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Linearly stable shear flows first transition to turbulence in the form of localised patches.
At low Reynolds numbers, these turbulent patches tend to suddenly decay, following
a memoryless process typical of rare events. How far in advance their decay can be
forecasted is still unknown. We perform massive ensembles of simulations of pipe flow
and a reduced-order model of shear flows (Moehlis et al. 2004 New J. Phys. vol. 6, issues 1,
p. 56) and determine the first moment in time at which decay becomes fully predictable,
subject to a given magnitude of the uncertainty on the flow state. By extensively sampling
the chaotic sets, we find that, as one goes back in time from the point of inevitable decay,
predictability degrades at greatly varying speeds. However, a well-defined (average) rate of
predictability loss can be computed. This rate is independent of the uncertainty and also of
the type of rare event, i.e. it applies to decay and to other extreme events. We leverage our
databases to define thresholds that approximately separate phase-space regions of distinct
decay predictability. Our study has implications for the development of predictive models,
in particular it sets their theoretical limits. It also opens avenues to study the causes of
extreme events in turbulent flows: a state which is predictable to produce an extreme event
is causal to it from a probabilistic perspective.
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1. Introduction

Over 140 years after Reynolds’ experiment (Reynolds 1883), the transition to turbulence of
Newtonian fluids flowing in a rigid smooth pipe continues to puzzle researchers, (e.g. the
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recent review by Avila, Barkley & Hof (2023)). The problem depends on the Reynolds
number Re = (UD/v), where U is the bulk velocity, D the pipe diameter and v the
kinematic viscosity of the fluid, and on the amplitude and shape of the disturbances to the
laminar flow. Specifically, pipe flow is linearly stable for at least Re < 107 (Meseguer &
Trefethen 2003) but still, when sufficiently perturbed, it transitions to turbulence at Re =~
2000. It first does so in the form of localised turbulent patches known as turbulent puffs
(Wygnanski & Champagne 1973). We show a snapshot of a turbulent puff in figure 1(a).
Once triggered, the puff dynamics become independent of the disturbance that created
it. Turbulent puffs can either elongate and split, thereby increasing the turbulent fraction,
or suddenly decay, resulting in laminar flow, figure 1(c). Decay events are more frequent
than split events at Re < 2040 (Avila et al. 2011), and obey a memoryless process: the
statistics of decay events follow an exponential distribution (Faisst & Eckhardt 2004) with
a mean lifetime t that scales super-exponentially with the Reynolds number (Hof et al.
2008; Avila, Willis & Hof 2010). Lifetime statistics at Re = 1850 are shown in figure 1(d).
Goldenfeld, Guttenberg & Gioia (2010) theorised that the super-exponential scaling of the
mean lifetime of decay events can be explained through extreme value theory. Nemoto &
Alexakis (2021) derived the super-exponential scaling by assuming that relaminarisation
is linked to extremely low axial vorticity events throughout the structure of the puff.
However, their study raises the following questions: Are extremely low values of the axial
vorticity a cause or a consequence of decay events? Is their proposed threshold for decay
actually a sufficient, or even a necessary, condition for decay?

Memoryless decay events are not limited to pipe flow, and are also found in other
transitional shear flows such as Taylor—Couette (Borrero-Echeverry, Schatz & Tagg 2010)
and Couette (Bottin & Chaté 1998; Shi, Avila & Hof 2013) flows. In channel flows,
turbulent bands also decay following a memoryless process in short spanwise (Shimizu,
Kanazawa & Kawahara 2019) and tilted (Tuckerman, Chantry & Barkley 2020) domains.
In long domains the decay statistics are not memoryless but depend on the history of the
turbulent bands (Xu & Song 2022). However, when the length of the turbulent bands is
fixed, decay events follow a memoryless process too (Wu & Song 2025). This supports
the idea that the behaviour of transiently chaotic turbulent states is universal among
all subcritical shear flows in the transitional regime (Rempel, Lesur & Proctor 2010;
Linkmann & Morozov 2015).

Reduced-order models of shear flows are also able to capture these decay events.
Willis & Kerswell (2009) defined a reduced-order model of pipe flow by truncating
their Galerkin approximation to a single azimuthal Fourier mode. Their model retained
memoryless puff decay. Another example is the reduced-order model developed by
Moehlis, Faisst & Eckhardt (2004), hereafter referred to as the Moehlis Faisst and Eckhardt
(MFE) model. This model is a system of nine Ordinary Differential Equations (ODE)
obtained from a truncated Galerkin projection of the flow between two parallel free-
slip walls, driven with a wall-normal sinusoidal force (Waleffe 1997). An example of a
trajectory of this model is shown in figure 1(e), and lifetime statistics in figure 1(d). Lellep
et al. (2022) investigated the decay events of the model using an explainable artificial intel-
ligence method. They successfully performed predictions at short times before decay, but
observed a quick degradation of their predictions as they considered longer times before
the event.

Generally there are two main challenges in predicting relaminarisation. On the one hand,
there are many routes to decay in phase space (Chantry & Schneider 2014; Budanur,
Dogra & Hof 2019). On the other hand, turbulent flows are chaotic (Lorenz 1965) and
the uncertainty in the determination of a flow state can result in radically different decay
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Figure 1. Decaying events in transitional shear flows. (a) Snapshot of a turbulent puff at Re = 1850. Grey
denotes low axial velocity streaks u’. &~ —0.4. Red denotes regions where u? + uﬁ > 0.02. (b) Cross-sectionally

averaged, cross-flow kinetic energy g = (uf + uﬁ) r6» of the puff in (a). (c¢) Volume-averaged cross-sectional
kinetic energy, (2.2), of a decaying puff. The marker denotes the instant of time shown in the snapshot and
t4 stands for the time at which we detect decay, (2.4). (d) Survival probability of the MFE model (Re = 400)
and puffs (Re = 1850). Time is normalised by the corresponding Lyapunov time. The dotted line corresponds
to the value of the exponential distribution proposed by Avila et al. (2011) that fits the experimental data of
Hof et al. (2008). Here, S ~ exp(—t/t), where T = exp(exp(5.56 x 1073 . Re — 8.5)). (e) Decaying trajectory
of the MFE model (Moehlis et al. 2004). Lighter colour means higher ;.

times. Without a correct assessment of these two issues, the ability of predictive models is
severely limited and thresholds of decay are necessarily conservative.

