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Flow through a square-duct at a moderate Reynolds number is investigated. We first
employ an edge-tracking procedure in the m-rotationally symmetric sub-space of state
space and identify a streamwise-localised invariant solution for square-duct flow, which
is a steady travelling wave with mirror symmetries across bisectors of the duct walls.
The identified invariant solution features four vortices placed in pairs at opposite duct
walls and exhibits significant streamwise localisation making it the first reported localised
solution in the square-duct flow. Additionally, this solution remains very close to the
laminar attractor in the sense of the velocity perturbation energy and the corresponding
hydraulic losses. Stability analysis of this solution demonstrates that the identified state is
an edge state in the m-rotationally symmetric sub-space but not in the full space. Next, a
long-time turbulence behaviour and its relevance to the symmetric streamwise-localised
invariant solution are discussed. We focus on the characteristics of the averaged flow and
the recurring patterns of eight- or four-vortex states, typical for the square-duct flow and
related to Prandtl’s secondary flows of the second type. Through heuristic arguments, we
illustrate that turbulent flow exhibits relatively quiescent interludes of increased symmetry
of the velocity field across wall bisectors. We show that those periods correlate to episodes
where, statistically, a four-vortex flow configuration emerges from the otherwise eight-
vortex state, which is also associated with decreased symmetry of the flow field. Our
results suggest that the four-vortex state appearing in the relatively quiescent periods
in the flow time history, accompanied by flow field symmetrisation and the onset of
streamwise localisation of turbulent flow, bears a striking similarity to the found symmetric
streamwise-localised invariant solution.
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1. Introduction

A number of canonical flows have laminar solutions that remain stable to small
disturbances at all values of the Reynolds number (Wedin, Bottaro & Nagata 2009).
Couette flow, Hagen—Poiseuille flow or flow in narrow rectangular-duct of width-to-height
aspect ratio below approximately 3.2 (Tatsumi & Yoshimura 1990; Pushenko & Gepner
2021) and specifically the square-duct flow are such examples. Consequently, the laminar
solution remains an attractor in its finite neighbourhood irrespective of the Reynolds
number, and any non-laminar states that could emerge remain disconnected from this
laminar solution. In this sense, the departure of the flow from the laminar form cannot be
seen as resulting from a sequence of bifurcations taking it away from the laminar solution
to wander the state space. On the contrary, the onset of non-laminar dynamics is instead
related to the emergence of unstable, simple invariant solutions in the form of travelling
waves or periodic or relative periodic orbits. Those simple, invariant solutions remain
separated, in the linear sense, from the laminar solution and require finite-amplitude
perturbations to be reached. At the same time, the unstable invariant solutions are thought
to appear in the state space through saddle-node bifurcations and are often described
as low-dimensional invariant sets. Such low-dimensional sets act by attracting the flow
state along their stable manifold to later eject it along their unstable directions towards
other such states. In this sense, those low-dimensional sets constitute the skeleton of the
turbulent attractor (Hof ef al. 2004; Wedin et al. 2009).

The fact that invariant states are unstable explains why the flow does not settle onto
them but rather wanders the phase space, shadowing their manifolds and only approaching
such states to spend substantial amounts of time in their proximity (Jimenez 1987;
Kawahara, Uhlmann & van Veen 2012). Since invariant solutions seem to hold the
apparent organising role over the turbulent dynamics, at least in the moderate Reynolds
number range, identification of such solutions is a worthwhile endeavour and, in reality,
has been undertaken for a range of canonical flows, such as Couette (Kawahara &
Kida 2001; Gibson, Halcrow & Cvitanovi¢ 2009; Brand & Gibson 2014), Poiseuille
(Ehrenstein & Koch 1991; Zammert & Eckhardt 2014) or circular-pipe flow (Pringle &
Kerswell 2007; Avila et al. 2013; Chantry, Willis & Kerswell 2014). For the square-
duct problem, several invariant states in the form of non-localised, streamwise periodic
travelling waves, thought to reproduce statistical characteristics of the turbulent duct flow
(Kawahara et al. 2012), have been established using homotopy (Wedin et al. 2009; Okino
et al. 2010; Uhlmann, Kawahara & Pinelli 2010). However, Biau, Soueid & Bottaro (2008)
applied a linear transient growth (Schmid & Henningson 2001) technique to establish a set
of optimal (streamwise independent rolls) and sub-optimal (streamwise varying solutions)
initial conditions used afterwards in the nonlinear analysis as initial perturbations. This
work was extended to quasi-nonlinear optimisation by Biau & Bottaro (2009). For the
case of linearly stable flows, the laminar solution remains disconnected from expected
invariant solutions and the linear approximation disregards nonlinear interactions, and
some interesting results have been obtained. It was illustrated that while the sub-optimal
conditions are inferior for producing large amplifications under the linear assumption,
at the same time, those solutions can lead to a long-lasting complicated response when
evolved by the nonlinear operator. This is in contrast to the optimal initial conditions
(streamwise independent rolls) that resulted in rapid laminarisation. It is also indicated
that the sub-optimal initial results of Biau et al. (2008) resemble qualitatively the solutions
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obtained for marginally turbulent states characterised by Uhlmann et al. (2007) and also
reported by Gavrilakis (1992).

