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Abstract
The rise of large language models (LLMs) has marked a substantial leap toward artificial general intelli-
gence. However, the utilization of LLMs in (re)insurance sector remains a challenging problem because
of the gap between general capabilities and domain-specific requirements. Two prevalent methods for
domain specialization of LLMs involve prompt engineering and fine-tuning. In this study, we aim to eval-
uate the efficacy of LLMs, enhanced with prompt engineering and fine-tuning techniques, on quantitative
reasoning tasks within the (re)insurance domain. It is found that (1) compared to prompt engineer-
ing, fine-tuning with task-specific calculation dataset provides a remarkable leap in performance, even
exceeding the performance of larger pre-trained LLMs; (2) when acquired task-specific calculation data
are limited, supplementing LLMs with domain-specific knowledge dataset is an effective alternative; and
(3) enhanced reasoning capabilities should be the primary focus for LLMswhen tackling quantitative tasks,
surpassing mere computational skills. Moreover, the fine-tuned models demonstrate a consistent aptitude
for common-sense reasoning and factual knowledge, as evidenced by their performance on public bench-
marks. Overall, this study demonstrates the potential of LLMs to be utilized as powerful tools to serve as
AI assistants and solve quantitative reasoning tasks in (re)insurance sector.
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1. Introduction
In insurance and reinsurance business, a large amount of unstructured data is generated and needs
processing and analyzing. In contrast to structured data, which are typically represented in tabular
form, unstructured data encompass information that lacks a pre-defined format, such as text and
images. Common unstructured data in (re)insurance business include insurance policies, claim
reports, and emails. The processing of unstructured data comprises a broad variety of tasks, rang-
ing from fundamental operations to sophisticated analysis. At the fundamental level, this includes
entity extraction (e.g., policy details from documents) and classification (e.g., claim reason classi-
fication into a list of given options). More advanced processes involve synthesizing information
into summaries and applying logical reasoning, such as evaluating the appropriateness of claim
payments based on policy terms. The traditional approach to such unstructured data has been to
deal with it by hand, which is both inefficient and time-consuming. The development of natu-
ral language processing (NLP) provides an automated solution for unstructured data processing.
The evolution of language models originates from the statistical models in the 1990s (Jelinek,
1990; Waibel & Kai-Fu, 1990; Jelinek et al., 1992; Brown et al., 1990; Brown et al., 1993; Brown,
1990; Jelinek, 1998; Rosenfeld, 2000; Stolcke, 2002; Gao & Lin, 2004), which are developed under
the Markov assumption that the probabilistic inference of the (k + 1)st word is dependent on

C© The Author(s), 2025. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries. This is an Open Access arti-
cle, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1748499525100079 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525100079
https://orcid.org/0000-0003-1399-9071
mailto:hao_yilin@163.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1748499525100079


2 Yilin Hao et al.

its preceding k words. Subsequently, neural-network-based language models were introduced to
handle sequential data effectively, including recurrent neural networks and its variants, e.g., gated
recurrent unit and long-short termmemory (Rumelhart et al., 1986; Chung et al., 2014; Hochreiter
& Schmidhuber, 1997). The models mentioned above are relatively small language models, which
perform well in specific tasks such as extraction and classification, but exhibit restricted capabil-
ities in reasoning. The integration of these models into the (re)insurance sector could facilitate
the automation of business processes, such as claim classification and fraud detection, thereby
enhancing operational efficiency (Lee et al., 2020; Saddi et al., 2023).

The transformer architecture led a breakthrough enabling more scalable training and better
model performance through self-attention mechanism (Vaswani et al., 2017). Based on this archi-
tecture, the BERT (Bidirectional Encoder Representations fromTransformers)model was released
by pre-training on large-scale unlabeled text data (Devlin et al., 2019). Subsequently, the rise of
ChatGPT (OpenAI, 2022) and other large language models (LLMs) has significantly changed the
paradigm of NLP, marking a substantial leap toward achieving artificial general intelligence. With
the increase of model and data sizes of pre-trained language models, some emergent abilities
have been found, leading to the term LLM (Wei et al., 2022). These emergent abilities include
in-context learning, instruction following and step-by-step reasoning, making it possible for lan-
guage models to solve more complicated problems. For example, GPT-3 demonstrated few-shot
learning capabilities, unlike its predecessor GPT-2 (Brown et al., 2020). These pre-trained LLMs
are considered storing a wide range of knowledge and common sense with advanced reason-
ing capabilities. Recently, ChatGPT resulted from aligning the LLMs from the GPT series for
dialogue, which presents an exceptional conversational ability with humans (OpenAI, 2022). In
addition to enhanced performance on conventional NLP tasks such as extraction and classifica-
tion, the emerging capabilities of LLMs demonstrate the potential of AI assistants for employees
in the (re)insurance sector (Balona, 2023). As AI assistants, LLMs could be used to improve effi-
ciency, streamline operations, and support decision-making in a variety of ways. For example,
they can analyze and summarize long documents, highlighting key information and saving sig-
nificant reading time. Another potential scenario is preliminary assessments in claims processing,
where LLM can compile relevant policy and claim reports to suggest an initial decision to accept
or reject a claim, subject to human review.

However, challenges remain in the use of LLMs in (re)insurance sector. While LLMs are
designed to have broad knowledge, they may struggle with domain-specific tasks due to the
overrepresentation of popular topics and underrepresentation of niche subjects. This can lead
to inconsistent or inaccurate responses when dealing with complex domain-specific concepts and
terminology. The domain specialization of LLMs is a critical yet demanding problem. To nar-
row the divide between general LLMs and domain-specific requirements, there are two prevalent
methods, namely prompt engineering and fine-tuning, which involve the integration of propri-
etary and domain-specific data into LLMs. The twomethods offer varying levels of computational
efficiency, ease of deployment, and adaptability. Prompt engineering is resource-efficient, yet its
capacity to enhance the performance of LLMs in domain-specific tasks is limited. It could leverage
the inherent language capabilities of LLMs without altering the model parameters, making them
ideal for tasks such as information extraction and text generation (Dodson, 2023). In contrast, it
has been shown that fine-tuning can significantly improve the inference of LLMs, especially for
tasks demanding complex reasoning (Singhal et al., 2025; Chung et al., 2024). While there have
been reports of LLMs being specialized in sectors such as medicine, finance, investment, and law
through fine-tuning techniques (Singhal et al., 2025; Yang et al., 2023; Yang et al., 2023; Cui et al.,
2023), the (re)insurance domain has not yet been explored in this context. Additionally, many
tasks within the (re)insurance domain rely on the ability to perform complex quantitative reason-
ing, such as the calculation of premiums and loss payments. However, many fine-tuned models
have been applied to text-heavy tasks, indicating a research gap for those that require quantitative
reasoning performed frequently in the (re)insurance workflow.
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This study assesses the capability of LLMs to perform reasoning tasks within the (re)insurance
sector. We utilize reinsurance training materials to create quantitative question-answer pairs that
test the models’ ability to calculate and allocate liabilities, premiums, and claims between the
reinsured and the reinsurer. While these test cases may not fully replicate real-world business
scenarios, they serve as a valuable benchmark to evaluate LLMs’ potential for executing reason-
ing tasks in the reinsurance domain. The open-source Llama 2-Chat models of sizes 7B, 13B, and
70B are adopted as our baseline with prompt engineering based on one-shot learning and fine-
tuning with various datasets applied subsequently to further augment the model performance. As
a benchmark for comparison, we also evaluated the performance of GPT 4, a close-source model
released around the same time as Llama 2. Our findings can be summarized as follows:

• By using one-shot learning, the Llama 2-Chat 70B model demonstrates notable performance
improvement, while the 7B and 13Bmodels encounter difficulties. Fine-tuning with the calcu-
lation dataset increases evaluationmetric from around 15 points to nearly 80 points, yielding a
five-to-six-fold enhancement and outperforming larger pre-trained LLMs, which underscores
the importance and efficacy of fine-tuning for reasoning-intensive tasks.