In this paper, we examine the threshold of decay from a new probabilistic perspective:
by studying predictability. We propose that the threshold of decay is the first state of a
trajectory that becomes fully predictable to decay, given a finite size uncertainty (Palmer
2000). Uncertainties have many different origins (measurements, model, numerical
method, etc.) and are unavoidable. We argue that fully characterising the predictability
of decay is a prerequisite to successfully finding the threshold and causes of decay.
Predictability has historically been characterised with the Lyapunov exponents (Lorenz
1965). They measure the rate at which trajectories, initially separated by an infinitesimally
small uncertainty &, separate exponentially in phase space. However, they fail to correctly
measure predictability when § is not infinitesimally small (Boffetta et al. 2002), or in
the case of systems with several time scales (Aurell et al. 1996), like turbulence. They
are also general measurements of a chaotic system, and not specific to a single event
of interest. Another, more powerful, alternative is to directly study the evolution of the
probability distribution function of possible future states of the system. The Liouville
conservation equation models the evolution of probability distribution functions and has
an analytical solution (Ehrendorfer 2006). However, it is unfeasible to define this equation
for high-dimensional systems like turbulence. Recently, Jiménez (2023) integrated the
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probability density function of a reduced representation of a turbulent channel flow using
the Perron—Frobenius operator. However, it is difficult to replicate this analysis for other
turbulent flows without knowledge of appropriate reduced-order projections of the flow.
Vela-Martin & Avila (2024) proposed an alternative measurement of predictability.
Inspired by weather forecasting (Palmer et al. 1993), they performed massive ensembles
of simulations of the two-dimensional Kolmogorov flow, and used a metric derived
from information theory, the Kullback—Leibler divergence (Kullback & Leibler 1951),
to characterise the predictability of extreme dissipation events. In a proof of concept
(Morén et al. 2024), we used this metric to characterise predictability of decay events
in the MFE model and pipe flow. In this paper, we extend our previous study and find
thresholds of decay both in time and in phase space using massive ensembles and the
Kullback-Leibler divergence to assess the predictability of decay. The rest of the paper is
structured as follows. In § 2 we describe the MFE and puffs in pipe flow in more detail.
In § 3 we describe the method we use to characterise predictability, and discuss results of
predictability for the two decay events of interest. In §§ 4 and 5 we analyse MFE and puff
trajectories, according to their predictability and in § 6 we draw our main conclusions.

2. Methods

2.1. Puffs in pipe flow
We consider the flow of a viscous Newtonian fluid with constant properties in a straight
smooth rigid pipe of circular cross-section. The flow is incompressible and governed by
the dimensionless Navier—Stokes equations

u
ot

Here, u is the fluid velocity, p the pressure, e, the unit vector in the axial (streamwise)
direction and f),(¢) the pressure gradient that drives the flow; f),(¢) is adjusted at each time
step to enforce a constant bulk velocity. All variables are rendered dimensionless using the
pipe diameter (D) and the bulk velocity (U). The equations are formulated in cylindrical
coordinates (r, 6, x), with velocity field components (u,, ug, u,) in the radial, azimuthal
and axial directions, respectively. Throughout this paper we fix Re = 1850. We define

1
+(u-V)uz—VerR—Vqurfp(z)-ex and V-u=0. 2.1)
e

Q(t) = (u; +ug), . 2.2)
as the volume-averaged kinetic energy of the cross-sectional velocity, and
Ui(t) = (upp (r =0) —ux (r =0))y, (2.3)

as the volume-averaged deviation from the Hagen—Poiseuille ugp centre line velocity. We
choose these two variables as they have been shown to capture the dynamics of transitional
pipe flow very well (Barkley 2011; Barkley et al. 2015).

As a heuristic threshold, we define puff decay at r = 7; when

O@>15)<1077, for Q (t <t5)>107". (2.4)

We solve (2.1) numerically using our GPU-CUDA pseudo-spectral code (Morén
et al. 2024), which is publicly available in this Github. We perform Direct Numerical
Simulations in a L, = 50D long pipe and use N, =48 radial points, Mg = 96 azimuthal
points and M, = 768 axial physical points after de-aliasing. The maximum wall Reynolds
number measured is Re; & 70 which results in a grid spacing in wall units of 0.06 <
Art <22, DAOT /2~ 4.5 and Axt ~9. The time step size is set to At =0.0025. The
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resolution is optimised to reduce computing cost, while giving an accurate estimate of the
lifetime, see figure 1(d).

2.2. A reduced-order model of shear flows

The MFE model (Moehlis er al. 2004) has nine dimensionless time-dependent modes a;
governed by a system of nonlinear ODEs of the form

da;
E:Ljaj + N (a) +¢j, (2.5)
where L; and N; (a) are respectively linear and quadratic operators, ¢; model constants and
a = (ay,ay, ...)". All the variables are normalised by the channel half-height //2 and the
laminar velocity Uy at the walls. (See the full equations in Appendix D.)

Each variable g; is the amplitude of one Fourier mode v;. The dimensionless velocity
field is computed as

9
w(x.0=>y a () v (x). (2.6)
j=1

The modes v; have a direct interpretation in the flow. The mode j = I represents the mean
velocity profile. When a; =1 the flow is laminar, and it is turbulent if a; < 1. The mode
J = 2 represents velocity streaks; j = 3 streamwise vortices; j =4 and j =5 two spanwise
flows; j =6 and j =7 two wall-normal vortices; and j =9 represents a correction to
the mean velocity profile. The mode j = 8 does not have a clear interpretation, but is a
three-dimensional mode that interacts with the others.

The MFE model depends on the Reynolds number, defined as Re = (Uph/2v), and the
spanwise/streamwise domain sizes L, and L,. We fix Re =400, L, =4m and L, =27.
We integrate the MFE model forward in time using a low-storage explicit fourth-order
Runge—Kutta method, with a constant time step size At = 0.05.

We define the energy of the mean profile as

Ei=—a))?, 2.7)
and the energy of the fluctuations as
9
Ej=Y a}. (2.8)
j=2
The flow is laminar if £y = E; = 0. We define turbulence decay at t = 74 when
ay (t 2 tg) 2 0.995, for a; (t < ty) <0.995. (2.9)

3. Forecasting of turbulence decay
3.1. Massive ensembles of simulations

We run i =1, ..., N, MFE/pipe simulations each initialised with a different chaotic
state/puff. These are our base trajectory simulations, and for each of them we save N;
instantaneous states at times #; (every 5 time units for the MFE model and 8 for pipe
flow). We run each base trajectory, i, until we observe decay according to our conservative
heuristic thresholds, (2.9) for the MFE model, and (2.4) for pipe flow. We save the time at
which this threshold is reached for each individual base trajectory i, and call it the time of
decay t4, see figures 1(c) and 1(e). Note that #4 is different for each base trajectory and it
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Np N; N, Nrotal
Puffs 100 10 200 2 x 10°
MFE 14000 400 1000 5.6 x 10°

Table 1. Number of simulations performed for each system of interest. Here, N, is the number of base
trajectories, N; the number of sampled times, N, the members per ensemble and Ny, = Np X Ny X N, the
total number of individual simulations.

is always larger than the times at which we sample the trajectories 5 > #;. We discarded
base trajectories if 4 is too short, #; < 3000 in the MFE model and #; < 250 in pipe flow.