An interesting problem is the identification of the typical perturbation shape and
amplitude that takes the flow to the edge that separates the laminar attraction basin from
the turbulent one. In other words, the identification of such invariant solutions to the
Navier—Stokes system that have co-dimension one stable manifold (or unstable manifold
of dimension one). The stable manifold of this invariant state forms an edge separating
the laminar and turbulent attraction basins in state space, while the invariant state itself
behaves as a relative attractor on this boundary (Zammert & Eckhardt 2014) and, at
least locally, governs the transition process. Such invariant states are referred to as edge
states and have been identified for some canonical cases, e.g. Poiseuille flow (Zammert &
Eckhardt 2014), Couette flow (Schneider, Marinc & Eckhardt 2010) and circular-pipe flow
under conditions of symmetry (Pringle & Kerswell 2007; Duguet, Willis & Kerswell
2008; Avila et al. 2013). Some of those exhibit spatial localisation in a large periodic
domain. It seems, however, that the problem of the flow in a narrow rectangular-duct, and
especially the square-duct flow remains open. While equilibrium solutions in the form of
streamwise periodic travelling waves (Wedin et al. 2009; Okino et al. 2010; Uhlmann et al.
2010; Okino & Nagata 2012), some of which are also edge states in symmetric sub-space
(Scherer, Uhlmann & Kawahara 2024), have been found, the identification of localised
invariant states in the full or even the symmetric sub-space remains a challenge, which we
address in this work.

Consequently, this work aims to identify and characterise a particular invariant solution
to square-duct flow that can also appear to be an edge state when a certain symmetry (i.e.
m-rotational symmetry with respect to a duct centreline) is invoked. The identified solution
features significant streamwise localisation, making it the first ever reported localised
solution to the square-duct flow, and has a form of a steady travelling wave that is very
close to the laminar solution in the sense of the energy of the velocity perturbation and
the hydraulic resistance. We start with edge tracking using a classical bisection approach
(Itano & Toh 2001; Skufca, Yorke & Eckhardt 2006) in the m-rotationally symmetric
sub-space. As a consequence of edge tracking, the mirror symmetries with respect to
the wall bisectors appear autonomously in the edge state. In the later stage of edge
tracking, therefore, we confine our considerations to the double mirror-symmetric sub-
space, which improves overall convergence while also decreasing the computational size
of the problem. The convergence process is concluded with the Newton—Krylov procedure
followed by stability analysis of the obtained equilibrium state using ARPACK (Lehoucq,
Sorensen & Yang 1998) procedures, based on the Arnoldi process in the form outlined
by Viswanath (2007, 2009). A performed stability analysis indicates that the identified
state remains an edge state in the symmetric sub-space for a range of the Reynolds
number Re. At the same time, the full-space configuration has an additional unstable
direction. We then apply a continuation method (Dijkstra et al. 2014) and track the
computed invariant state in Re and approach the saddle-node bifurcation that gives rise
to the determined state and also identify the upper branch (UB) that is also localised.
We follow with our analysis and examine the developed turbulent duct flow and focus on
some of the most prominent characteristics of the flow. Mainly, we look into the onset
of either eight- or four-vortex states (Gavrilakis 1992; Uhlmann et al. 2007; Pirozzoli
et al. 2018) that result from averaging of the flow field, but can also be observed, to a
degree, to transpire in instantaneous snapshots of the velocity field. Finally, we examine
the ability of the flow to temporarily form velocity fields with increased symmetry. Our
results indicate that this transient symmetrisation of the flow field correlates with the onset
of a much more pronounced four-vortex state accompanied by streamwise localisation of
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Figure 1. Geometry of the square-duct and the adopted coordinate system.

the turbulence structures. This flow behaviour suggests a connection of such transient flow
states to the identified invariant solution. This apparent connection makes the identified,
streamwise localised solution physically relevant, suggesting that the symmetric sub-space
laminar—turbulent edge passes through the full-space turbulent attractor. Consequently, the
symmetric sub-space edge solution identified in this work seems to be embedded into the
turbulent attractor itself.

The techniques used in this work differ from those more commonly applied for this
type of research. The main difference is in the fact that we employ a Spectral Element
hp Method (SEM), as implemented in Nektar++ (Cantwell et al. 2015), leveraging
domain decomposition into elements (h) together with polynomial interpolation (p) within
each element to obtain the desired discretisation resolution. This is in contrast to the
global spectral Fourier—Chebyshev (Boyd 2001) discretisations that seem to be more
commonly applied for this type of work (e.g. Biau et al. 2008; Biau & Bottaro 2009;
Gibson et al. 2009; Uhlmann et al. 2010; Zammert & Eckhardt 2014 and many others).
In fact, to the best of the authors’ knowledge, this work marks the first time SEM is
applied to the identification of invariant solutions to the Navier—Stokes system. The
importance of this lies in the fact that SEM allows for applications in more complex
geometrical configurations, as opposed to methods relying on global spatial discretisation.
Consequently, the approach to invoking symmetries applied here is not based on the
manipulation of the applied polynomial base to select modes of appropriate parity,
but resorts to the imposition of appropriate boundary conditions. We enforce a mix of
either rotationally ‘periodic’ or Dirichlet/Neumann boundary conditions onto velocity
components at chosen symmetry planes, which would result from the symmetry we wish
to impose rather than enforcing it via applied discretisation. It should be stressed that
this approach does not necessarily guarantee to result in symmetry, but we have not
experienced this as a problem for convergence in our approach. Consequently, the method
applied here is computationally very effective in handling individual nonlinear simulations
and allows to decrease the problem size whenever symmetries are used.