• When task-specific calculation dataset is limited, supplementing LLMs with more accessible
domain-specific knowledge data can markedly improve performance, achieving results com-
parable to models fine-tuned on extensive calculation datasets. Even without calculation data,
employing background knowledge for fine-tuning with one-shot prompting can significantly
elevate model capabilities.

• There is a positive correlation between the model performance and its capacity for reasoning,
with deductions due to computational errors comprising aminimal fraction of the overall per-
formance metrics. Consequently, enhancing reasoning capability stands as the principal focus
for optimizing LLMs in quantitative tasks. Furthermore, the fine-tuned model maintains
its proficiency in common sense reasoning and factual knowledge, suggesting retention of
acquired knowledge post-fine-tuning, according to their performance on public benchmarks.

The paper is organized as follows. Section 2 offers an overview of related work for reader
reference. Section 3 details our experiment set-up, including evaluation data, training data,
prompt engineering, and fine-tuning techniques employed in this work, and evaluation metric.
In Section 4, we present our findings from experiments and auxiliary assessments, including error
analysis and the model evaluation on public benchmarks. The concluding remarks can be found
in Section 5.

2. Related works
In this section, we present prior work related to our study. Section 2.1 provides an overview of
existing literature on the application of NLP techniques in (re)insurance problems, covering both
traditional language models and LLMs. Section 2.2 delves into an introduction of open-source
LLMs and domain-specification techniques, including prompt engineering and fine-tuning, as
well as examples of domain-specification of LLMs.

2.1 NLP techniques in (re)insurance sector
2.1.1 Traditional languagemodels
Prior to the appearance of LLMs, traditional NLP techniques, such as statistical models and
neural-network-based models, have offered effective tools for processing unstructured data. By
extracting information from raw text data and transforming it into structured numerical or cat-
egorical data, these language models could generate additional variables for further analysis. For
example, the utilization of rule-based NLP algorithms or sentence embeddings could help with the
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recognition of fraudulent patterns from the contents of claims, thereby facilitating the detection
of insurance fraud through machine learning techniques (Saddi et al., 2023). Word embedding
models could be used for claim classification, and new features could be generated to provide addi-
tional information for claim analysis and loss amount prediction through actuarial models such
as generalized linear model (Lee et al., 2020). The deployment of these NLPmodels can reduce the
time and human effort required for manual review by automating the processing of unstructured
data, thereby enhancing overall efficiency. Furthermore, NLP techniques offer the potential to
utilize a broader range of data source for modelling purposes beyond structured data. This could
facilitate the generation of insights and enhance the performance of (re)insurance models.

2.1.2 Large languagemodels
With the extensive knowledge foundation and emerging reasoning capabilities, LLMs present the
potential of the application in the (re)insurance sector through two ways: directly contributing to
modelling and serving as workflow assistant (Balona, 2023). The first application involves solv-
ing the same tasks as the traditional language models. For example, ChatGPT can be used to
extract information from accident reports, achieving a higher accuracy than traditional small lan-
guage models (Troxler & Schelldorfer, 2024). The utilization of LLMs for NLP tasks shows several
advantages. Firstly, LLMs are trained on a large corpus with a deeper understanding of funda-
mental and expert knowledge, which enables them to perform better than traditional language
models. Secondly, the pre-processing of raw data can be simplified. For example, there is no need
to translate the input text into the same language when dealing with multilingual tasks. Thirdly,
some less complex tasks can be solved by LLMs in an unsupervised approach, saving the effort
required for data annotation and model training, which are necessary in machine learning. The
second application involves assisting in the daily work of employees in the (re)insurance sector by
providing documentation summarization and generation, automatic data analysis, coding assis-
tance, and other problem-solving services (Balona, 2023). The potential of incorporating LLMs
into routine work is guaranteed by their emerging capabilities. However, this application has not
been sufficiently explored in previous literature and is likely to become a valuable area of interest
in future research.

2.2 LLM and domain-specialization
2.2.1 Open-source LLM and Llama2
Developing an LLM from scratch is a resource-intensive endeavor. Therefore, it is common prac-
tice to use existing publicly available models, which can be divided into two categories, i.e.,
close-source and open-source LLMs (Zhao et al., 2023). Compared to the close-source LLMs,
such as ChatGPT by OpenAI, offering access through APIs or user interfaces without the need for
local deployment, open-source LLMs provide downloadable model checkpoints, enabling local
deployment, further training, or fine-tuning. These models ensure great transparency, permit
full control, and are often released with different options of model sizes, allowing for flexible
customization.

Among the open-source LLMs, Llama, a suite of models, has been broadly used in academic
research and commercial applications, demonstrating robust performance across numerous
benchmarks (Beeching et al., 2023). Following an initial release of Llama fromMeta AI in February
2023, Llama 2 and Llama 2-Chat were introduced in July 2023 with further training on new
public datasets and various model sizes of 7B, 13B, and 70B parameters. Compared with the
pre-trained Llama 2, the Llama 2-Chat models were optimized for following instructions and
dialogue use cases (Touvron et al., 2023). Subsequent developments have built upon these mod-
els, e.g., Llama 2-Instruct was tailored for long-text chat, and Llava was adapted for multimodal
instruction-following tasks (Together, 2023; Liu, 2023).
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2.2.2 Prompt engineering
Despite the capabilities of LLMs, a persistent gap exists between their general knowledges and
domain-specific tasks. Prompt engineering is a relatively new discipline for developing and opti-
mizing prompts to effectively use LLMs without altering the model parameters. There have
been reports indicating that LLMs show improved capacity on downstream tasks when properly
prompted (Radford et al., 2019; Wei et al., 2022).

Among the approaches in prompt engineering, few-shot prompting enables in-context learn-
ing to steer the models by providing demonstration examples (Brown et al., 2020). It has been
evident that the LLMs can acquire proficiency for common tasks through the provision of one
single example, referred to as one-shot prompting. Besides, various techniques have emerged
for reasoning-intensive tasks (Saravia, 2022). For example, Chain-of-Thought (CoT) prompt-
ing enhances the complex reasoning capabilities of LLMs by presenting a sequence of smaller
reasoning steps, aiding the model with comprehension of the task (Wei et al., 2022). This can
be coupled with one-shot or few-shot prompting to further amplify model performance. Tree-
of-Thoughts prompting provides a framework for tasks demanding exploration or strategic
reasoning, resembling an expanded version of CoT with multiple nodes and branches (Yao et al.,
2023).

