucosinalate (which contains sulphur) due to module 5 will
lead to a need for transport. Module 5 inhibits module 29 through
the LHY1 (AT1G01060) TFE, linked to the circadian clock; BAD-
DADAN suggests that it could also be involved in controlling
sulphur transport, through module 29. This has been observed
in Medicago truncatula (Achom et al.,, 2022), and LHY1 has been
linked to sulphur in A. thaliana (Van De Mortel et al., 2008). As
the underlying mechanism is still unknown, this is a potentially
interesting direction for future research.

Of the modules that initially display a large difference between
the control and heat conditions (4, 9, 25, 27 and 45), only three
could be annotated for function (4, 9 and 25). Module 9 has
interesting annotations such as fluid transport—which suggests
the early phase response of heat is causing the plant to transport
more water—and hydrogen peroxide transmembrane transport,
but because it has no ingoing connections, we cannot infer what
processes or TFs are involved in regulating this. This shows that
BADDADAN only recovers a part of the intermodular network
and thus does not necessarily provide insight into the full network;
however, any model based on a subset of genes will be similarly
limited.

3. Discussion

Here, we introduce BADDADAN, a framework for constructing
an ODE model of gene modules encompassing more than 1,000
genes in total. We apply it to two real-world datasets covering
different stresses and time scales, demonstrating its advancements
in gene module expression modelling. First, by combining TFBS
enrichment with expression data, it identifies directional, signed
relationships between modules. Second, by estimating parameters
from data that capture these relationships, it quantifies interaction
strengths. Third, by combining experiment-specific expression data
with compendium-wide co-expression data, it yields coherent and
interpretable modules. Together, these features enable accurate
predictions of gene module expression over time and in silico
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predictions of responses to perturbations, such as knockouts,
that would not be apparent from network structure alone.
Moreover, BADDADAN uncovers known biological processes and
their interactions while also generating novel hypotheses that can
inform the design of future experiments.

BADDADAN enables out-of-the-box integration of experiment-
specific data with prior experimental data (ATTED (Obayashi
et al,, 2022)), addressing a limitation of the widely-used WGCNA
(Langfelder & Horvath, 2008), which does not directly support
such integration and assumes a scale-free network topology.
In contrast to recent black-box ML approaches (Baker et al.,
2018; Sapoval et al., 2022; Shen et al,, 2021), BADDADAN is
composed of intermediate steps that are inspectable; e.g., module
selection provides z-scores, connections between modules can
be visualised as a directed graph, and the ODE model contains
human-interpretable parameters (e.g., 3 can be linked to inter-
action strength). Moreover, existing ODE modelling approaches
comparable to BADDADAN (Lu et al., 2011; Wu et al.,, 2014) infer
connections between modules solely in a data-driven way—similar
to LASSO regression—which has been shown to underperform
for GRN inference (Saelens et al., 2018). However, as potential
future research, such connections could be integrated with our
TFBS-based ones, a hybrid approach similar to Aibar et al.
(2017) where connections are inferred if they are important for
predicting dynamics and/or underpinned by the presence of a
TEBS. Also, incorporation of additional data, e.g., in the form of
chromatin accessibility, could further inform finding of regulatory
connections (Staut et al., 2024).

By addressing essential challenges in gene module network
modelling—such as edge directionality determination, acti-
vation/inhibition inference and associated weights estimation
within an ODE framework—BADDADAN opens up extensive
possibilities for further analysis. For example, looking deeper
into confidence interval estimation of parameters, applying an
identifiability analysis to our model or performing topological
sensitivity analysis (Babtie et al., 2014), where multiple different
network topologies are tested for their ability to describe the
data. This will tell us if we have found a network topology which
would uniquely describe the resulting behaviour. Related to this,
approaches for optimisation of a given network topology by adding
or removing a small number of nodes (modules in our case) could
be applied (Astola et al., 2014). Also, modelling choices (e.g., the
value of the Hill coefficient, linear environmental effects or additive
module interactions) can significantly affect the fitted parameter
values—and possibly subsequent predictions of knockout effects—
so care should be taken when interpreting them. Experimental
validation of BADDADAN’s hypotheses will help support or refine
these modelling assumptions.