This paper is organised in the following way: § 2 outlines the problem and gives a brief
outline of the applied numerical approach. Edge-tracking process and description of the
identified travelling-wave solution are provided in § 3. Section 4 discusses properties of
the turbulent state and characterises the onset of the four- and eight-vortex state, as well as
the ability of the flow to temporarily form states that show increased flow symmetrisation
and streamwise localisation, which seems to correspond to the identified invariant state.
We conclude with a summary and main conclusions of this work in § 5.

2. Problem statement

Consider flow of an incompressible Newtonian fluid through a square-duct shown
schematically in figure 1 with walls located at x = 4/ and y = %h. The flow is driven by
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a constant-in-time pressure gradient and is assumed periodic in the streamwise z-direction
with the periodicity L, = 8mh, which seems to be close to the minimal streamwise
length that allows for the existence of the streamwise localised solution discussed here
(Okino 2014). All geometric quantities are normalised with half of the duct width A, and
density p is taken as a unit. Centreline velocity W of the steady, laminar, quasi-parabolic
velocity profile scales velocity and consequently, Re = Wh/v gives the Reynolds number
with v being the kinematic viscosity. The flow is governed by continuity and momentum
equations of the dimensionless form:

V.-u=0,

u 1 " 2.1
— 4+ @-VYu=—-Vp+ —Au+E&z,
ot Re

with u =[u, v, w]T, p and Z being the velocity vector, the pressure and a unit vector
in the streamwise direction, respectively. Hereafter, only dimensionless values are used
unless stated otherwise. No-slip, impermeable conditions are imposed on the duct walls
and periodic condition is imposed in the streamwise direction. The laminar, steady flow
reduces (2.1) to the Poisson problem for the streamwise velocity Aw = —Re&, where £ is
constant and represents the invariant in the time and space pressure gradient component.
The problem results in the quasi-parabolic velocity profile with a maximum at the duct
centre. Flow conditions are adjusted such that the Reynolds number based on the laminar,
centreline velocity is Re =4000, which corresponds to the bulk Reynolds number
Rep =~ 1908 or friction Reynolds number Re; &~ 82 and is sufficient to support sustained
turbulent flow.

All arising flow problems are solved using the spectral element/hp solver available
within the Nektar++ software package (Cantwell er al. 2015). Spatial discretisation
is based on spectral element discretisation in the (x, y)-plane and consists of four
quadrilateral elements, which split the duct into quadrants, allowing for efficient
implementation of symmetry-like conditions. Each of the quadrilateral elements features
local polynomial expansion, which employs p Lagrange polynomials of order p — 1 for
velocity and p — 2 polynomials of order p — 3 for the pressure to satisfy the inf-sup
condition (Babuska 1973; Brezzi 1974) supplemented with ¢ Gauss—Lobatto-Legendre
(GLL) quadrature points. Exact integration of the nonlinear terms is achieved via the
application of ¢ =3/2p quadrature points (Karniadakis et al. 2005), i.e. via global,
polynomial de-aliasing. Discretisation in the streamwise, z-direction consists of Fourier
decomposition truncated to M leading modes and is of the form:

k=M

g(x, v, Z, 1) = Z ngZJTikZ/Lz (22)
k=—M

with conjugacy condition gr =g*,, where g represents either velocity vector u or
pressure p. De-aliasing in the streamwise z-direction is performed according to the 2/3
padding rule (Patterson Jr & Orszag 1971). Temporal discretisation is achieved with the
third-order stiffly stable splitting scheme (Karniadakis, Israeli & Orszag 1991). We have
found that limiting the number of in-plane, spectral elements and increasing elemental
polynomial expansion order results in reduced computational time required for a single
time step to be computed. Consequently, effective parallelisation of the resulting problem
must be based on the parallel decomposition of the Fourier modes — the so-called
modal parallelisation (Bolis et al. 2016; Moxey et al. 2020). For this work, p =24
Lagrange polynomials along with g = 36 GLL quadrature points per element and M = 128
(before de-aliasing) complex Fourier modes have been found sufficient. This results in
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Turbulent Laminar LB solution UB solution
(f) 0.0424 0.0149 0.0151 0.017
(wp) 0.2839 0.477 0.4738 0.442
(E3p) 5.76 x 1074 0 1.73 x 107 1.8 x 107
(Eo) 0.0469 0.1568 0.154 0.1321

Table 1. Time-averaged flow quantities for different types of solutions at Re = 4000.

the maximum (minimum) grid spacing max(Ax™*) =max(Ay™) ~ 5.63 (min(Ax™) =
min(Ay™) A~ 0.38) and streamwise direction spacing Az* A 8.1, expressed in friction
units or max(Ax) = max(Ay) ~ 6.82 x 1072 (min(Ax) = min(Ay) ~4.66 x 10~3) and
streamwise spacing Az A 9.82 x 1072 in non-dimensional quantities.