For each of the N, x N; instantaneous states, we launch a massive ensemble of
simulations. In the case of puffs, a simulation in an ensemble is initialised as

u(ty —tg) =uy +eN (0, 1), 3.1)

where u,, is the velocity field of the base trajectory i at time #, N is a Gaussian noise
with zero mean and unit standard deviation applied to each velocity component and at each
point of the domain and € is the magnitude of the noise.

For the MFE model each simulation in the ensemble is initialised as

a (t — tg) = a, + €y, (3.2)

where the nine-dimensional Gaussian random vector y has a module equal to 1. Crucially,
€o is always sufficiently small, so two initial conditions of the same ensemble are, from
a macroscopic point of view, identical. In particular €y < 1073 in the MFE model, and
€0 < 1072 in pipe flow.

For each combination of flow parameters and €y, we perform Ny = Np X Ny X N,
individual simulations, where: Nj, is the number of base trajectories, N; is the number of
sampled times and N, is the members per ensemble (see table 1). Unless stated otherwise
we set €9 = 10™* in the MFE model, and €y = 1072 in pipe flow.

3.2. Measuring the predictability of decay with the Kullback—Leibler divergence

We study lifetime statistics of the ensemble members. For this purpose, we compute p
as the probability distribution function of the ensemble lifetime, P the corresponding
cumulative distribution function and S = 1 — P the survivor function (Lawless 2011). We
denote p, as the exponential lifetime distribution of puffs in pipe flow, i.e. computed with
random initial conditions across phase space (Faisst & Eckhardt 2004) and with mean
lifetime 7, see figure 1(d). While p, is a characteristic of the dynamical system, p depends
on the particular ensemble of interest, i.e. is the lifetime distribution conditional on being
computed using a known instantaneous state plus a small noise as initial condition. We
compute statistics using histograms with 20 equispaced bins. All the distributions (p, P
and S) are horizontally shifted so the first bin corresponds to the earliest decay event
observed in each ensemble.

In figure 2(b), we show the survivor functions of different ensembles, each initiated
using a different sampled state at different times #; of a specific base trajectory i = 1.
Note how the distribution of puff decay tends to be clustered close to ¢t =0 if the state
used to initialise the ensemble is close to decay (¢ —t; = —40). Here, all trajectories
decay at approximately the same time as the base trajectory does, and the distribution of
lifetimes inherits the Gaussian distribution of the initial conditions. For such puffs, decay
is inevitable. As one uses states farther back in time as initial conditions, the resulting
survivor functions gradually tend towards the expected exponential distribution. For the
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Figure 2. Example of a puff decay event and the method we use to assess its predictability. At the top: snapshots
of a turbulent puff as it decays. Grey denotes low axial velocity streaks u/, ~ —0.4. Red denotes regions where
q= u% + u% > 0.02. The time before decay ¢ — #; is indicated on top of each snapshot. (a¢) Zoom in to the
puff decay trajectory shown in figure 1(c). The snapshots at the top are indicated as coloured markers in the
plot. (b) Survival probability of the ensembles initialised about the instantaneous puffs shown in the snapshots.
The colour of the distributions corresponds to the colour of the markers in the snapshots and in the trajectory.
With a dotted line, we show the exponential distribution, § =1 — P, ~exp(—t/7). The insect is a zoom in
for the ensemble at t — 7y = —40. The black line is the cumulative function of a Gaussian distribution, f =
0.5 — 0.5erf[b(t — c)], fitted to the data. Here, b and c are fitted parameters and erf stands for the error function.
(c) Time-dependent K, (3.3), of this puff trajectory. A higher K means more predictability to decay. At K — 0
the corresponding puff is fully unpredictable. The error bars represent the uncertainty of computing K from
our finite sample. The coloured markers correspond to the instantaneous states shown in the snapshots and
indicated in (a).

specific base trajectory shown in figure 2(b), S (conversely p) becomes indistinguishable
from S, (py) att —tq S —80.

We measure predictability as the difference between the conditional probability p, and
the exponential p, one. Specifically, we use the Kullback—Leibler divergence (Kullback &
Leibler 1951) defined as

1 Iy
K=—— plo (—) , (3.3)
Kinax Z s Pq

where Ky is a parameter that normalises K to K < 1; K is minimum when p = p,,
then K — 0. The bigger K is, the more different the two distributions are, and therefore,
the more predictable the members of the ensemble become. Since we compute statistics,
and therefore K, using bins, K is maximum (K =1) when the probability distribution
function p is clustered in a single bin. In our case, this happens when all the members of
the ensemble decay at nearly the same time as the base trajectory. In figure 2, this happens
for the puff at t — 5 & —40. The parameter K,y is computed for this case, and depends
on the number of bins we use. As we show in Appendix A our method is robust to different
noise shapes, noise magnitudes and ensemble sizes. Overall, K measures the information

1022 A48-7


https://doi.org/10.1017/jfm.2025.10829

https://doi.org/10.1017/jfm.2025.10829 Published online by Cambridge University Press

D. Moron Montesdeoca, A. Vela-Martin and M. Avila

(a) 100+ Puffs . (?2)0 i

10~

N
—
-
—1

fur fl

ﬁw

-120 -80 —40 ~2000 ~1000 ~100
t—t, t—t,

Figure 3. Statistics of K (as a measurement of predictability) with respect to time, for the two decay events of
interest (indicated in the title of the plot). In the two panels, the solid black line denotes the mean predictability,
and the dashed yellow line a fit of this mean predictability to (3.5). The shaded region denotes the first and the
last deciles of the data. The red line corresponds to the case that was unpredictable for a longer time span, and
the blue line to the one that was predictable for the longest time. The error bars stand for the uncertainty in the
determination of K after a bootstrapping analysis.

we gain by knowing the initial state of the system up to an uncertainty €g, compared with
the information we have by assuming a random initial state.

For each base trajectory, i =1, ..., Np and sampling time k =1, ..., N;, we compute
K of the corresponding ensemble of simulations. We assume that K is continuous in time
and study its time evolution. In what follows, we refer to K as the predictability.

3.3. Temporal evolution of the predictability

In figure 2(c), we show the evolution of the predictability for a specific base trajectory. At
sufficiently long times before the decay event, the lifetime distributions are similar to the
exponential distribution, resulting in a fully unpredictable decay (K — 0). As one uses as
initial condition puffs that are closer to the decay event, K increases. We report that this
increase does not need to be monotonic, as the decaying trajectory visits regions of phase
space with varying predictability. Finally, K saturates, implying the inevitability of decay
for our chosen level of uncertainty.