2.2.3 Fine-tuning
Fine-tuning is a process where a pre-trained model is further trained on a smaller and domain-
specific dataset. This process adjusts the model parameters to specialize its knowledge and
improve its performance on tasks within the specific domain. However, fine-tuning large mod-
els with billions to trillions of parameters poses practical challenges due to high computational
costs and single-GPU RAM limitations. To address this, parameter-efficient fine-tuning (PEFT)
methods have been developed, training a limited number of parameters instead of full parame-
ter fine-tuning. Existing PEFT methods could be categorized into several groups: addition-based
PEFT fine-tune newly introduced parameters, selection-based PEFT fine-tune a subset of exist-
ing parameters, and reparametrization-based PEFT fine-tune a low-rank representation of full
parameters (Lialin et al., 2023).

Among the reparametrization-based methods , Low-Rank Adaptation (LoRA) and its variants,
such as Quantized Low-Rank Adaptation (QLoRA), are the most prominent PEFT techniques for
fine-tuning LLMs. LoRA decomposes the updates of weight matrix into products of two low-rank
matrices, which efficiently reduces training parameters, enables pretrained models to be shared
across multiple tasks, and incurs no inference latency (Hu et al., 2022). This approach has led
to the development of numerous open-source models with outstanding performance (Cui et al.,
2023; Yang et al., 2023). QLoRA extends LoRA by introducing quantization to enhance parame-
ter efficiency during fine-tuning (Dettmers et al., 2023). It combines LoRA principles with 4-bit
NormalFloat quantization and double quantization techniques. Studies demonstrate that both
LoRA and QLoRA achieve performances comparable to full parameter tuning across models of
various sizes (Patel, 2023; Google, 2023). QLoRA consumes approximately 75% less peak GPU
memory than LoRA, yet LoRA demonstrates a 66% improvement in speed and is 40% more cost-
efficient than QLoRA (Google, 2023). Thus, LoRA is preferred when GPU memory is sufficient
for fine-tuning tasks, while QLoRA is recommended when memory constraint is a concern.

2.2.4 Domain specialization of LLMs
Several studies have leveraged LLMs in various domains by employing prompt engineering and
fine-tuning techniques according to survey (Zhao et al., 2023). For instance, in the legal domain,
ChatLaw utilized Q&A pairs derived from news, exam questions, and legal documents to fine-
tune open-source LLMs for legal inquiries (Cui et al., 2023). Similarly, DISC-LawLLM prepared
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Figure 1. Illustration of experiment set-up. The evaluation framework incorporates human assessment, using open source
LLMs as base models and benchmarks. We employ prompt engineering and fine-tuning to achieve domain specialization.
Recognizing the challenges of gathering extensive task-specific training data (calculation dataset), we further examine the
impact of fine-tuning with background knowledge (knowledge dataset).

diverse training datasets, including multi-choice questions, law retrieval, legal consultation, and
agreement writing (Yue et al., 2023). In finance, FinGPT fine-tuned LLMs with news, reports, and
social media data for sentiment analysis, relation extraction, headline analysis, and more (Yang
et al., 2023). InvestLM curated instructions from various sources for tasks like sentiment analysis
and document classification focusing on the investment industry (Yang et al., 2023). In themedical
domain, Med-PaLM focused on medical Q&A datasets for high-quality medical answers (Singhal
et al., 2023), while HuaTuo trained on real or ChatGPT-generated conversations for medical con-
sultations (Wang et al., 2023). These studies underscore the potential of LLMs for fine-tuning in
diverse domains.

Despite the proliferation of the above domain-specific models, there remains a notable absence
of LLMs with expertise in (re)insurance sector. One of the quantitative reasoning tasks in this
domain involves calculating the allocations of liabilities, premiums, and claims between rein-
sured and reinsurer, which requires a profound understanding of (re)insurance and mathematical
principles. In this work, we evaluate the development of domain-specific language model tai-
lored to this task by implementing prompt engineering and fine-tuning techniques on existing
open-source LLMs.

3. Methodology
In this section, we detail the experiment set-up for the evaluation of domain-specific LLMs on the
calculation task of (re)insurance allocation, as shown in Fig. 1. The data used in the experiment
are presented in Section 3.1. In Section 3.2, we focus on the implementation details and compu-
tational aspects of the LLMs and associated prompt engineering and fine-tuning techniques. The
evaluation metric is discussed in Section 3.3.

3.1 Data
The data utilized in this work are sourced from reinsurance training materials, which contain a
general overview of reinsurance business, as well as a detailed introduction to common types of
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reinsurance treaties, including proportional reinsurance and non-proportional reinsurance. They
are used to construct evaluation and training datasets described in the following subsections.

3.1.1 Evaluation dataset
The evaluation dataset comprises the calculations of (re)insurance allocation in the form of ques-
tion and answering (Q&A) extracted from the aforementioned training materials. The dataset
consists of 100 questions across 25 different types, with each type featuring multiple scenarios.
For instance, questions involving reinsurer payment calculations may vary based on factors such
as deductible levels and loss amounts, or the treatment of underwritten buildings as single or
separate risks.

3.1.2 Training dataset
The training dataset is customized to evaluate fine-tuning effects on model performance, con-
sisting of two subsets: task-specific data and background knowledge data. Task-specific data
encompass calculation Q&A pairs similar to those in the evaluation dataset. Recognizing the chal-
lenges of gathering comprehensive task-specific data, background knowledge data are included to
assess the impact of fine-tuning using broader domain knowledge.

(i) Task-specific data: calculation dataset
The calculation dataset consists of questions with various reinsurance types and difficulty

levels. Proportional reinsurance questions constitute 20%, non-proportional reinsurance ques-
tions 64%, while 12% involve combined structures, and 4% are accounting calculations. Tasks
range from simple deductions to complex computations involving multiple treaty types, reflect-
ing the intricacies of reinsurance financial calculations. Each question specifies the desired answer,
background, and conditions, with clear explanations provided in the answer to facilitate model
comprehension. For multi-step reasoning and calculation tasks, CoTmethodology is employed to
guide the model. The dataset contains 25 types, with experiments conducted on different training
data sizes to gauge performance improvements, with a maximum of 1150 questions, averaging
46 questions per type. The types of questions in the calculation dataset and the percentage of
each type are shown in Table 1. There are several examples of the calculation dataset shown in
Appendix A. Calculation dataset.

(ii) Background knowledge data: knowledge dataset
The knowledge dataset is derived from the aforementioned materials, comprising questions

and corresponding text paragraphs structured into Q&A pairs. For instance, paragraphs detailing
the advantages of quota share reinsurance are transformed into Q&A pairs with corresponding
questions and answers. Examples of this dataset are provided in Appendix B. Knowledge dataset.
We manually extract 600 questions from the training materials as the base data. To augment
the dataset, we utilize the open-source Llama 2-Chat 70B model to rewrite Q&A pairs in varied
phrases, resulting in a total of 1200 pairs in the knowledge dataset.