Identification of an invariant solution close to the turbulent-laminar basin boundary is
started with a snapshot of a turbulent state obtained from a long-time simulation of the
flow, which, together with the laminar solution, determines the initial search direction.
We then employ a bisection algorithm tracking variation of the friction factor f =
8(Rer/Re)?/wj, energy of the streamwise, zero mode Eo = (1/2R) [/ [, uo - uo ds2
(with §2 the computational domain volume) and velocity perturbation energy Ezp =
(1/282) Z],ijl” J[[ou—k-urd2, where w, =(1/82) [[[, wds2 stands for the bulk
velocity of the relevant state of the flow (different for the laminar, turbulent or the identified
equilibrium solution) and uy (x, y, t) represents the kth amplitude of the Fourier expansion
(2.2). In the steady, laminar state wy, =~ 0.477, f ~0.0149, Esp =0and Eg~ 1.6 x 10~1,
while in the turbulent flow, the values oscillate in time, and their time-averaged values
are (f)~0.042, (wp)~0.284, (Eg) ~4.7 x 1072 and (E3p)~ 5.8 x 1074, where (-)
indicates a time-averaged value. Time-averaged, characteristic flow quantities are outlined
in table 1. Throughout the bisection procedure, we observe the state of the flow to remain
in-between the two limits for increasing amounts of time, but eventually turning either
towards the turbulent or laminar state, which is manifested by either amplification or
exponential attenuation of E3p.

By testing different values of the Reynolds number, we observe that below a certain
value of the Reynolds number, only a transient non-laminar solution can be obtained, i.e.
turbulence is a transient phenomenon and the perturbed laminar flow returns to the laminar
attractor within a finite time. In this work, we have not performed a detailed statistical
study similar to Avila et al. (2011), as it is beyond our current interest. Our results suggest,
however, that return to the laminar attractor is possible within ten-thousand-time units
at Re below approximately 3600. This is similar to the behaviour of the turbulent square-
duct flow reported by Biau et al. (2008), where at Re approximately 3300, the non-laminar
solution resulting from a certain sub-optimal initial condition was a chaotic transient. We
have not observed this transient behaviour at Re = 4000, i.e. there was no return to the
laminar solution within the long-time simulation (~103 time units). Consequently, in the
forthcoming edge tracking, we set the Reynolds number at 4000.

3. The invariant solution
3.1. Tracking the edge

Using the edge-tracking procedure, we attempt to identify an invariant solution (Kawahara
et al. 2012) to square-duct flow and the associated coherent structure. The edge tracking is
started with the bisection (Itano & Toh 2001; Skufca et al. 2006) followed by the custom
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Figure 2. Variation of the perturbation energy E3p during bisection (curves) and the converged steady
travelling wave (dashed, green horizontal line) through Newton—-Krylov iterations with the initial guess
obtained from the final edge tracking in the double mirror-symmetric sub-space. The edge-tracking process
is started using the laminar solution and the turbulent snapshot cast onto the m-rotationally symmetric
configuration. Dash-dotted lines depict the initial bisection stage with only the 7 -rotational symmetry enforced
with respect to the duct centreline; solid grey lines correspond to the imposition of mirror symmetries across
both wall bisectors, which are observed to appear autonomously in the initial bisection stage; and solid black
lines correspond to consecutive restarts of the process. The Newton—Krylov iteration is performed in the double
mirror-symmetric sub-space using the initial guess taken from the final edge tracking at r &~ 4000 time units.
The dashed, green horizontal line represents the converged steady travelling wave. Variation of E3p from the
turbulent simulation is provided for reference using a thin curve.

Newton—Krylov solver (Viswanath 2007, 2009) developed within the Nektar4+-+ (Moxey
et al. 2020) framework. The initial condition for the bisection is formed as a superposition
of a snapshot of the turbulent flow at Re =4000 and the laminar solution. We initially
attempted bisection using the full-space configuration (i.e. no assumption on the solution
symmetry has been made), but the process failed to arrive at a regular solution despite
repeated attempts and using different initial conditions. Instead, each attempt resulted in
shadowing of an irregular trajectory, with both the perturbation energy and friction factor
decreased from respective turbulent values but changing in a recurrent manner. Similar
behaviour of the full-space bisection process has been reported for the case of pipe flow
(Duguet et al. 2008, 2010; Avila et al. 2013). We attribute the problem with the bisection
in the full space to the fact that the edge state itself might be chaotic.

We expect that similarly to the pipe flow (Duguet et al. 2008, 2010; Avila et al. 2013),
restricting the turbulent dynamics to one of the symmetric sub-spaces would allow us to
identify a simple invariant state laying on the edge. Consequently, in the next attempt, we
limit the bisection to consider only the 7 -rotationally symmetric sub-space of the full state
space. This is achieved by slicing the computational domain across the wall bisector x =0
and imposing ‘periodic’ boundary conditions on the cut x = 0, of the form:

M(O’ _y’ Z) = _M(Ov ya Z)a
U(O» -y, Z)=_U(Oa Yy, Z)7 (31)
w(0, —y, 2) =+w(0, y, 2),

which correspond to the m-rotational symmetry with respect to the duct centre (x, y) =
(0, 0). In this symmetric sub-space, at Re = 4000, we observe no relaminarisation within
observation time, similar to the full-space configuration. Initial conditions for the bisection
are the same as in the full-space attempt and, this time, consecutive bisections quickly
settle to shadow what seems to be a regular trajectory. The convergence of the bisection
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is illustrated in figure 2 via variations of E3p during consecutive bisection iterations. At
the initial stage, when the -rotationally symmetric sub-space is considered (depicted by
dash-dotted lines), bisection settles to shadow a state that features a significant decrease
in perturbation energy and friction factor (not shown) compared with the turbulent flow.
With the progress of the bisection, the solution autonomously exhibits mirror symmetry
of the flow velocity across the wall bisector y =0, leading to the mirror symmetry
with respect to the other wall bisector x = 0. At this stage, we reinforce the symmetry
requirement by imposing double mirror symmetries across both wall bisectors. This is
done by casting the current solution onto a quarter of the domain and imposing a mix of
Dirichlet-Neumann boundary conditions onto the velocity vector field, of the form:

u(,y,z)=0, v(x,0,z)=0,

v ow and ou ow

_0’ ) :_0’ ) =0 _X,O,ZZ_X,O,Z =O
8x( v, 2) ax( v, 2) 8y( ) 8y( )

(3.2)
Variations of E3p from this stage are depicted using solid grey and later black (the
change corresponds to the restart of the bisection done to speed up the process)
lines in figure 2. The reader might note that in figure 2 for some time, dash-dotted
(initial, m-rotational symmetry (3.1)) and solid grey (double mirror symmetry (3.2))
shadow the same trajectory, indicating that both types of symmetry restrictions cause the
bisection to converge onto the same solution. Edge tracking is finalised with the custom
Newton—Krylov iteration procedure (Viswanath 2007, 2009), using the initial condition
corresponding to the bisection solution around ¢ = 4000, which converges rapidly onto the
solution marked by a thick dashed, green line in figure 2.

We verify the accuracy of our edge tracking by comparing it with an invariant state
computed by one of the authors (Okino 2014) using a global spectral, Chebyshev—Fourier
Galerkin method resulting in the same state, and by varying both the polynomial order
and the number of Fourier modes used for the approximation in our current attempt while
repeating the Newton—Krylov iteration step. The polynomial order p is varied from the
selected p =24 down to 20 and up to 28, while either M = 128 or 144 complex Fourier
modes are applied in the streamwise direction. Each time, the Newton—Krylov process
converges onto the same solution. However, as the number of degrees of freedom is
increased, the limitation of the Newton iteration correction step needs to be taken as it
seems that the radii of convergence decreases.

3.2. Characterisation of the identified state

The identified invariant state features a slight increase in the hydraulic resistance,
compared with the laminar solution. In this state, the bulk velocity wj is decreased to wj ~
0.474 from wy, ~ 0.477 of the laminar solution. The state is mirror-symmetric across both
wall bisectors and has a form of a wave with a distinct, streamwise localised four-vortex
structure travelling downstream at the constant speed of 0.675 units (*~1.424wj, where
wp corresponds to the identified invariant state). Figure 3 illustrates the contours of the
second invariant of the velocity gradient tensor Q = (1/2)(]|§2 12 = IS]1?) (Hunt, Wray &
Moin 1988), where S = (1/2)(Vu + VuT) is the symmetric part of the velocity gradient
tensor and £2 = (1/2)(Vu — VuT) the antisymmetric part of the velocity gradient tensor.
The contours are taken at Q/ wl% =1.5 x 10~! and show two pairs of streamwise vortices
around the wall bisector y = 0, next to the opposite wall pair x = =1 and captured around
the middle of the duct (z ~4m). The corresponding streamwise velocity perturbation
with relation to the laminar velocity distribution wy, is illustrated in figure 4 and
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Figure 3. Identified invariant state visualised by contours of the second invariant of the velocity gradient
tensor normalised by wy, taken at Q/ w% =1.5% 107",
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Figure 4. Contours of the difference of the streamwise velocity component w of the identified invariant state
with respect to the laminar solution wy . Slices are taken (a) along the streamwise direction z at x =0.5,
x=0.8, y=0.5 and y =0.8 and (b) on duct cross-sections (x, y) placed at z=0, 27, 47, 67. Figure 15(a)
shows the mean streamwise velocity distribution of the identified state.

shows streamwise slices at different positions away from the duct centreline and at
selected duct cross-sections. We conclude that while the identified invariant state remains
streamwise localised, the resulting change of the streamwise velocity from the laminar
flow distribution is global.
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Figure 5. Streamwise profile of the cross-flow energy E | and of the streamwise velocity perturbation energy
E) of the identified invariant state illustrating streamwise localisation of the invariant solution. The plots in
panel (a) correspond to cases which differ in the streamwise length and Reynolds number. Solid lines depict
variation for L, = 87 for a range of Reynolds numbers, while dashed lines illustrate the influence of varying
the computational domain length at a fixed Re =3050. Plots in panel (b) show E, and E for different
streamwise lengths and show that the streamwise length of the velocity perturbation does not vary much with
the streamwise period L;.