We repeat this analysis for all our MFE and puff base trajectories, see table 1, and
compute statistics of K with respect to time, see figure 3. To compare K between different
trajectories, here, and in the rest of the paper, we define

Aty =1t —1tg, (3.4)

as our reference time frame. At the same time before a decay event, we observe K values
that differ in orders of magnitude between trajectories, see figure 3. There is, however,
a point in time where all the trajectories saturate, (K — 1). In the case of the MFE this
happens at Aty =~ —800 while for the puffs it happens at Aty ~ —40. This means that, for
this level of uncertainty (ep), this is the earliest time when one can perform a prediction to
decay with almost perfect certainty, for all base trajectories studied.

The mean K, averaged among all the decaying trajectories, and represented as a thick
black line in the figures, is approximated here as

At I
(K)y, ~ A tanh (ﬂ> - B, (3.5)

c
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Time scale Puff MFE Description

I 2.95 33.78 Inverse of mean Lyapunov exponent
T 285.95 1.05 x 10* Mean lifetime of the event

te 15.01 264.08 Mean time of predictability loss
to 66.35 1314.1 Mean predictability bias

Table 2. Time scales of the two systems of interest.

where A =~ B & (0.5 are two dimensionless parameters, and #y and ¢, are physically relevant
times. The formula fits the mean trends of K reasonably well, as seen with the dashed
yellow lines in figure 3.

The time ¢, in (3.5), is the mean time of predictability loss, see table 2. It measures the
time scale at which predictability degrades as one goes back in time with respect to the
event of interest. We observe that 7. is approximately one order of magnitude larger than
the mean Lyapunov time.

The time #; is the mean predictability bias. It represents the past time where, on average,
predictability reaches half its maximum, and it is mostly affected by the magnitude of
uncertainties €y, whereas 7. is not, see Appendix A.3.

4. Predictability of turbulence decay in the reduced-order model

In what follows we classify trajectories and instantaneous states of the MFE model
according to their predictability (K). As shown in figure 3, K varies by several orders of
magnitudes. Specifically, unpredictable cases have very low K and therefore little weight
when computing averages of predictability. To better represent the strong variations of K
and appropriately weight unpredictable cases, we consider the metric

k =log (K) “.1)

in the subsequent analyses. The presented averages of x correspond to geometric averages
of K and better capture the natural variation of predictability in the flow.

4.1. Classification of model trajectories according to their predictability

We here perform a conditional analysis of trajectories according to their predictability
(low/high). For this purpose, we look for the first moment in time when at least N, =
1000 trajectories have maximum «. We find that this happens at 7, ~ t; — 1200. We then
classify these N, = 1000 trajectories as predictable, and conversely, the N, = 1000 MFE
trajectories that have the smallest averaged « in the range ¢, <t < 14 as unpredictable.

In figure 4(a), we show predictability statistics of all the MFE trajectories (black),
conditioned to either predictable (blue) or unpredictable trajectories (red). We fit each
mean predictability with (3.5), and analyse the resulting ¢y and .. As expected, g is
on average largest for the predictable trajectories, and smallest for the unpredictable
trajectories. Between the two there is a difference of A7y =452.12. We observe that ¢,
is shorter, both for the predictable and unpredictable trajectories compared with the entire
data set. This means that, inside the predictable and unpredictable groups, the mechanisms
behind decay are very similar among all the trajectories in the group, and that they take
place in a relatively short time.

We attempt to explain the two types of MFE decay events (predictable and
unpredictable) from a fluid dynamics perspective. In figures 4(b) and 4(c), we show
statistics of Ej (energy of the mean profile, (2.7)) and E; (energy of the fluctuations,
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Figure 4. Classification of MFE trajectories according to their predictability of decay. We consider three
trajectory groups: all the trajectories Np = 14 000 (in black), only the N, = 1000 most predictable trajectories
(in blue) and only the N = 1000 most unpredictable trajectories (in red) at ¢, <t < t4. Thick lines denote
averaged quantities among the members of the group, the shaded area denotes the first and the last deciles.
(a) Predictability (k), (4.1); (b) energy of the mean profile E1, (2.7); (c) energy of the fluctuations Ej, (2.8).
The vertical line denotes the threshold in time ¢, we use to differentiate between predictable and unpredictable
trajectories and R stands for the temporal correlation between the plotted variable and «, averaged among all
the MFE trajectories.

(2.8)) of the three groups. The temporal correlation between E; (or E;) with K, averaged
among all the base trajectories, is negative. The predictable cases have a high amplitude
E; phenomenon at 7 ~ t,,. This event is subsequently followed by a flattening of the mean
profile, E; — 0.75. In transitional shear flows a flat mean profile is linked with reduced
turbulent fluctuations (Hof et al. 2010; Barkley er al. 2015; Kiihnen et al. 2018). During
the flattening of the profile, E; quickly decreases. At a certain time, E starts to quickly
decrease. Subsequently E; decreases in a non-monotonic way, but it never reaches a
sufficiently high amplitude to re-trigger chaos. Before decaying E; shows some damped
oscillations at Azg 2 —800.

The unpredictable cases have a larger variance at all times 7, <f <1, than the
predictable trajectories. This means that the identification of a clear mechanism of decay
is more difficult for this group. Nevertheless, unpredictable trajectories have a peak E;
event at A7y ~ —1000 that is followed by a rapid decrease of E;. Although on average E
slightly increases after the E; peak, it quickly decreases together with E;. Decay events for
unpredictable trajectories show a sudden collapse of all the variables at almost the same
time. They all quickly decay without showing damped oscillations as t — 7.

4.2. Regions of the reduced-order model phase space according to predictability

We project our MFE database in the log,y(E1) and log,y(E;) plane. We then divide the
projected phase space into bins of equal sizes. In figure 5(a), we colour the bins with the
maximum x among all the instantaneous states in the bin. The bins coloured in red have at
least one member inside that is highly predictable to decay. It is easy to recognise a big red
region of phase space. This region occupies almost all the projected phase space where
we have data points, showing that almost in any region of phase space there is at least one
trajectory that quickly decays. In terms of dynamical systems this demonstrates that the
edge is dense in the chaotic saddle (Budanur et al. 2019). However, there is a region in the
plot, at high values of log;,(E}), not coloured in red. The bins in this region of the plot only
have instantaneous states that have a small predictability. This means that in this region
decay is unpredictable. Cases that fall in this region are expected to (on average) remain
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Figure 5. Regions of the projected phase space of the MFE model depending on their predictability with
respect to decay events. The sampled states of the base trajectories are projected in the log; (E1) and log;((E;)
reduced phase space, that is divided in 100 x 100 bins of equal sizes. The colour of each bin depends on the
predictability of the states inside of it: red means high predictability (high «), blue low (low «). (a) The colour
of each bin corresponds to the maximum predictability among all the states inside of it; () to the mean and
(c) to the minimum. The solid black lines separate regions of phase space depending on their predictability.
(d) Quality of the classification of cases in the inevitable decay region as one minus the ratio of successful
predictions (RSP) and its dependence on the noise magnitude €.

chaotic for a relatively long time span. We call this region the mixing region (MIX). We
find that the formula

yuix ~ —0.96 +0.73 - tanh {2.1 - [logy (E1) — 1.3]} . (4.2)

separates reasonably well this region from the rest of the projected phase space. At a given
log,y(E1), states with log,y(E;) > ypmix fall in the MIX Region.