3.2 Computational details
In this experiment, Llama 2-Chat models of various sizes are adopted as the base models and
the baseline for evaluation. The models are accessed from the model catalog in Azure Machine
Learning Studio. We employ one-shot prompting and LoRA as the prompt engineering and fine-
tuning techniques for domain specialization, respectively. The example provided to the models is
selected from the training dataset, which follows the CoT methodology with detailed reasoning
steps for model comprehension. Examples of the prompts are presented in Appendix C. One-
shot prompt. With sufficient GPU memory, LoRA is applied for fine-tuning, with a rank of 8,
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Table 1. Type of questions in the calculation dataset

Group Question type Percentage (%)

Proportional Calculate premium and loss for quota share treaty 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate premium and loss for surplus treaty 12

Non-proportional Definition of excess of loss treaty 16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate loss for excess of loss treaty and variants of
excess of loss
(Including excess of loss per risk, excess of loss per
person, catastrophe excess of loss, excess of loss with
multiple layers, excess of loss with subrogation)

44

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate loss for stop loss treaty 4

Combined structure Calculate the premium and claim for combination of
quota share and surplus

4

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate loss for combination of surplus and excess of
loss per risk

4

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Calculate loss for combination of quota share and
excess of loss per risk

4

Accounting Calculate profit commission 4

target modules of four weight matrices in the self-attention module (q_proj, k_proj, v_proj, and
o_proj) and two in the multilayer perceptron module (up_proj and down_proj), and optimizer of
AdamW. A learning rate of 3e-4 with warm-up and linear decay schedule is applied in the training
process. The batch size is 128 and the micro batch size is 4. The number of epochs is determined
based on the training loss and evaluation loss, while model checkpoints are saved along the train-
ing process. The fine-tuning is conducted on two A100 (80G) GPUs, with training time varying
based on number of epochs, data size, and model size. For instance, fine-tuning the Llama 2-Chat
7B model with calculation datasets (1150 calculations) under 5 epochs required 8 minutes, while
the Llama 2-Chat 13B model required 14 minutes. For Llama 2-Chat 70B models, we encountered
resource limitations preventing us from fine-tuning on two A100 GPUs. On the one hand, utiliz-
ing more computational resources would significantly increase costs. On the other hand, loading
the model in 8-bit precision for fine-tuning would result in reduced model performance. Given
these considerations, we employ 70B models only for generation problems without fine-tuning.

3.3 Evaluationmetric
Given the quantitative reasoning-intensive nature of the task, necessitating multiple steps of rea-
soning to obtain a conclusive answer, model performance evaluation is conducted through human
assessment. The evaluation dataset comprises 100 questions, each carrying a maximum score of 1
point, totaling 100 points overall. Model outputs are graded on a scale of 0–1, depending on their
proficiency in problem-solving, as delineated in Table 2.

4. Results
In this section, we provide an in-depth analysis of our experimental findings. Section 4.1 details
the evaluation of the baseline models and their enhanced performance through the application
of prompt engineering. Notably, the implementation of one-shot prompting has yielded a sig-
nificant performance boost, especially for the 70B model. Section 4.2 presents the outcomes of
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Table 2. Score deduction criteria formodel outputs in the evaluation dataset, with each question assigned amaximumscore
of 1 point out of 100

Score deduction Situation

No deduction
(deduction of 0 point)

Correct answer



Partial deduction
(deduction of 1

2n points)
The question requires n outcomes, one out of n outcomes is incorrect due to
miscalculation (though the correct calculation formula id presented)



Full deduction
(deduction of 1n points)

The question requires n outcomes, one out of the n outcomes is incorrect due
to lack of problem-solving reasoning

Detailed examples are available in Appendix D. Marking examples.

Table 3. The performance comparison of Llama 2-Chat models with and without one-shot prompting

Score

Model Base model Base model+ one-shot prompt Improvement (%)

Llama 2-Chat 7B 13.83 20.83 + 50.61


Llama 2-Chat 13B 17.17 25.25 + 47.06
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Llama 2-Chat 70B 19.92 46.67 + 134.28


GPT-4 63.88 72.42 + 13.37

fine-tuning, demonstrating that this method surpasses one-shot prompting in terms of perfor-
mance improvement. Furthermore, Section 4.3 explores the influence of background knowledge,
revealing that models reap the greatest benefits when task-specific datasets are limited. In the
final analysis, Sections 4.4 and 4.5 examine the model performance before and after fine-tuning.
It is evident that reasoning capability is the key determinant in enhancing model performance on
quantitative calculation tasks. The general proficiency of baseline models is well-maintained after
fine-tuning, as evidenced by their performance in public benchmarks.

4.1 Baseline and prompt engineering
We first evaluate the Llama 2-Chat models of 7B, 13B, and 70B parameters with and without the
application of one-shot prompting using the evaluation dataset described in Section 3.1.1, which
includes calculation questions of (re)insurance allocation of varying complexity, ranging from
simple to intricate. We also evaluate GPT 4, which was released in March 2023, on the same test
dataset as a benchmark. We calculate a score out of 100 for each model employing the evaluation
metric in Section 3.3.

The findings, summarized in Table 3, reveal anticipated outcomes. (1) The Llama 2-Chat mod-
els demonstrate unsatisfactory performance in addressing reinsurance calculation tasks, primarily
due to their lack of specialized domain knowledge. Despite a maximum score of 100 points, all
three models score below 20 points. The 70B model outperforms its smaller counterparts, indi-
cating a positive correlation between model size and knowledge retention in model pre-training.
Meanwhile, GPT 4 yields 63.88 without further prompting or fine-tuning. (2) The integration of
prompt engineering, i.e., one-shot prompting with CoT presented in Section 3.2, leads to improve-
ments in model performance. Most notably, larger models, characterized by enhanced reasoning
abilities and proficiency in following instructions, experience more benefits from prompt engi-
neering interventions. This is demonstrated by the score of 70B model, which more than doubles
from 19.92 to 46.67 points by using one-shot prompting. However, the improvements through
prompt engineering are generally limited, e.g., the 7B and 13B models encounter difficulties.
While this approach enables models to improve on easy-to-moderate-level problems, the com-
plexity of certain tasks underscores the essential requirement for infusing domain-specific data
via fine-tuning.
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Figure 2. The effect of fine-tuning with different sizes of the calculation dataset, Llama 2-Chat 7B and 13B models. Fine-
tuning smaller LLMs can achieve significantly better performance. The larger the amount of training data, the higher the
performance. Determining the optimal size of the training data is crucial for achieving peak performance in practical
applications.

It is worth noting that in the one-shot prompt experiment, we provided examples of the same
question type as prompts, which would overestimate the effectiveness of prompt engineering. In
practice, it is impractical or laborious to feed the LLM with appropriate examples.

The percentages of improvement are also presented. The Llama 2-Chat models exhibit lim-
ited efficacy in addressing reinsurance calculation tasks, primarily due to their lack of specialized
domain knowledge. It can be seen that the application of one-shot prompting results in a
performance increase, particularly for the 70B model.

4.2 Fine-tuning with task-specific data
The findings in the previous subsection reveal challenges faced by models when addressing quan-
titative calculations on (re)insurance allocation, particularly noticeable in smaller models, despite
the supplementary aid provided by one-shot prompts. In this subsection, we examine the efficacy
of fine-tuning models using task-specific data contained in the calculation dataset described in
Section 3.1.2. Due to the constraint of the computational resource, we only fine-tune the Llama
2-Chat 7B and 13B models.