Settings of each individual step are now optimised separately in
the pipeline, but it would be an interesting to research if gains can be
made by optimising the pipeline end-to-end through differentiable
optimisation methods developed for deep learning (AlQuraishi &
Sorger, 2021). This would also allow the use of deep-learning-based
embeddings for clustering, higher dimensional representations of
module expressions and neural ODEs or biologically informed
neural networks for ODE fitting. On top of that, the loss function
could be extended to make modules adhere to, e.g., rate limits or
other existing biological knowledge.

Furthermore, to aid in integration with existing or novel
methodologies, BADDADAN builds on existing standards and
software. For parametrisation of the ODE, we utilise standard
formats and scripts for systems biology models (Schilte et al.,

2023; Schmiester et al., 2021), and we save our models as SBML
format files (Hucka et al., 2003), allowing interaction with the
wide ecosystem that is already available for systems biology
models. This would allow us, for example, to couple BADDADAN
to high-quality ODE models for small GRNs that are already
available (Chew et al., 2022; Nieto et al., 2022; Valentim et al.,
2015). Given that both are composed of ODEs, integration
should be possible. For example, we could use a BADDADAN
module related to the production of a metabolite—similar to how
we linked two modules to SA in the drought dataset—and use
the abundance of that metabolite predicted by BADDADAN as
input for an existing mechanistic model. Vice versa, mechanistic
models that predict metabolite abundance could be used as input
(cf. ¢(t) or u(t)) to BADDADAN. Alternatively, a TF in the BAD-
DADAN model could be taken to directly influence expression
of a gene in the mechanistic model, improving its prediction
accuracy.

BADDADAN may face computational challenges in parameter
estimation, similar to those in GRN modelling, when applied to
datasets requiring ODE modelling of large numbers of modules.
However, this seems unlikely to pose a problem in practice, as
we successfully apply BADDADAN here to real-world datasets
representing complex biological systems. If needed, the number of
modules requiring ODE modelling could be reduced by adjusting
the deepsplit parameter or by being more stringent in the module
selection step, at the cost of modelling accuracy, coherence and/or
biological interpretability.

Both datasets contained microarray measurements, so BAD-
DADAN’s performance on RNA-seq data remains untested. How-
ever, existing studies suggest that clustering structures are similar
between microarray and RNA-seq data (Sirbu et al., 2012), which
would suggest that BADDADAN’s module finding would also work
on RNA-seq. However, how the specific characteristics of RNA-
seq measurements influence BADDADAN’s ODE fitting of module
dynamics is still unknown. Hence, the parameter limits and form
of the ODEs might have to be re-evaluated. To further investigate
this, we have concrete plans to apply BADDADAN to time-series
RNA-seq data in the future.

Finally, in the future, BADDADAN could be applied to datasets
of other (non-)plant species and/or stresses and could form the
basis for translational science, using fundamental insights into
model organism A. thaliana resilience mechanisms to breed
relevant crops with higher resilience. Since our model can predict
possible effects of knockouts under different stresses, it provides
possibilities to study the effects of genetic variation on resilience.
Also, a comparative analysis of modules between different
individual or combined stresses could give insight into the temporal
dynamics of processes important for multiple stresses specifically
(Rizhsky et al., 2002; Verslues et al., 2023), which would further
support targeted resilient crop development. For application to
non-model species, alternatives to TF2Network and ATTED
should be found. This could involve inferring regulatory interac-
tions purely from expression data or applying the ATTED method-
ology to existing datasets available for the species of interest.

Summarising, BADDADAN provides a proof-of-concept
approach for inferring gene module-based dynamic models from
time-series transcriptomics data, to help unravel the intricate gene
regulatory mechanisms that plants employ to deal with stresses.
Increasing knowledge in this area might eventually be used to
breed more climate resilient crops which can be used to provide
food to a growing world population, even under the pressure of
climate change.