In figure 5(b), we colour the bins with the mean x among all the instantaneous states
in the bin. There is a big region of the phase space coloured in red where the average
predictability of decay is very high. We call it the mean predictable region (MPR) and
separate it from the rest of the projected phase space with the curve

ympr ~ —22.1420.4 - tanh {—1.5 - [log)y (E1) — 0.5]} . (4.3)

At a given logg(E), states with log;((E;) < yypg fall in the MPR. In figure 5(c), we
colour the bins with the minimum x among all the instantaneous states classified in that
bin. The region in blue represents bins where at least one case classified in that bin is
unpredictable to decay. The region in red, referred to as the Inevitable Decay Region (IDR),
corresponds to bins where all the cases classified inside are highly predictable to decay.
Cases found in this region will almost certainly decay in a short time. We found that the
best classifier between the blue and red regions is the line

vipr ~ —0.95 logy, (E1) — 4.4, 4.4
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Figure 6. Rare MFE trajectory reaching E = E| + E; < 0.004 at t =1, and with t; > t,, +2000. Panels
show (a) Ey; (b) Ej; (c) our decay indicator Ind: Ind= 0, no imminent decay is predicted; Ind 2 0.8 decay
is imminent; (d) projection of the trajectory in the (logy(E1), log;o(Ej)) plane. The black lines separate the
regions of predictability discussed in § 4.2 (MIX with solid line, MPR with dashed, IDR with dotted). In all
the plots, red means predictable, blue unpredictable and the markers help to identify the moment in time.

computed using a linear support vector machine (Cortes 1995). At a given log;y(E1) states
with logo(E;) < yipr are almost guaranteed to decay in a short time. We recompute the
regions of phase space according to the minimum K for several uncertainty magnitudes
€0 €[4 x 107,2 x 1073], and find that the separating line is unaffected by €). We test
the quality of the classification by computing a rate of successful predictions (RSP). We
define the RSP as the quotient between the number of cases classified in the IDR that have
K > 0.99 with respect to the total number of cases classified in the IDR. In case RSP =1,
it means that all the cases in the IDR are fully predictable to decay. In figure 5(d) we show
the behaviour of RSP with respect to €g. We observe that, as €y decreases, the classification
significantly improves. At g = 1073, 1 % of the cases are wrongly classified in the IDR,
while, at €g = 107 only 0.1 % are. We note that RSP will never reach RSP — 1. As we
show later, there are extremely rare trajectories that can enter the IDR and subsequently
remain chaotic for longer times.

4.3. A predictor of decay for the MFE model

We use the different predictability regions discussed above to develop a simple predictive
model of decay events in the MFE model. The predictive model only needs two inputs: the
region in the (Ey, E;) plane in which the trajectory is currently found in, and how long it
has resided in that region. The model returns an indicator Ind that is maximum (Ind = 1)
if decay is fully predictable, and smaller 0 < Ind < 1 otherwise. See Appendix C for more
details. Our model correctly predicts decay (or not decay) more than 99 % of the time.

We tested the predictor’s performance with an extremely rare MFE trajectory (shown in
figure 6), which reaches an extremely low value of the kinetic energy

E =E; + E; <0.004, 4.5)

at t =t,y, but remains chaotic for at least 2000 time units thereafter. This event is similar
to other extreme events observed in the MFE model, and described in Appendix B. We
found this particular trajectory after trying billions of random initial conditions.
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Figure 7. Classification of puff trajectories according to their predictability of decay. We consider three
trajectory groups: all the trajectories Np = 100 (in black), only the N = 10 most predictable trajectories (in
blue) and only the N;, =10 most unpredictable trajectories (in red). In all the plots the thick lines denote
averaged quantities among the members of the group, and the shaded area denotes the first and the last deciles.
(a) Predictability (k, (4.1)); (b) the volume-averaged deviation from the centre line velocity, (2.3) and (c) the
volume-averaged cross-sectional kinetic energy, (2.2). Here, R stands for the time correlation between « and Q
or U/, averaged among all trajectories.

We observe that this rare trajectory initially behaves chaotically in a small region of
phase space, and then enters the MPR. It bounces back and forth, entering and exiting the
MPR, oscillating about the yyspr line, as Ind increases. Even though we obtained the yyspr
line from the perspective of the mean predictability, it is representative of the dynamics of
this and other trajectories (figure 12). However, instead of decaying, it then enters the MIX
region. As soon as a trajectory enters the MIX region, no predictions of decay are made for
a time span of & 2¢, time units. This is because, as discussed above, in this region states
are highly unpredictable, and tend to decay after long times. Interestingly, after visiting the
MIX region, the trajectory quickly crosses the MPR and IDR, and reaches the extremely
low value of E < 0.004. Instead of decaying, however, it goes back to the MIX region and
it then remains chaotic for a longer time, in agreement with our predictor (/nd = 0).

This example shows that certain, albeit rare, trajectories can cross the IDR and still not
subsequently decay. Lellep er al. (2022) considered decay irreversible when E < 0.005.
As we show here, trajectories can remain chaotic for long times after going below this
threshold. We use this example to stress the importance of determining the threshold of
decay for a level of allowed uncertainty, and the importance of characterising regions of
phase space according to predictability.

5. Predictability of puff decay events
5.1. Classification of puff trajectories according to predictability

We consider as predictable (unpredictable) the N, = 10 trajectories that have the largest
(smallest) time-averaged «, (4.1), in the range 7, <t < 14, for 1, = 15 — 120. In figure 7(a),
we show the behaviour of « for the three groups. We fit the averaged « of each group to
(3.5). As expected, fg is larger for the predictable group, and smaller for the unpredictable
group. We report here a difference of Afy =23.52 between the two.

In contrast to the results of the MFE model, 7. is much larger for the predictable group,
t. ~28.96, than for the unpredictable group ¢, &~ 8.47. A smaller ¢, implies that the group
of trajectories have similar mechanisms of turbulence decay and that these mechanisms
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Figure 8. Regions of the projected phase space of puffs, depending on their predictability with respect to decay
events. The sampled states of the base trajectories are projected in the U/ and Q reduced phase space, that is
divided in 50 x 50 bins of equal sizes. The colour of each bin depends on the predictability of the states inside
of it: red means high predictability (high «, (4.1)), blue low. (a) The colour of each bin corresponds to the
maximum predictability of all the states inside of it, in (b) to the mean and in (c) to the minimum. The solid
black line in (b) indicates the MPR and in (c) the IDR of puffs, (5.1).

happen in a very short time, in an abrupt way. A large ¢, corresponds to trajectories that
undergo a more gradual decay process, and whose mechanisms of decay are more different
between each other.