Streamwise localisation property of the identified invariant state can be extracted from
the density of the cross-flow and the streamwise velocity perturbation energies

IR IR
Ei(2)= —/ / ~(u*+v?)dxdy and Ej(z)= —/ / ~(w —wpr)*dx dy.
4 ) 4J02 4 ) 4J02
3.3)
E | (z) provides a norm-like quantification of the in-plane motions and E)(z) quantifies
changes to the streamwise velocity. Variations of those quantities with the streamwise
coordinate z normalised by the streamwise length L, of the domain are depicted in
figure 5 and show significant localisation around z &~ 4w (z/L, ~ 0.5). The plots in figure 5
show that localisation is maintained as the Reynolds number is decreased. Continuing
the solution with L indicates that with the increase of the domain length, the solution’s
streamwise length remains nearly constant so that it occupies relatively smaller portions
of the domain. We note that our results suggest that L, = 8r is close to the saddle-node
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bifurcation length, below which the identified solution does not exist. Also, we have not
observed a connection to any of the streamwise extended, periodic solutions neither by
continuing with Re nor with L.

At this stage, we would like to point out that the identified invariant solution has
been found under the restriction of reflectional symmetry across wall bisectors and that
solutions identified within the symmetric sub-space are necessarily solutions in the full
space (Avila et al. 2013) corresponding to physical (symmetric) states of the flow. We
examine the consequences of the imposition of symmetry in the following sections.

3.3. Symmetric sub-space edge

Following the identification of an invariant solution, we examine the stability of this
travelling wave by means of the Arnoldi iterations (Viswanath 2009). We test the stability
of the state, both in the full as well as in the symmetric sub-space. Examined symmetries
include the m-rotational symmetry (3.1) with respect to the duct centre and the double
mirror symmetry (3.2) across both wall bisectors. This analysis shows that at Re = 4000,
when confined to m-rotationally symmetric sub-space, the state has one purely real
unstable eigenvalue, while in the full space (no restriction on symmetry), the state already
has multiple real, unstable eigenvalues. In addition, at Re = 4000 under the 7-rotational
symmetry (3.1), the initial condition formed by the identified LB solution perturbed in the
unstable direction leads either to an uneventful laminarisation or towards a persistent non-
laminar state (we do not observe relaminarisation even after a long time), depending on
the sense of the perturbation. In the non-laminar state, the perturbation energy E3p, zero
mode energy Eo and the friction factor f that we monitor have values in the range that
we have observed in a long-time turbulent flow simulation, suggesting the state of the flow
lands on the turbulent attractor. We observe this type of behaviour down to approximately
Re =3600, where we observe possible relaminarisation to happen within ten-thousand
time units, indicating that as the Reynolds number is decreased, turbulence becomes a
transient phenomenon within the observation time. Consequently, in the symmetric sub-
space (both (3.1) or (3.2)), the identified state is an edge state, and its stable manifold of
co-dimension one splits (at least locally) the state space into two parts and forms an edge.
This edge separates the laminar attraction basin from the turbulent attractor under the -
rotational symmetry (3.1) and at sufficiently high Reynolds numbers. As the Reynolds
number is reduced, it seems that only the laminar attractor remains, while the turbulent
one is replaced by a chaotic transient with the edge that separates them only locally.
Limiting considerations to the investigation of the edge in the symmetric sub-space,
it is easy to track this state in Re with an arc-length continuation method (Keller 1977;
Dijkstra et al. 2014). The determined state exists down to slightly below Re =~ 3030,
where it is created. It turns out that it is also possible to identify the upper branch (UB)
of this travelling-wave solution. The bifurcation diagram is shown in figure 6 and also
outlines the change of stability properties with Re. We have tested the stability of the
identified state while traversing both of the solution branches. For most cases, we applied
double mirror-symmetric sub-space (3.2), only occasionally extending the solution space
to include m-rotationally symmetric state (3.1). On the UB, the invariant solution is also
streamwise localised, but has multiple unstable eigenvalues. While on the lower branch
(LB), the travelling wave remains to be an edge state in the symmetric sub-space, with
a single, purely real unstable eigenvalue. Exactly at the turning point at approximately
Re =3030 and upon turning onto the UB, there appears a second unstable, also real
eigenvalue. This behaviour suggests that the bifurcation does not result in one of the
solution branches becoming stable, as, for example, reported by Avila et al. (2013) for
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Figure 6. Bifurcation diagram for the identified travelling wave with Reynolds number Re showing (a) the E3p
and (b) friction factor. The thick dashed line in panel (b) represents the laminar flow friction factor. Stability in
the symmetric sub-space is indicated with different line styles: the solid line identifies the lower branch (LB)
with one purely real unstable eigenvalue up to the bifurcation point, the dashed fragment corresponds to two
purely real unstable eigenvalues on the upper branch (UB) starting exactly at the bifurcation point, the thick
fragment to two purely real unstable and an additional complex-conjugate unstable pair on the upper branch,
and the solid, thin line to two complex-conjugate unstable pairs on the upper branch. Most of the presented
stability results have been obtained within the double mirror-symmetric sub-space (3.2). Selected cases have
also been examined in the w-rotational symmetric sub-space (3.1).

the case of circular-pipe flow. Rather, both the LB and UB solution branches are created
unstable. Somewhere between Re =3040 and Re = 3046, on the UB, an additional
pair of unstable complex-conjugated eigenvalues appear. Eventually, around Re = 3058,
the two purely real, unstable eigenvalues disappear and are replaced by an additional
complex-conjugated pair. We have tested that this character of stability holds at least up to
Re =~ 4000. Flow topology of the UB solution at Re = 4000 is shown in figures 7 and 8.
Comparison of the characteristic flow quantities at Re = 4000 for the laminar, turbulent
and both the UB and LB invariant solutions is given in table 1.