Our results, depicted in Fig. 2, highlight a substantial increase in scores post fine-tuning with
the calculation dataset. Prior to fine-tuning, the 7B model achieves 13.83 points based on the eval-
uation dataset, while the 13B model attains 17.17 points. Following fine-tuning with the complete
calculation dataset, their performances improve significantly to 76.58 and 83.08 points, repre-
senting 521% and 382% improvements, respectively, outperforming GPT 4. Furthermore, the
performance achieved through fine-tuning significantly surpasses that obtained from the one-shot
prompting. Notably, the fine-tuned 7B and 13B models outperform the 70B model by a consider-
able margin. This outcome aligns with previous reports indicating that fine-tuning can customize
LLMs to domain-specific requirements (Cui et al., 2023; Yang et al., 2023). Moreover, a discernible
trend is observed wherein model performance improves with an increase in the size of the train-
ing data. The 7B model shows rapid improvement upon reaching 500–600 calculation Q&A pairs,
while the 13B model exhibits a similar trend at 400–500 calculation Q&A pairs. Identifying the
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Figure 3. Fine-tuning the Llama 2-Chat models with 1150 calculation samples, but with explanations at different level of
details: (a) basemodel. (b) Only numerical results are included in the training data. (c) Text expressions and numerical results
are contained in the training data. (d) Text expressions, numerical results, and math formula achieving results are all pro-
vided in the training data. This figure shows that the more detailed the explanation provided in the training data, the better
the models perform.

optimal point at which model performance peaks is crucial for practical applications, as it enables
the attainment of optimal results with minimal resources. As depicted in the figure, the 13Bmodel
marginally outperforms the 7B model, although the difference is not statistically significant.

These results underscore the significant performance enhancements achievable through fine-
tuning pre-trained language models using task-specific data, especially in complex tasks involving
reasoning and calculation steps. This has significant implications for the development of conver-
sational LLMs, suggesting that fine-tuning smaller models on task-specific datasets may be more
effective and performant than relying solely on large pre-trained models.

Given that our evaluation dataset comprises problems necessitating reasoning and calcula-
tion steps, we further explored the influence of CoT in the training data on model performance.
Three types of training datasets are constructed and compared: (1) Only numerical results are
included. (2) Text expressions and numerical results are contained. (3) Text expressions, numeri-
cal results, and mathematical formulas achieving results are all provided. An example is presented
in Appendix E. CoT test training data. Scores of the 7B and 13B models fine-tuned using the
aforementioned datasets are evaluated and compared in Fig. 3.

The models fine-tuned with detailed CoT processes outperform the others. Notably, the more
detailed the explanation provided in the training data, the better the model performs, consistent
with human intuition. However, the observed differences between the various datasets in this
experiment are not statistically significant. This could be attributed to the availability of a suffi-
ciently large dataset, enabling the model to discern patterns and learn effectively. Additionally,
our evaluation dataset comprises both simple questions, easily solved without detailed explana-
tions, and complex questions, challenging to solve even with detailed explanations, potentially
contributing to similar scores among different training data formats.

4.3 Fine-tuning with background knowledge data
In the realm of LLM fine-tuning, the acquisition of task-specific data has been recognized as a
pivotal factor in enhancing the performance of LLMs on downstream tasks, as evidenced in prior
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research and corroborated by our own findings (Yue et al., 2023; Yang et al., 2023). However, the
endeavor of amassing comprehensive task-specific datasets is often fraught with challenges, such
as time constraints and inherent complexities. This issue becomes particularly pronounced within
domains hosting numerous downstream tasks, where the sheer volume of data required for each
task may be insufficient for robust model tuning. On the other hand, the reservoir of background
knowledge in related domains is often abundant and readily accessible. In this subsection, we
examine the effect of fine-tuning with background knowledge data.

We embark on fine-tuning the 7B and 13B Llama 2-Chat models using the knowledge dataset
presented in Section 3.1.2. The performance of these fine-tuned models is first evaluated in con-
junction with one-shot prompting. Subsequently, we explore the synergistic effects of combining
the knowledge dataset with the calculation dataset during fine-tuning to comprehensively analyze
the impact of both datasets.

The results of fine-tuning with background knowledge, both individually and in conjunction
with one-shot prompts, are depicted in Fig. 4. Notably, our observations suggest that fine-tuning
with the knowledge dataset alone does not significantly boost the ability of model in addressing
calculation tasks. There exists a discernible decline in performance, particularly for the 13Bmodel.
It appears that the models fine-tuned with background knowledge tend to provide interpretations
and descriptions of the problem rather than offering the final answer through calculations. This
phenomenon could be attributed to the discrepancy between the nature of the training knowledge,
which primarily comprises descriptive texts on (re)insurance topics, and the calculation tasks,
which necessitate quantitative reasoning and calculation based on these concepts. However, when
augmented with one-shot prompting, the integration of domain knowledge into smaller LLMs
yields a substantial enhancement in performance. Remarkably, the 13B model fine-tuned with
background knowledge, when coupled with the one-shot prompt, achieves a performance level
comparable to that of the 70B model. This is attributed to the one-shot prompt provided, effec-
tively bridging the divide between the training data and the specific task. Consequently, the model
is better equipped to follow instructions on tackling calculations, together with the knowledge
injected into it enhances its understanding and reasoning capabilities.

Second, we further fine-tune the models using the knowledge dataset as well as various sizes
of calculation dataset and examine their respective performance. As depicted in Fig. 5, the peak
performance attainable by the models remains consistent irrespective of the inclusion of back-
ground knowledge, approximately at 75 and 80 points for the 7B and 13B models, respectively.
Notably, the addition of the knowledge dataset to the training data facilitates reaching maximum
performance levels with a reduced amount of calculation Q&A pairs. For instance, optimal per-
formance for the 7B model is achieved with 600 calculation Q&A pairs, whereas incorporating
the background knowledge dataset enables peak performance with only 400 calculation Q&A
pairs. We also notice distinct performance trends with and without the use of knowledge dataset.
While performance improvement based on fine-tuning with calculation dataset alone follows a
convex curve, the integration of knowledge data yields a concave curve, indicating more rapid
performance gains. In the case of the 13B model fine-tuned with only 200 calculation Q&A pairs,
the performance of model remains almost the same as that of the base model. However, aug-
menting the training data with the knowledge dataset and 200 calculation Q&A pairs results in
a substantial performance boost, with the score escalating to 60.67 points, representing a 4-fold
increase. These findings are consistent with prior research (Aracena et al., 2023), which demon-
strates the effectiveness of incorporating knowledge dataset and indicates an alternative approach
when constructing task-specific datasets is challenging and resource-intensive.

4.4 Error analysis
In this subsection, we provide an analysis of the calculation tasks that are not correctly solved
by the LLMs. Our evaluation criteria reveal that LLMs often exhibit deficiencies in reinsurance
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Figure 4. The impact of fine-tuning utilizing a knowledge dataset and a one-shot prompt on the Llama 2-Chat 7B, 13B,
and 70B models. The numbers for base model and base model + one-shot prompt are sourced directly from Section 4.1.
Fine-tuning the LLM solely with background knowledge does not help with its ability to solve specific tasks in the domain.
However, when combined with one-shot prompt, injecting domain knowledge into smaller LLMs results in a significant
increase in model performance. This increase is comparable to that of larger LLMs without domain knowledge.