In figure 7(b) we show the behaviour of the defect of centre line velocity U/, (2.3), with
respect to time. As the decay event is approached, the mean profile becomes more similar
to the laminar one (U — 0). We observe that the predictable trajectories have, on average,
a smaller value of U/ (corresponding to a more laminar-like profile) than the unpredictable
ones at all times. In figure 7(c), we show the cross-sectional kinetic energy Q, (2.2), with
respect to time. As the decay event approaches, Q decreases, and it is always smaller on
average in the case of predictable trajectories. Both U/ and Q correlate negatively with
the predictability, as seen with the parameter R in the plots, and Q has a better averaged
temporal correlation.

We note that, when full predictability is reached at Ary; =~ —40, there is still a big
uncertainty in the values of Q and U, a trajectory can have.

5.2. Regions of pipe flow phase space according to predictability

We project our puff database onto the Q and U/ plane. We then divide the projected
phase space into bins of equal sizes. In figure 8(a) we show the case of colouring each
bin with the maximum « among the states classified in that bin. We observe a big red
region that corresponds to bins where at least one case inside is highly predictable to
decay. This region covers a huge portion of the sampled phase space, particularly for any
Q <5 x 107*. It is only for large excursions of Q that puffs become highly unpredictable
to decay. In figure 8(b), we colour each bin with the mean x. We observe a red region that
is almost completely defined by the line Q <2.5 x 107*. Above this line predictability
gradually decreases for larger values of Q, and we refer to the phase space below as the
MPR of puffs.

In figure 8(c), we colour each bin with the minimum «. There is a clear red region at
the bottom of the plot that represents the IDR of puffs. We find that one can separate this
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Qipr ~0.17 U./* — 0.031 U/ 4 0.0015. 6.1

There is an intermediate value of U/~ 0.09, where Q;pg is minimum Qjpg ~ 1.51 x
10~%. Accordingly, there are puffs that, despite reaching such a low Q value, remain
subsequently turbulent for longer times.

At high U/ > 0.1 unless Q is high enough, the flow will decay. This region corresponds
to flows with a relatively flat mean profile. As we also saw for the MFE model, such flows
need a high enough Q to remain chaotic.

Interestingly, for U/ < 0.07, Q must be high enough so the flow does not decay. At these
low U/ values the mean profile is very similar to the laminar one. One would expect a lower
Q threshold in this region, as fluctuations are more likely to proliferate using the laminar-
like mean profile. This, however, is not the case. We speculate that these U, C/, fluctuations,
no matter how intense they are, tend to be at wall-normal locations that do not promote
turbulence survival, resulting in a high Q;pg threshold.

6. Conclusions

We propose a novel, probabilistic perspective to study the threshold of decay events in
transitional shear flows. Instead of directly looking for the causes behind decay events,
we first characterise their predictability using massive ensembles of simulations, and then
identify the flow configurations that are highly predictable to decay. Our results show that
all puff and MFE trajectories saturate to a maximum predictability at a given moment
in time before decay (Azy ~ —800 and — 40 for the MFE model and puffs, respectively).
This result answers part of the question we initially pose, as to what is the first moment in
time at which decay becomes inevitable.

By analysing the change of predictability with respect to time, we find a characteristic
time of predictability loss z.. Its inverse, 1/t., is the rate at which predictability degrades,
on average, as one goes back in time with respect to decay events. As we show in
Appendix A, this measurement is almost unaffected by the level of uncertainty ¢y and,
as we show in Appendix B, it does not depend on the (rare) event of interest: it is an
intrinsic characteristic of the system. This has profound implications for the development
of predictors of decay, and more generally of rare events, as the ability of any predictor
will inevitably degrade exponentially on time spans of the order of #..

We identify the mechanisms by which two types of MFE trajectories decay. Trajectories
that become fully predictable long before decay have a sudden flattening of the mean pro-
file that results in an abrupt collapse of the chaotic behaviour and a decay behaviour similar
to a damped oscillator. Trajectories that remain unpredictable for longer times before decay
have a sudden high amplitude fluctuation event, after which turbulence quickly collapses
and becomes laminar without oscillations. By projecting our data in a two-dimensional
phase space, we identify different regions depending on their predictability. We report
a region where all the states are highly unpredictable, a region where most cases are
predictable and a region where (almost) all cases are fully predictable. The last region
answers part of our initial question as to what flow configurations are fully predictable to
(and therefore are a threshold of) decay. We use these regions of predictability to develop
a simple predictive model of MFE decay that returns a high RSP >0.99.

We repeat the above analysis for the case of puffs in pipe flow, and consider two key
variables defined by Barkley (2011) and thereafter widely used to study transitional pipe
flow: the kinetic energy Q of cross-flow fluctuations, and the deviation from the laminar
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centre line velocity, U.. We identify a region of phase space that is fully predictable to
decay, and report, for the first time, a threshold of puff decay in terms of Q and U/. We
observe that the threshold of decay is mostly set by a low value of Q, in line with previous
studies (Nemoto & Alexakis 2021), but depends slightly on U/. We corroborate that a pipe
flow with a flat mean profile needs a high Q to survive (Kiihnen et al. 2018). Interestingly
we also observe the opposite; flows with a mean profile similar to the laminar one also
need a high Q to survive. We speculate that, for these flows, the fluctuations may be found
at locations far from the wall that do not promote turbulence survival.