The change of the solution stability from one unstable direction for the LB solution
to two unstable directions of the UB solution precisely at the bifurcation needs to be
commented on. The reader will find a more detailed discussion of our approach to this
issue in Appendix A, with just a brief characterisation provided here. We test the evolution
of the flow state in the symmetric sub-space at Re = 3040 (close to the bifurcation point)
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Figure 7. Invariant state on UB visualised by contours of the second invariant of the velocity gradient tensor
normalised by w; at Re = 4000, taken at Q/wl% =15x%x10"1
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Figure 8. Contours of the difference of the streamwise velocity component w of the invariant state on the UB
at Re =4000 with respect to the laminar solution wy,. The position of slices is the same as in figure 4. The
mean streamwise velocity distribution of the identified state is shown in figure 15(c).

from the LB and UB solution perturbed in the direction determined by eigenvectors
associated with the unstable eigenvalues of those solutions. The unstable direction is a line
for the LB and a plane for the UB. We recall that at this value of the Reynolds number, we
found no persistent non-laminar solution and only a chaotic transient seems to be available,
irrespective of the applied symmetry constraint.
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Our results show that in the case of both the perturbed LB and UB solutions,
provided the perturbation amplitude is sufficiently small, the flow stays on the respective
equilibrium solution for some time and either follows with an uneventful laminarisation
or goes onto a short-lived, non-laminar transient that seems to follow the remains of
the turbulent attractor and possibly reaches towards other invariant solutions. It seems
reasonable to assume that this behaviour, i.e. uneventful laminarisation or a chaotic
transient detour available from both solution branches, is because the bifurcation that
gives rise to both solution branches happens on the edge sub-space (co-dimension one
sub-space) and that both the LB and specifically the UB solutions remain in the edge sub-
space, the stable manifold of the LB solution. We think this situation persists for a range
of Re close to the bifurcation point. That is, in a sub-space confined to the stable manifold
of the LB solution (where the LB solution is a relative attractor), the LB solution is a node
and the UB, which also exists in this sub-space, is a saddle.

Following this reasoning, we make a conjecture that the bifurcation in which both
branches are formed also takes place on the edge, where it is a saddle-node bifurcation
(the LB solution is a node, the UB a saddle in the sub-space confined to the edge). This
character of the stability further implies that other invariant solutions should exist and
possibly form at still lower values of the Reynolds number than the current solutions.
Eventually, there should exist a solution pair that forms in a saddle-node bifurcation similar
to that reported by Avila et al. (2013) for the pipe flow. This solution remains to be found,
which might be made difficult by the transient nature of the non-laminar solution. Finally,
with the possible existence of other invariant solutions at lower values of the Reynolds
number, we conjecture that similarly to Duguet ef al. (2008), there can be many separate
solutions confined to the edge (multiple local edge states) bifurcating in respective saddle-
node (limited to co-dimension one manifold) bifurcations. Each such state should then be
a local edge state in the sense that its stable manifold would split the phase space only
locally and the state itself would remain a relative attractor only on a portion of the edge.

4. Long-time turbulence behaviour

We shall now characterise the turbulent flow at Re = 4000 over an extended time period
and attempt to relate it to the invariant solution identified in § 3. To do that, we attempt
the identification of statistically relevant (in the temporal sense) states of the turbulent
flow, understood here as states that remain close to the time-averaged state measured by
the selected perturbation norm. At the same time, we identify possible fringe episodes,
during which the flow diverges from the mean and forms periods of relatively quiescent
flow with moderately well-defined localisation and orientation of structures, which we find
reminiscent of the identified invariant state.

The simulation starts with the stationary, quasi-parabolic, laminar profile as the initial
condition and a short (less than 50 time units) burst of low-variance Gaussian noise
(1073 in the energy norm) forcing is used to force transition. This results in a brief
transient behaviour followed by a rapid onset of turbulent dynamics. Time variations of the
perturbation E3p and mean flow E( energies of the resulting flow are shown in figure 9(a),
while variation of the friction factor f is shown in figure 9(b). In both figures, thick dashed
lines illustrate reference values characterising the laminar flow and solid thin lines show
respective time averages, calculated for times greater than 2 x 10° time units to exclude
pollution by the initial transient. The initial, transient evolution of the system manifests as
a spike of the E3p, which is quickly attenuated below 103, where perturbation energy
remains for the remaining of the simulation time.
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Figure 9. Temporal variation of (a) the mean Eg and perturbation E3p energy and of (b) the friction factor f.
Dashed lines represent laminar flow quantities (Eg ~0.16 and f = 0.0149) and thin solid lines depict time
averages taken for # > 2000. A, B and C distinguish time periods selected for further analysis.