Figure 5. The evaluation scores of the Llama 2-Chat 7B (a) and 13B (b) models fine-tuned on various sizes of calculation
dataset. The solid lines represent models initially fine-tuned using knowledge dataset and calculation dataset, while the
dotted lines indicate models with only calculation dataset. It can be seen that the model performance remains the same
irrespective of domain knowledge infusion, with the 13B model exhibiting slightly better score using fewer calculation Q&A
pairs. Yet, when fine-tuned with knowledge dataset, the model performance escalates more rapidly with increases in the
size of calculation dataset, indicating an alternative approach when constructing task-specific datasets is challenging and
resource-intensive.

calculation, attributable to two primary factors. Firstly, insufficient knowledge or weak reasoning
abilities make it difficult for models to understand and solve problems. Secondly, while the mod-
els may possess the necessary procedural knowledge, deficiencies in calculation accuracy lead to
incorrect responses. These inaccuracies may stem from rounding errors inherent in floating-point
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Figure 6. The average score obtained and deducted in different performance ranges of all 38 experiments in this study. The
scores are deducted for two reasons: lack of reasoning ability and miscalculation, in which reasoning ability is the dom-
inant factor. Fine-tuning can enhance the reasoning abilities, as evidenced by the correlation between improved model
performance and reduced scores deducted due to reasoning errors.

data formats or from the complexity of computation processes, where intricate operations such
as A∗B/C increase the likelihood of errors. Currently, the internal mechanisms through which
LLMs perform such computations remain poorly understood. A recent study by Anthropic has
indicated that transformers are not performing the calculation; rather, they are estimating the
answer by memorizing frequently used calculation results. While a step-by-step CoT chain could
be provided by LLM, it is not representative of the model’s actual mechanisms (Lindsey et al.,
2025). Addressing these challenges may necessitate the integration of external calculators along-
side LLMs. We have visualized the average of scores obtained or deducted resulting from deficient
reasoning and calculation abilities in different performance ranges in Fig. 6, providing further
insights into model performance.

Our investigation reveals a correlation between enhanced model performance and a reduc-
tion in lost scores attributable to deficient reasoning capabilities, indicating an improvement in
the reasoning prowess of the models concerning quantitative tasks in the reinsurance domain.
Conversely, an increase in model performance correlates with a rise in lost scores due to miscal-
culation. The average of scores deducted due to miscalculation ranges from 1.5 to 2.5, with higher
model performance resulting in greater deductions. Although initially counterintuitive, this trend
aligns with our definition of miscalculation. The likelihood of miscalculation is contingent upon
the model’s mastery of problem-solving steps and accurate presentation of relevant formulas,
which are enhanced as reasoning abilities improve. Overall, lack of reasoning abilities accounts for
most of the reasons for score deductions, where emphasis needs to be placed to improve model
performance. In addition, for a given model, the marginal improvement in model performance
decreases as the score increases and eventually converges to a certain level. If higher performance
is required, a larger model would be an option, such as the Llama 2-Chat 70B model.

Our study underscores those errors in reinsurance quantitative tasks by LLMs stem from defi-
ciencies in knowledge, reasoning, and calculation abilities. Fine-tuning LLMs on reinsurance
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Figure 7. The evaluation of base models and fine-tunedmodels, augmented with both knowledge and calculation datasets,
on publicly available benchmark assessments. After fine-tuning the Llama 2-Chat models with background knowledge and
task-specific data, their knowledge in common sense, professional expertise, and arithmetic reasoning remains.

calculation datasets enhances their reasoning capabilities. To address miscalculation, integrat-
ing an external calculator with LLMs can mitigate this issue and improve model performance by
1.5–2.5 points. These findings carry significant implications for leveraging LLMs in quantitative
reasoning-intensive tasks within the (re)insurance industry.

4.5 Public benchmark
In order to assess the catastrophic forgetting phenomenon in LLMs following fine-tuning, i.e.
LLMs might completely or substantially forget the information related to previously learned tasks
after being trained on a new task, we investigate the performance of both base models and fine-
tuned models on general knowledge and calculation tasks. Our evaluation encompasses several
widely recognized benchmark datasets, including Hellaswag, ARC, andWinogrande, which gauge
common sense reasoning abilities, MMLU and TruthfulQ&A, assessing knowledge across various
subjects, and GSM8K, measuring arithmetic reasoning skills. The outcomes from these bench-
mark assessments are depicted in Fig. 7. Notably, the fine-tuned model maintains its proficiency
in common sense reasoning, professional knowledge, and arithmetic reasoning tasks, suggesting
retention of acquired knowledge post-fine-tuning.

5. Conclusions and future work
This study assesses the efficacy of LLMs via experiments on the calculation tasks within the
(re)insurance domain. We evaluate the performance of open-source Llama 2-Chat models of
7B, 13B, and 70B sizes, with a blend of prompt engineering and fine-tuning with respect to both
task-specific and background knowledge datasets.

Our empirical findings indicate that compared to prompt engineering, fine-tuning the 7B
and 13B models with task-specific data engenders noteworthy enhancements in their capac-
ity to tackle moderate to hard problems. Scores exhibit a remarkable leap, increasing from
approximately 15 to nearly 80. In light of scenarios where the collection of task-specific data
proves arduous, supplementing models with background knowledge is an effective alternative
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that achieves performance on par with models fine-tuned on extensive task-specific dataset. The
model’s performance is limited by its reasoning and calculation abilities, with reasoning abilities
being the main reason and can be improved by prompt engineering or fine-tuning. After fine-
tuning, the model’s performance on specific tasks improves without forgetting common sense
and professional knowledge.

Furthermore, the above insights can be used to select the optimal domain specialization
technique for general LLMs. For tasks of simpler complexity with constrained data, prompt
engineering may suffice. Conversely, tasks necessitating advanced reasoning and calculation
proficiencies warrant fine-tuning with task-specific data. In cases where acquiring task-specific
data pose challenges or is cost-prohibitive, fine-tuning LLMs with background knowledge
emerges as a valuable adjunct. This method can enhance model performance without requir-
ing extensive domain-specific datasets. Additionally, leveraging the same background knowledge
through retrieval-augmented generation techniquesmay yield comparable improvements to those
achieved through fine-tuning.

However, challenges remain in deploying LLMs in real-world (re)insurance applications. Data
acquisition is a critical hurdle where fine-tuning is necessary. Obtaining sufficient, high-quality
datasets is difficult, and labeling training data requires heavy human effort. Security concerns
may arise due to the inclusion of personally identifiable information such as names, genders, and
addresses in the input context. This could influence the selection of open-source or closed-source
models. There may be a trade-off between performance and data protection risks. Furthermore,
the potential impact of inaccurate or biased LLM outputs warrants careful consideration. In sce-
narios where erroneous outputs could lead to severe consequences, rigorous evaluation should be
implemented prior to deployment. For business process automation, a hybrid approach involv-
ing human oversight may be more prudent, with LLMs serving either as reviewers subsequent to
human input or as preliminary suggesters prior to human decisions. Lastly, the effort required for
ongoingmaintenance should not be underestimated. Close-source models often undergo frequent
updates, while open-source models release new versions periodically. Consequently, previously
selected models and prompts may no longer represent optimal choices, necessitating regular
reassessment and potential adjustments to maintain system efficacy.