We argue that the study of predictability can ultimately identify the causes of
relaminarisation. Specifically, a flow configuration is a cause of relaminarisation to the
same extent the latter is predictable from the former. It is our objective to, in future
analyses, look for flow variables that better correlate with predictability and, therefore,
with the causes of decay. A promising prospect is the combination of our probabilistic
approach with the study of invariant solutions in shear flows (Kawahara et al. 2012). In
future analyses we aim to use invariant solutions of pipe flow at the edge of chaos (e.g.
Duguet, Willis & Kerswell (2008)) as initial conditions for our ensembles. We believe that,
by doing this, we can identify regions of phase space that are more/less attracting to these
invariant solutions and exploit their characteristics to better understand the dynamics of
decay events.
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Appendix A. Robustness of the method to compute predictability
A.l. Effect of the shape of the uncertainties on predictability

Here, we explore the effect of using a different type of perturbation than Gaussian noise
to initialise the ensembles of simulations. In the case of puff decay, we performed a
simulation with the same discretisation described in § 2.1 but at Re = 3000. We trigger
turbulence in the simulation and wait until the whole domain is fully turbulent. We then
save perturbed velocity fields ' =u — (0, 0, uyp(r)) at N, time steps, after every 1.25
advective time unit. We initialise each member of the ensemble with one of the scaled
turbulent fields as
/

- u
u(t=0)=u;k+er|u,|. (A1)

Note that this type of perturbation satisfies continuity of the flow. We fix ey =2.5 x
102 to make the energy of the perturbation equivalent to the energy of the Gaussian
perturbation at €y~ 1072. We re-compute ensembles of simulations using N, = 10
instantaneous states of only N, =4 of our base trajectories, see table 1. In figure 9(a) we
show predictability with respect to time depending on the type of perturbation used for the
ensembles. We observe that the type of perturbation has little effect on the predictability of
individual trajectories. Even after averaging over only N, = 4 trajectories, the mean trends
of predictability remain unaffected.
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Figure 9. Robustness of the predictability measurement. (a) Predictability of puff decay events depending on
the type of initial condition used in the ensembles of simulations. Blue corresponds to random Gaussian noise
with €9~ 1072, red to a scaled fully turbulent field. The thick lines correspond to the mean predictability:
averaged over N, = 100 base trajectories, for the case of random noise, and over only N, =4 base trajectories
for the case of scaled turbulent fields. The thin lines correspond to the same base trajectory: in red with a
predictability characterised with the scaled turbulent field, in blue with random noise. (b) Predictability of
decay events in the MFE model, for ensembles initialised with Gaussian noise (blue), and ensembles initialised
with a scaled MFE chaotic state (red). (c) Predictability with respect to time of a single MFE decay trajectory,
characterised with ensembles of different sizes N,.

For the case of the MFE decay events, we save N, instantaneous chaotic states of the
MFE model at t < t; — 2000. We then re-scale the states to a magnitude of €y = 10~* and
use them to initialise ensembles of simulations for N, = 2000 trajectories. In figure 9(b)
we show predictability with respect to time depending on the type of perturbation used
for the ensembles. We observe that the shape of the initial condition does not have an
important impact on the mean trends of predictability, on the statistics or even on the
predictability of individual trajectories.

A.2. Effect of using fewer members per ensemble

We also consider here the effect of using fewer members per ensemble N, on the
determination of the predictability of MFE decay events. We use the case N, = 1000 as
the base case scenario, and then reduce N, to study the changes on K, see figure 9(c). We
observe that, by decreasing N,, we obtain more noisy predictability estimations, especially
for small values of K. This is expected as we have a larger uncertainty in our statistics.
Nevertheless we report that the mean trends of predictability are well captured for all the
N, considered here. Even the more limiting case of N, =20 is able to capture the high
amplitude oscillations of predictability observed at N, = 1000. We repeat this analysis for
additional Ny, trajectories, compute the ensemble-averaged predictability and fit it to (3.5).
We do this for all N,. Although we do not show it here, we observe that, between N, =20
and N, = 1000, the fitted ¢, only changes by 15 %, while between N, =200 and N, = 1000
it changes by less than 2 %. Thus, ensembles with fewer members result in almost identical
predictability characteristics as those at N, = 1000.

A.3. The effect of the magnitude of uncertainties €g on predictability

We recompute the predictability of the N, = 14 000 decaying MFE trajectories, sampled
at N; =400 time steps and perturbed with a Gaussian noise, see table 1, but with different
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Figure 10. Effect of the magnitude of uncertainties €y on predictability of MFE decay. (a) Mean K with respect
to time among N, = 14 000 MFE base trajectories, computed with different magnitudes of the Gaussian noise.
Lighter colour means smaller €p. (b) Results of fitting mean K of different €y with (3.5).

noise magnitudes: €y € [4 x 107>, 2 x 1073]. In figure 10 we show the mean predictability
for each €p and observe that, despite a certain horizontal shift, they are almost identical.

We fit the mean predictability to (3.5). We report that, by decreasing €g, the bias 7y
increases fp < — log(ep). In our analysis, g models the level of uncertainty one has (e.g.
from measurement device, measurement method, numerical method, . . .). As it decreases,
the bias increases as expected: with smaller uncertainties, one can predict decay earlier.
Note that at g =0, f9 — 00.

Although we observe a slight increase of 7. as €y decreases, the characteristic time of
predictability loss is almost unaffected by the size of €. Here, we report a difference
of 213 % between the two limiting €y cases €y =2 X 1073 and €g =4 x 107>, This
further suggests that #. is an intrinsic measurement of the dynamical system: it does not
considerably depend on the coarse graining that one chooses.

Appendix B. Rare events in the reduced-order model

At Re =400, at random times, the mode a; of the MFE model becomes very large
ay > 0.8, giving the impression that chaos may be about to decay. However, instead of
subsequently decaying, the model then remains chaotic for relatively long times. See an
example of a trajectory with such an event in figure 11(a) and also in figures 1(c), 6
and 12.

We call these events ‘extreme events’ of the MFE and identify them at time # =t
according to two conditions:

(1) att =t.y, a1 =0.8;
(i1) and ty > t., + 2000.

This means that these events have a very high a; magnitude, but do not quickly
decay afterwards. The mean waiting time between these events follows an exponential
distribution, as seen in figure 11(b). This means that, like the decay events, these events
also follow a memoryless process.

As we did for the case of decay events, we compute the predictability of N = 10000
base trajectories that have an extreme event at time 7,,. We sample the trajectories at Ny =
200 time steps before the extreme event and launch ensembles of N, = 1000 simulations
with €y = 10~ for each sampled state. We gather statistics of the times of extreme event
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Figure 11. Description and predictability of rare a; events in the MFE model. (a) An MFE trajectory with an
event of high a; > 0.8 at time t =1, and with 5 > ., 4+ 2000. (b) Statistics of this type of event in the MFE
model. At Re =400 these events follow a Poisson distribution, with a mean waiting time 7,y & 2.5 X 10%. (¢)
Predictability of the MFE model to rare a; events. Thin lines correspond to the more (blue) and less (red)
predictable trajectories, the shaded area denotes the first and last deciles of the statistics and the thick line
denotes the mean predictability. The dashed yellow line corresponds to the resultant fit of the mean K to the
formula in (3.5).

recurrences for each ensemble, and compute K as in (3.3), but comparing the conditional
distributions with the expected exponential distribution in figure 11(b).

We show the resultant predictability statistics in figure 11(c). As for the case of
predictability of decay, predictability increases on average as one approaches the extreme
event in time. We also observe differences in predictability of orders of magnitude between
different trajectories. We fit the mean predictability to (3.5). We report that the resultant
t. =238.28 is almost equal to the ¢, =264.08 computed for the predictability of decay
events, see table 2. This suggests that the predictability loss time scale is a general
measurement of a chaotic system, and does not depend on the particular memoryless
process of interest.