4, Methods
4.1. Gene expression input data

Progressive drought microarray expression data (Bechtold et al.,
2016) was extracted from Gene Expression Omnibus (GEO)
(Barrett et al., 2013) accession GSE65046, and probe names were
converted to TAIR gene IDs using the Python package GEOParse
(v2.0.3) (Gumienny, 2024). For the heat dataset (Caldana et al.,
2011), expression data was extracted from ArrayExpress accession
E-MTAB-375 and again probe names were mapped to gene
identifiers using the annotations available on GEO (Barrett et al.,
2013). Both original datasets were already log,-transformed to
make noise additive instead of multiplicative and to stabilise
variance (Archer et al., 2004).

4.2. Differential gene expression

We used limma (v3.60.3) (Ritchie et al., 2015) in R (v4.4.0) for dif-
ferential gene expression analysis, as it has been shown to perform
well on time-course microarray datasets (Moradzadeh et al., 2019).
For the drought stress dataset, contrasts were used to test if genes
changed expression differently between subsequent time points
in the drought group compared to the control group. However,
such contrast testing only works if multiple biological replicates
are available, which was not the case for the heat stress data. Thus,
we ran limma on this dataset by fitting a natural cubic spline with
five degrees of freedom through the time points using the R splines
library. Next, we used limma to conduct an F-test between the
conditions on the five parameters that correspond to interaction,
i.e., difference between the control and heat groups. Finally, for both
drought and control, only genes with a Benjamini-Hochberg false
discovery rate (FDR) < 0.05 were kept for further processing.

4.3. Module inference

To obtain global (compendium-wide) co-expression patterns, we
downloaded pairwise z-scores from ATTED v11.1 (Obayashi et al.,
2022), which were calculated based on 27,427 samples and cor-
rected for biases due to differences in sampling conditions and
sample sizes (Obayashi et al., 2022). The z-scores (denoted with
Wiloba) Were converted to a distance matrix Dgjobal, Which repre-
sents pairwise distances between genes, with each row and column
corresponding to a gene:

Dglobal = max( ngobal) - ngobah (1)

where max(M) = max;;Mj is the maximum value over all rows
and columns. This is consistent throughout the manuscript and also
holds for uses of min.

Local distances were calculated within each dataset as follows:

Digcar = 1- C7 (2)

where C is the matrix of pairwise Pearson correlations between
genes over the samples (taking the average expression level if
biological replicates were available). Saelens et al. (2018) found
that this ‘unsigned” (Langfelder et al., 2011) metric yielded higher
module detection accuracy compared to, e.g., an absolute Pearson
correlation or Spearman correlation.

To obtain a clustering based on both global and local co-
expression, we combined Dgobal and Diocal. To avoid biases due
to a difference in distributions, we first separately converted both
distances to a z-score

B. Noordijk et al.

Z=—" (3)

where pp is the average and op is the standard deviation of all
distances.
Next, we summed the resulting z-score matrices:

Zcombined =w- Zglobal + (1 - W) . Zlocaly (4)

where w influences the balance between global and local co-
expression; i.e., a lower w would result in higher coherence if that
is more desired (Figure S2 in the Supplementary Material). We set
w = 0.5 for all experiments as we want an equal balance between
interpretability and coherence.

Finally, to ensure no distances were negative (needed for
clustering), we converted them to a positive distance:

Dcombined = Zcombined - min(Zcombined) . (5)