Representative examples of the training dataset in this study are provided in the Appendix to
facilitate reproducibility. While the full proprietary datasets cannot be disclosed, these examples
offer sufficient details to guide other researchers or institutions in constructing their domain-
specific or task-specific corpora for fine-tuning. Consequently, other teams can replicate the
experiments and evaluate the results in their own contexts, and refine or extend the approach
for further applications within the reinsurance sector and related domains.

This study explores the potential for the application of LLMs in (re)insurance domain. The
effectiveness of LLMs in handling unstructured data and their strong reasoning and calculation
capabilities make them suitable candidates for utilization as AI assistants, with the potential to
improve overall productivity and efficiency. However, the model and techniques need to be care-
fully chosen according to the task, in consideration of costs and the benefits. Meanwhile, data
security, ethical, and regulatory considerations cannot be ignored when putting LLMs into use in
order to avoid and mitigate potential risks.
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Appendix A. Calculation Dataset

Table A1. Examples for data in calculation dataset

Example Key Value

1 Instruction What is the net retention covered by the excess of loss treaty?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input Under net retained lines clause, the primary insurer writes an industrial risk with a sum insured
of 100,000, of which 30,000 is the subject of prior facultative reinsurance

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The net retention covered by the excess of loss treaty is 100,000 – 30,000= 70,000

2 Instruction Calculate how liability, premiums and claims are allocated between reinsured and reinsurer
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input For a quota share reinsurance treaty, the following key data apply: liability: 6,478,100, premium:
9600, claims: 2,192,200. Treaty limit: 6,947,600. Retention: 20%. Cession under the treaty: 80%

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The liability 6,478,100 is less than the treaty limit 6,947,600. So all the liability is allocated
between reinsured and reinsurer. With a retention of 20%, Reinsured: Liability: 0.2∗6,478,100=
1,295,620, premium 0.2∗9600= 1920, claims 0.2∗2,192,200= 438,440. And the cession under
treaty is 80%, so reinsurer: liability 0.8∗6,478,100= 5,182,480, premium of reinsurer is 0.8∗9600
= 7680, claims of reinsurer is 0.8∗2,192,200= 1,753,760

3 Instruction Howmuch does the reinsurer have to pay under the excess of loss per person treaty?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input On a business trip in Switzerland, Representative A is killed in a road accident as a passenger in a
third-party motor vehicle. A turns out to be covered with the same insurer under three different
accident policies: under his personal accident insurance with a death benefit of 1,600,000; the
employer has also arranged travel accident insurance in A’s favor with a death benefit of
2,100,000; and on top of this, motor passenger personal accident insurance with a death benefit
of 440,000 also comes into play, this having been arranged by the owner of the vehicle in which
A was killed. Overall, the resultant death benefit under all three policies is 4,140,000. The insurer
with which these three policies are in force has a WXL cover per person of 7,800,000 xs 1,000,000
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Table A1. Continued

Example Key Value

Output The total death benefit= 1,600,000+ 2,100,000+ 440,000= 4,140,000 for this person. The
deductible is 1,000,000, and the upper limit= 1,000,000+ 7,800,000= 8,800,000. It exceeds the
deductible 1,000,000 but not the upper limit, therefore the payment= 4,140,000 – 1,000,000=
3,140,000

4 Instruction Howmuch does each layer of reinsurer have to pay under excess of loss treaty with multiple
layers?

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input An excess of loss has total cover of 8,000,000 xs 1,000,000. The upper limit of cover is therefore
9,000,000. The total cover is divided up into three layers, which are described as follows: 1st
layer: 3,000,000 per risk xs 1,000,000 per risk. 2nd layer: 1,000,000 per risk xs 4,000,000 per risk.
3rd layer: 4,000,000 per risk xs 5,000,000 per risk. During the treaty period, a loss of 5,000,000
occurred

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output For the 1st layer, the deductible is 1,000,000 and the upper limit is 1,000,000+ 3,000,000=
4,000,000. For the 2nd layer, the deductible is 4,000,000 and the upper limit is 4,000,000+
1,000,000= 5,000,000. For the 3rd layer, the deductible is 5,000,000 and the upper limit is
5,000,000+ 4,000,000= 9,000,000. The loss is 5,000,000. For the 1st layer, the loss exceeds the
deductible and the upper limit. So the 1st reinsurer pays 4,000,000 – 1,000,000= 3,000,000. For
the 2nd layer, the loss exceeds the deductible but not the upper limit. So the 2nd reinsurer pays
5,000,000 – 4,000,000= 1,000,000. For the 3nd layer, the loss does not exceed the deductible. So
the 3rd reinsurer pays 0

Appendix B. Knowledge Dataset

Table B1. Examples for data in knowledge dataset

Example Key Value

1 Instruction What are the principal methods to distribute risks?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output Risks can be distributed in different ways and at different levels. The principal methods are
coinsurance and reinsurance

2 Instruction Give a definition of stop loss reinsurance
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output With the stop loss treaty, the reinsurer undertakes to assume that amount of an aggregate
loss per unit of time (year) which exceeds the stop loss point(deductible) fixed. The
reinsurer’s liability is limited by the stop loss cover. Adding the stop loss point to the stop loss
cover gives the upper limit of cover of ceiling for the stop loss reinsurance treaty

3 Instruction When and why is surplus reinsurance used?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output Surplus reinsurance is mainly used in property classes of insurance where a claim is related
to the sum insured and is dependent on it, especially in classes of business that are prone to
total or almost total losses. It is suitable for reinsuring an insurance portfolio with varying
sizes of sums insured or limits of liability, making it more balanced for the reinsurer’s
retention. It is most advantageous for the reinsured when the results of small and
medium-sized insurance contracts are better than those of larger policies, and the reinsurer’s
prices reflect this imbalance in the conditions of the reinsurance treaty
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Appendix C. One-Shot Prompt
Table C1. Examples for one-shot prompts

Example Key Value

1 Instruction What is the net retention covered by the excess of loss treaty?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input Here is the background:
Under net retained lines clause, the primary insurer writes an industrial risk with a sum
insured of 980,000,000, of which 490,000,000 is the subject of prior facultative reinsurance
Here is an example to follow:
Background: Under net retained lines clause, the primary insurer writes an industrial
risk with a sum insured of 74,000,000, of which 44,000,000 is the subject of prior
facultative reinsurance
Answer: The net retention covered by the excess of loss treaty is 74,000,000 –
44,000,000= 30,000,000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The net retention covered by the excess of loss treaty is 980,000,000 – 490,000,000=
490,000,000

2 Instruction Follow the example and solve the question: Howmuch loss does the reinsurer need to bear
under the stop loss treaty?