Appendix C. Description of the predictor of MFE decays
The indicator of decay or not decay in our predictor model is computed as

nd=-"2- C! {sen [ympr —log)o (Ej)] + 1} (2) ds, (ChH
tind Jt—tyq 2 Iind
where
t
1
o=0if / — {sgn [logo (Ej) — ymix] + 1} df > 0, and (C2)
t—Imix 2
o =1 otherwise, (C3)
with sgn being the signum function. The parameter 7,4 is computed as
ting = min (typR, t — lo) , (C4)

with 7, being the last time step where o < 1.

Here, yyrx and yypr are the delimiters of the mixing, (4.2), and MPRs, (4.3); and f3/pr
and 1yy7x are two parameters of the predictor. Here, we tune #37/pg = 100 and #;;x = 400 so
they have the same order of magnitude as z,.

When the MFE enters the MPR the indicator Ind > 0, and increases in magnitude the
longer the time the trajectory spends there. As soon as the time spent in the MPR is ¢ >
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Figure 12. The MFE trajectory, and our time-dependent decay predictor. Panels show (a) E1; (b) Ej; (c) our
decay indicator Ind: Ind= 0, no imminent decay is predicted; Ind > 0.8 decay is imminent; (d) projection of the
trajectory in the (logy(E1), log;o(E;)) plane. The black lines separate the regions of predictability discussed
in § 4.2 (MIX with solid line, MPR with dashed, IDR with dotted). In all the plots, red means predictable, blue
unpredictable and the markers help to identify the moment in time.

tvpr, the indicator saturates to 1. The predictor also checks if the trajectory enters the MIX
region. In this region decay is highly unpredictable. As soon as the trajectory enters the
MIX region, Ind = 0 and no predictions are made for 347y time units.

As long as Ind > 0, the predictor also outputs a forecast decay time

4Re 1—a; ()
Algecay (1) = ) log (m) : (C5)

This represents the forecasted remaining lifetime before decay. This decay time is derived
from the equation of the variable a; (Moehlis et al. 2004) by neglecting the nonlinear
terms

= —-a), (Co)
e

integrating and assuming that decay is completed at a; ~ 0.995 (our heuristic threshold).

See in figure 12(c) an example of the time-dependent Ind for the MFE base trajectory
shown in figure 1(a). In figure 12(d) we show the position of the trajectory in the projected
phase space. We observe how the trajectory starts in the right top corner of the plot, where
we observe most trajectories spend the majority of their time. The trajectory then starts to
approach the MPR. As soon as the trajectory enters the MPR, Ind increases (represented
by a change in colour of the line).

The trajectory then enters the MIX region, and all predictions are discarded for a certain
time span. Finally, the trajectory enters again the MPR, and /nd increases monotonically
to 1, as the trajectory finally decays.

C.1. Ability of the predictor
To assess the quality of our predictor, we define the function

6
Al‘decay(l‘) —tg+ t)
Lol '

(C7

g (1) =exp —(
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where #¢cqy 18 the forecasted remaining lifetime, 74 the actual time to decay and #,,; = 800.
We set this tolerance to alleviate the strong assumption we make in (C6), where we assume
a viscous decay. The above function is equal to ~ 1 at |Atdewy(t) —tg+ t| <400 and
smaller for any other time span: g ~ 0.5 at |Atdecay(t) — g+ t| < 750. Note that, as shown
in figure 3(b), all MFE trajectories reach maximum predictability at # & 800 time units
before decay 7.

We compute the error of the predictor with respect to time as the product

eg=Ind-(1—-g). (C8)
We compute the false positives of a base trajectory as
1 Ating
FP= / €1dt, (€9)
Atppg

where Aty are all the time steps where Ind > 0. We compute the ratio of successful
predictions as

1 T
RSP:I——/ €dr, (C10)
T Jo

to account for the amount of time the predictor is successfully predicting decay (or not
decay). Here, T = 2100 is the total time span of each base trajectory. We compute the
error and the RSP for all our Nj, = 14 000 MFE base trajectories.

We report that the model returns a mean (¥ P);, = 7.16 %, out of which only 0.77 % are
full false positives. Full false positives are cases where €; > 0.95. We report that the model
returns a mean (RSP);, , =99.73 %, as it predicts correctly most of the time that the MFE
is, or is not, about to decay.

Appendix D. The MFE equations

We include in this appendix the MFE equations, as originally derived by Moehlis et al.
(2004). Let

2 2 / /
IB_E =L_ay=L_akay= O(2+)/2,kﬁy= B?+y? and kqpy = a4 B2+ y2.
x z

(DD

The equations for each mode read

%z(ﬁ )(1—a1)+~/_ﬂy ("”3 “6“8), (D2)

dr R kgy kaﬁy
das 4> N N V/50/27y? y?
—_— = asa —asa
= R\ ) Hasas kay 7 6k
afy V1.58y V1.58y
—asag——=——— —a|a3— —— —a3a9g————, (D3)
\/gkaykaﬁy kﬂy kﬂy
das B+ y? N 208y | 2aBy
— =—a3 asa;——— + asag——
dr Re \/gkaykﬁy Vkaykgy
302 4 y?) — 3y%(a? + y?
+a4a8ﬁ ( y?) =3y* @’ +vy ) (D4)
‘/_kaykﬁykaﬂy
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day 32 4 4B o 10a? V1.5a8y
= —a1a5—= — a6 T—=—— —a3a;—————
dr 3Re NG 33/6kqy kaykpy
V152282
- asas—aﬂ — asa9i, (D5)
Kaykpykapy V6
das o’ 4 p? n o n o? aBy n o
— =—a5——— +a1a4—= + ma;—— — apag— + a4a9—
dr Re \/6 «/gkay \/gkaykozﬂy \/6
2By
+aza6———, (D6)
‘/gkaykﬂy
dag 302 +48% + 3y? N o« . V1.58y N 10(e® — y?)
— = —ag aja;— 4+ ajag——— + a4 ——
dt 3Re J6 kapy 33/6ky,
208y o V1.58y
—a3as————— +aja9g—= +agag——, (D7)
V1.5key kg V6 kapy
da; o + B2 +y? o o n yz—az_'_ afy
- =G —a1d6—= — ded9—= + a2as aszas ;
dr Re V6 V6 V6key V6kay kg,
(D8)
da o + B2+ y? 2 2(302 — B2 4+ 3y2
= = g Pty + azas Py +a3a4y ( B Y ) (D9)
d ke VOkaykapy VOkaykpykapy
d 982 V1.5 V1.5
it = —agi + a2a3—/3)/ — a6ag—ﬂy. (D10)
dr Re kﬂy kaﬂy
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