To find modules, we use hierarchical clustering. This has been
shown to obtain reasonable performance in gene module detection
(Saelens et al., 2018), where it was benchmarked on simulated and
experimental data with a known ground-truth. Average linkage
hierarchical clustering was performed in R on Deombined> Dglobal and
Diycal- To extract modules from the resulting dendrogram, it could
be cut at a specific height, but such a global approach has been
shown to be suboptimal for gene module detection (Langfelder
et al, 2008). Thus, we applied a Dynamic Tree Cut method
(Langfelder et al., 2008) designed specifically for gene module
detection. Also, since module size affects both coherence (e.g.,
modules of size 1 are always 100% coherent) and interpretability
(e.g., amodule containing all genes would lack enriched GO terms),
we ensured that module sizes were roughly equal between the
three clusterings. To achieve this, we tuned the deepsplit parameter
(Figure S1 in the Supplementary Material). Increasing deepsplit
changes the internal dynamic tree cut thresholds used to define
clusters, promoting splits that yield lower within-cluster and higher
between-cluster dissimilarity (Langfelder et al., 2008). This results
in more, but smaller, clusters. For the drought stress data, we set
deepsplit=1 (default value) for the global and combined distance
matrices, but used deepsplit=2 for the local one, as this ensured
cluster sizes similar to the other two clusterings (Figure Sla in the
Supplementary Material). For the heat dataset, module sizes were
comparable for all input distances at deepsplit=1 (default value)
(Figure S1b in the Supplementary Material). All other Dynamic
Tree Cut settings were kept at their default values.

4.4. Characteristics of clusterings

We compared our local, combined and global distance-based clus-
terings on coherence and interpretability (GO enrichment) of the
resulting modules.

4.4.1. Coherence. To assess coherence, we performed a PCA on each
module separately, where we first normalised the expression of
each gene to have mean 0 and variance 1 (Eq. 3). Coherence was
then calculated as the percentage of variance explained by the first
principal component, found using the PCA function in Scikit-learn
(v1.1.3) (Pedregosaetal., 2011). We plotted the distribution of these
coherence scores over all modules using Seaborn (v0.11) (Waskom,
2021).

4.4.2. GO enrichment. GO enrichment was performed using
GOAtools (v1.2.3) (Klopfenstein et al., 2018) with all DE genes
as background. Only gene annotations of experimental
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evidence codes were used to prevent data leakage from existing
co-expression-based electronic annotations. We focused on
biological process GO terms, as we were interested in biological
interpretation of the gene modules. For all modules, only enriched
GO terms with a Benjamini-Hochberg FDR < 0.05 were used for
further analysis. To study the variability in the fraction of modules
that had at least one enriched GO term, we used Seaborn’s boot-
strapping (Waskom, 2021) to estimate the 95% confidence interval.

4.5. Statistical testing

Statistical tests were performed using the Python package statan-
notations v(0.5.0) (Charlier et al., 2022). Because we could not
assume all data to be normally distributed, we compared coherence
and interpretability using the non-parametric two-sided Mann-
Whitney U test. As a null model, we measured the characteristics
of random modules, where we ensured that the module sizes were
distributed identically to those of the combined distances by ran-
domly permuting these cluster assignments.

4.6. Module selection

To select candidate modules for modelling, we assigned each
module a score composed of four different components. 1) Activity:
to obtain modules that are composed of genes that are active, we
determined the average expression over all samples of all genes in
a module. 2) Coherence: to measure the coherence of a module, we
performed PCA on the normalised expression of its constituent
genes over time in our dataset of interest and measured the
percentage of variance explained by the first principal component,
as described above. Coherence is desired because it facilitates
representation of the module expression by a single value (e.g.,
average). 3) Relevance: to assess whether a module’s expression
differs between treatment and control, we first summarised
the module by calculating the average expression of its genes
over time for each condition. We then measured the difference
between conditions using the mean squared error of these averaged
expression profiles. 4) Regulatory relevance: we assumed modules
with a high number of enriched TFBSs were more likely to be
important for a plant’s stress response; e.g., genes related to stimulus
response and gene regulation in A. thaliana are known to have a
higher number of regulators (Heyndrickx et al., 2014). Moreover,
modules with many enriched TFBS are more likely to successfully
be linked to other modules in our model. To score this regulatory
relevance, we used the count of TFBS Ny that were enriched in
a module according to TF2Network (Kulkarni et al., 2018). Since
this distribution was highly skewed, we applied a transformation
log(Nr + 1). We chose not to include interpretability (i.e., GO
enrichment) in the scoring to ensure that it remains an independent
criterion for evaluating the selected modules.