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input Here is the background:
In year 2018, an insurer’s premium income for its portfolio of hail policies amounts to
20,000,000. The insurer has a stop loss cover of 130% xs 100% of the premium income for the
cover period. During the year, several hailstorms occur in areas where the primary insurer’s
portfolio has its main focus. The aggregated losses for the year amount to 45,000,000
Here is an example to follow:
Background: In year 2018, an insurer’s premium income for its portfolio of hail policies
amounts to 30,000,000. The insurer has a stop loss cover of 50% xs 90% of the premium
income for the cover period. During the year, several hailstorms occur in areas where
the primary insurer’s portfolio has its main focus. The aggregated losses for the year
amount to 63,000,000
Answer: The total loss is 63,000,000, and the annual premium is 30,000,000. So the loss
is 210.0% of annual premium. The deductible is 90% of premium income, the upper
limit is 90%+ 50%= 140%, the loss exceeds the upper limit, so the stop loss treaty
should assume 140% – 90%= 50.0% of annual premium, which is 50.0% ∗ 30,000,000=
15,000,000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The total loss is 45,000,000, and the annual premium is 20,000,000. So the loss is 225.0% of
annual premium. The deductible is 100% of premium income, the upper limit is 100%+
130%= 230%, so the stop loss treaty should assume 225.0% – 100%= 125.0% of annual
premium, which is 125.0% ∗ 20,000,000= 25,000,000

Appendix D. Marking Examples

Table D1. Marking examples of partial deduction due to incorrect calculation

Example Key Value

1 Instruction Calculate the max reinsurance cover under basic policy
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input The reinsured’s deductible is 6000, the sum insured under the basic policy is 600,000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output This is a non-proportional facultative reinsurance on the basic policy. The sum insured is
600,000, the deductible is 6000, therefore the maximum reinsurance cover is 600,000 – 6000
= 594,000

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model output "Max reinsurance cover= 600,000 – 6000= 540,000.
### Explanation:
The reinsured’s deductible is 6000, the sum insured under the basic policy is 600,000, and the
max reinsurance cover is 540,000"

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Score deduction 1× 1
2×1 = 0.5
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Table D1. continued

Example Key Value

2 Instruction Calculate how liability, premiums and claims are are allocated between reinsured and
reinsurer

Input For a quota share reinsurance treaty, the following key data apply: Treaty business: Policy K:
liability: 1,343,900, premium: 2400, claims: 176,500. Treaty limit: 5,213,000 per policy.
Retention: 20%. Cession under the treaty: 80%

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The liability 1,343,900 is less than the treaty limit 5,213,000. So all the liability is allocated
between reinsured and reinsurer. With a retention of 20%, Reinsured: Liability: 0.2∗1,343,900
= 268,780, premium 0.2∗2400= 480, claims 0.2∗176,500= 35,300. And the cession under
treaty is 80%, so reinsurer: liability 0.8∗1,343,900= 1,075,120, premium of reinsurer is
0.8∗2400= 1920, claims of reinuser is 0.8∗176,500= 141,200

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model output For a quota share reinsurance treaty, the following key data apply: Treaty business: Policy K:
liability: 1,343,900, premium: 2400, claims: 176,500. Treaty limit: 5,213,000 per policy.
Retention: 20%. Cession under the treaty: 80%. Reinsured’s liability: 20% x 1,343,900=
268,780. Reinsured’s premiums: 20% x 2400= 480. Reinsured’s claims: 20% x 176,500=
353,000. Reinsurer’s liability: 80% x 1,343,900= 1,072,720. Reinsurer’s premiums: 80% x 2400
= 1920. Reinsurer’s claims: 80% x 176,500= 144,400

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Score deduction 2× 1
2×6 = 0.167

Table D2. Marking examples of full deduction due to lack of reasoning capabilities

Example Key Value

1 Instruction What is the amount payable under the CatXL with an annual limit?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input "An insurance company’s motor physical damage portfolio, which is covered by a
CatXL cover of 4,000,000 xs 2,000,000 per event with an annual limit of 6,000,000, is
affected by three major losses in a year:
1. in April, by a flood loss of 5,800,000
2. in June by a hail loss of 5,400,000
3. in August, by another hail loss, this time of 3,300,000"

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output "1. For the first event, the loss is 5,800,000, the reinsurer needs to pay 5,800,000 –
2,000,000= 3,800,000, and there is 6,000,000 – 3,800,000= 2,200,000 left in the annual
limit
2. For the second event, the loss is 5,400,000, the reinsurer needs to pay 5,400,000 –
2,000,000= 3,400,000, which exceeds the amount left in annual limit. So the reinsurer
only needs to pay the amount of the annual limit, which is 2,200,000
3. For the third event, there is 0 left in the annual limit, so the reinsurer does not need
to pay"

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model output For the first loss, the deductible is 2,000,000 and the loss is 5,800,000, so the payment
is 5,800,000 – 2,000,000= 3,800,000. For the second loss, the deductible is 2,000,000
and the loss is 5,400,000, so the payment is 5,400,000 – 2,000,000= 3,400,000. For the
third loss, the deductible is 2,000,000 and the loss is 3,300,000, so the payment is
3,300,000 – 2,000,000= 1,300,000. Therefore, the total payment is 3,800,000+
3,400,000+ 1,300,000= 8,500,000

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Score deduction 1× 1
3 = 0.333
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Table D2. continued

Example Key Value

2 Instruction Howmuch loss does the reinsurer need to bear under the stop loss treaty?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input In year 2018, an insurer’s premium income for its portfolio of hail policies amounts to
310,000,000. The insurer has a stop loss cover of 130% xs 120% of the premium income
for the cover period. During the year, several hailstorms occur in areas where the
primary insurer’s portfolio has its main focus. The aggregated losses for the year
amount to 350,000,000

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Output The total loss is 350,000,000, and the annual premium is 310,000,000. So the loss is
112.9% of annual premium. The deductible is 120% of premium income, the loss does
not exceed the deductible. So the reinsurer does not need to make any payment

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model output The primary insurer’s premium income for the year 2018 is 310,000,000. The stop loss
cover is 130% xs 120% of the premium income. The aggregated loss is 350,000,000. The
loss to the primary insurer is 350,000,000 – 310,000,000= 40,000,000

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Score deduction 1× 1
1 = 1

Appendix E. CoT Test Training Data

Table E1. An example of training data for CoT test

Key Value

Instruction What is the amount payable under the CatXL with an annual limit?
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input An insurance company’s motor physical damage portfolio, which is covered by a CatXL cover
of 1,000,000 xs 2,000,000 per event with an annual limit of 7,000,000, is affected by three
major losses in a year:
1. in April, by a flood loss of 2,100,000
2. in June by a hail loss of 2,300,000
3. in August, by another hail loss, this time of 2,400,000



Output (only numerical
results are included in
the fine-tuning data)

1. For the first event, the loss: 2,100,000, payment: 100,000, annual limit left: 6,900,000
2. For the second event, the loss: 2,300,000, payment: 300,000, annual limit left: 6,600,000
3. For the third event, the loss: 2,400,000, payment: 400,000



Output (text
expressions and
numerical results are
contained in the
fine-tuning data)

1. For the first event, the loss is 2,100,000, the reinsurer needs to pay 100,000, and there is
6,900,000 left in the annual limit
2. For the second event, the loss is 2,300,000, the reinsurer needs to pay 300,000, and there is
6,600,000 left in the annual limit
3. For the third event, the loss is 2,400,000, the reinsurer needs to pay 400,000



Output (text
expressions, numerical
results, and math
formula achieving
results are all provided
in the fine-tuning data)

1. For the first event, the loss is 2,100,000, the reinsurer needs to pay 2,100,000 – 2,000,000=
100,000, and there is 7,000,000 – 100,000= 6,900,000 left in the annual limit
2. For the second event, the loss is 2,300,000, the reinsurer needs to pay 2,300,000 – 2,000,000
= 300,000, and there is 7,000,000 – 300,000= 6,700,000 left in the annual limit
3. For the third event, the loss is 2,400,000, the reinsurer needs to pay 2,400,000 – 2,000,000=
400,000
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