To ensure no single criterion dominated the selection, all scores
were scaled to z-scores through Eq. (3). Subsequently, we combined
these individual z-scores using Stouffer’s method to obtain one
combined z-score per module because this allowed for subsequent
statistical interpretation and filtering:

_ Zf‘cﬂzi

Here, k is the number of different characteristics (in our case,
four). Only the activity was based on non-normalised gene expres-
sion, the other scores were calculated from gene expression where

V4 (6)

each gene was z-scored over all samples. We selected the top 50%
(a user parameter, here chosen arbitrarily) of all modules based
on their summary score for subsequent modelling. The module
selection step results in an intermodular network that has a higher
density compared to the network from modules that have not been
filtered (Table S3 in the Supplementary Material).

4.7. Model structure

To infer connections between modules, we used the TFBS enrich-
ment results of TF2Network (Kulkarni et al., 2018). We inferred
regulatory interactions between modules based on three criteria:
1) The target module contained an enriched binding site for a
TF that belonged to a source module. 2) The TF had a Pearson
correlation of at least 0.3 with the average expression of its source
module; any TFs with correlations to their source module lower
than this were considered an outlier and excluded from regulatory
interaction inference. 3) The absolute Pearson correlation between
the expression of the TF and the average expression of its target
module had to exceed a certain threshold. This step fulfilled two
functions. Firstly, it reduced the number of false positives that
could result from TFBS enrichment analysis, e.g., due to chromatin
accessibility (De Clercq et al., 2021; Khamis et al., 2018; Kulkarni
et al,, 2018). Secondly, as we needed to choose a different form of
the Hill equation for inhibition of activation (Eq. 7), we used the
sign of the Pearson correlation as a heuristic to infer up- or down-
regulation. If multiple TFs from the same source module regulated
the same target module, we asserted they all consistently up- or
down-regulated; if there was disagreement, no valid network would
be output by BADDADAN. Finally, modules that were left with no
interactions with any other modules were removed from the model.

To determine the correlation cutoff between TFs and their target
modules, we inferred model structures as described above for
cutoffs varying from 0 to 0.95 at intervals of 0.05, and kept track
of the total number of modules, interactions and whether the
model graph consisted of one single weakly connected component
or multiple disjoint components (Figure S8 in the Supplementary
Material). We then picked 0.75 as a cutoff for both the heat and
drought stress datasets, as this led to the sparsest model not split
into disjoint components. Intermodular network visualisation and
analysis were performed in NetworkX (v2.8.8) (Hagberg et al.,
2008) and Cytoscape (v3.10.3) (Shannon et al., 2003).

4.8. ODE model

For each module, we model its activity in an ODE representing the
average gene expression levels over time after normalisation (Eq. 3)
because related genes can have similar expression patterns but at
different magnitudes (Wu et al., 2014). Since z-score normalisation
of the gene expression could result in negative values, a constant
of 3 (minimum value of module expression was around —2.5)
was added to guarantee positive values, preventing biologically
implausible scenarios where negative expressions would invert the
decay term and falsely suggest gene production. For a module m
that is inhibited by a set of modules I and activated by a set of
modules A, we represent its rate of change as follows:

2

d)/m i,m
D = (1) =6+ e (1) +Z;f5mm
2
_Ja
+;4 ﬁu,m kﬁ,m +y§ . (7)
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The expression of each module y,, is dictated by an external
stimulus-dependent term weighted by ., a decay term governed
by the parameter &, a circadian clock input ¢, (t) that we only
used for the heat stress dataset (because this is sampled over a
period of 24 hours) and activation/inhibition Hill equations of
the second order where f3,,,, represents the maximum magni-
tude of the activation/inhibition of module #n on module m, and
kn,m the abundance of the regulator at which the module is 50%
activated/inhibited. We chose these formulas as gene regulation
is highly nonlinear and Hill kinetics are widely used in ODE
modelling in systems biology (Frank, 2013; Polynikis et al., 2009;
Valentim et al., 2015). To investigate the influence of the Hill
coefficients, i.e., the strength of the nonlinearity, we also performed
parameter optimisation (see below) with Hill coeflicients of 1 and
3, and found that the ability to fit the data was not lost when the
strength of nonlinearity was changed (Figure S11 in the Supple-
mentary Material). However, resulting parameter values differed
significantly (Figures S12 and S13 in the Supplementary Material),
suggesting that the choice of Hill coeflicient alters BADDADAN’s
prediction of underlying dynamics.

The function u(t) captures the external input, which was dif-
ferent for the drought and heat experiment. For the former, we
modelled the linear increase in drought stress over two weeks
(Bechtold et al., 2016) as follows:

t
L 0<t<13,
u(t)={1%
0, control,

if drought,
& ®)

to simulate a linear increase of drought where ¢ is time in days.
For the latter, heat stress, we modelled the external input as

follows:
1, 0<t<24,
u(t) =
() {O, control,

if heat,
9)

as is also common in plant mechanistic modelling papers (Nieto
et al,, 2022). Here, we measured t in hours.

Initially, the model struggled to accurately capture the data in
the heat experiment, likely due to the circadian clock having a
strong influence on gene expression over a 24-hour period (which
is not observed during daily sampling in the drought dataset). To
address this, we explicitly included a circadian clock input ¢ (¢) for
each module:

Cm(t):{amsin(zi127r+¢m)+bm, 0<t<24, ifheat, (10)

0, if drought.

Here, a,, quantifies the input strength of the circadian clock
on the module expression change, ¢, determines the phase offset
of the circadian clock influence (which we give a 24-hour period
by definition) and b,, models the baseline influence of the circa-
dian clock. Again, ¢ is measured in hours. Finall, BADDADAN
exported the full ODE models in the Systems Biology Markup
Language (Hucka et al., 2003) to ensure reproducibility, consistency
and interoperability.

4.9. Parameter optimisation

We specified the parameter optimisation problem per dataset
(drought or heat) in PETAB (Schmiester et al., 2021) and
optimised the parameters of the ODE model to match experimental
measurements on both the control and treatment conditions
using PyPESTO (Schilte et al., 2023) and AMICI (Frohlich et al.,
2021) for ODE integration. We started the ODE model with ¢ = 0
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being the measured initial module expressions and predicted
the full time course data from there. Both conditions shared all
parameters except for u(t) and ¢, (t). We minimised the negative
log-likelihood objective function using the L-BFGS optimisation
algorithm implemented in SciPy (Virtanen et al, 2020) and
AMICT’s adjoint sensitivity method. For fitting, PyPESTO required
the noise level for each module to calculate the negative log-
likelihood. We set this value to 0.1, based on the 95% confidence
interval estimated through bootstrapping of the mean per module.
Parameter limits were chosen empirically to ensure the parameters
of a best fit never hit their upper or lower bounds (Table S2 in
the Supplementary Material), and all non-negative parameters
were estimated on a log,, scale to aid exploring different orders
of magnitude (Schilte et al, 2023). To maximally explore the
optimisation landscape, models with random initial parameters
were initialised 5,000 times in parallel, and waterfall plots were
created to inspect if a global minimum was found (Figure S10
in the Supplementary Material). In the heat dataset, the last two
data points (tf ~ 10 and t ~ 20) were oversampled fourfold to
mitigate the effects of uneven sampling and ensure a more balanced
representation across time points. Finally, to predict TF knockout
effects in silico, we set the parameter (3 of the associated edge(s)
to 107°. ODE fits and resulting parameters were stored using
MLFLOW (Chen et al., 2020). Optimisation took approximately
four days per dataset on a server equipped with two Intel(R)
Xeon(R) E5-2640 v3 CPUs.
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