At this stage, we note that for the majority of the simulation time, perturbation energy
E3p remains close to the average value of approximately 5.8 x 10™#, but on occasion, it
decreases substantially and short interludes of decreased perturbation energy may form.
This decrease in the perturbation energy is accompanied by a slight increase in the mean
flow energy and a drop in the value of the friction factor, which is delayed in the sense of
local minimum position with respect to the perturbation energy variation by approximately
250 time units. Interludes of decreased hydraulic resistance and perturbation energy
suggest that the flow experiences periods when it becomes relatively quiescent and with
increased regularity of the flow field. While this calming down could be interpreted as
a transition towards the laminar attractor, the flow did not relaminarise throughout the
simulation, but rather maintained the turbulent dynamics. Consequently, we associate the
onset of quiescent events with the flow approaching a regular invariant solution. First,
shadowing its stable manifold, displaying relative regularisation of the immediate state of
the flow, with a subsequent return to the more common and less regular turbulent dynamics
as it is being ejected away from the invariant state along the unstable direction. The reader
might note that in figure 9, we marked instances A, B and C, which we will discuss in
more detail shortly.
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Figure 10. Temporal variation of (a) the symmetry indicator f5 (solid line) (4.1) and the corresponding f
and f) (dashed lines) and of (b) the vortex placement indicator / (4.4). In panel (), the thick, horizontal and
dashed line indicates the mean value (f;) (the temporal average of f), while thinner dashed lines represent
corresponding ( f) + ko (k =1, 2, 3) levels with o the standard deviation of f.

4.1. Flow symmetrisation

The laminar solution and the time-averaged velocity fields possess a number of symmetries
related to the duct geometry, and so does the invariant state identified in § 3. We consider a
heuristic indicator to examine changes to the flow over time and quantify the deviation of
the flow state from the w-rotational symmetry. The measure, normalised with the energy
of the mean mode Ej is of the following form:

fo= QLEO ///ﬂ [k, 2 2) (s —y. )2+ (Wr. 3. 2) + V(s —y, 2))°

+ (wix, y, 2) — w(—x, —y, )2] *de @.1)

and quantifies the overall volume-averaged deviation of the flow state from the m -rotational
symmetry. This means that this measure decreases as the flow field becomes more
symmetric. Similar symmetry measures quantifying deviation of the flow velocity from
either of the mirror symmetries across wall bisectors (x = 0 and y = 0) are also considered
and noted as f, and fy. Time variations of all three measures are shown in figure 10(a).
The thick dashed line corresponds to the time average (f) and thinner lines represent
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Figure 11. Regions £2,; splitting the duct cross-section §2; used to compute S; (i =1, 2, 3, 4).

consecutive displacements (k =1, 2, 3) by the value of the standard deviation o of f
from ( f). Data show that usually, flow symmetry measure remains within the {f;) & o
range, but on occasion, f; may be substantially decreased, indicating that the flow enters
periods of increased symmetry. Interludes of decreased f;; measure, when it drops below
the () — 20 level, correlate well with the decrease of the friction factor and perturbation
energy shown in figure 9(a,b) and marked with B and C. Surprisingly, time variations
of all three measures overlap almost completely, meaning that mirror symmetries appear
autonomously at the same time as the flow state approaches the 7 -rotationally symmetric
form. The fact that both mirror-symmetries seem to follow closely suggests that the flow
develops states that are mirror-symmetric against x =0 and y =0 bisectors, but does
not seem to support states that are symmetric only against one of the wall bisectors
(either x =0 or y =0). This further implies and is consistent with our observations that
states with only two vortices (similar to the edge trajectory described by Biau & Bottaro
(2009)) next to one of the duct walls (the two-vortex states) are unlikely at the Reynolds
number 4000.

4.2. Eight- and four-vortex state

In addition to symmetries that might transpire in the flow state, one of the distinct
characteristics of the turbulent duct flow is the onset of turbulence-driven, Prandtl’s
(Prandtl 1926; Pirozzoli et al. 2018) secondary motions of the second kind that manifest
by the onset of pairs of vortices placed symmetrically around corner or wall bisectors.
In the time-averaged velocity field, those motions manifest as either eight- or four-vortex
configurations (Uhlmann et al. 2007, 2010; Gavrilakis 1992), depending on the selected
averaging time window (Uhlmann et al. 2007). Following Uhlmann et al. (2007), we
examine the flow by computing the square of the mean streamwise component of vorticity:

2

L.
Si(t) = / / [i / a)zdz] A2, 4.2)
2 LLz Jo

over four triangular regions §2 ; (see figure 11), defined by diagonals:

QRu{G,ly>x Ny <—x}, 2u3:{Gx, Yy <xy>—x}, 4.3)
QA Yy <xNy <—x}, 2ua:{(x, My >xy>—x}
and further normalised to produce the vortex placement indicator
S1+S53-85-S
1) = 1+93—52— 54 4.4)

Si+ S+ 83+ 8s

Values of I that remain close to zero indicate states where, on average, streamwise
vorticity is equally distributed between the x = £1 and the y = +1 wall pairs, suggesting
an overall eight-vortex state. However, relatively large positive or negative values of [
suggest the concentration of vorticity along one of the two wall bisectors and in the
proximity of either the x = +1 (1 > 0) or the y = %1 (I < 0) wall pair and is an indication
towards an overall four-vortex state of the flow. Temporal variation of I is shown in
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figure 10(d). In general, the value of I remains strictly positive (or negative) over extended
times, suggesting that, on average, there is a dominating tendency of the flow to favour
one of the two four-vortex configurations (either the y = +1 or the x ==£1 wall pair).
Change of the configuration is possible but does not happen often. The absolute value
of I usually remains below 0.5. This suggests that in the usual state of the flow, vortices
remain more pronounced in the proximity of one of the wall pairs, but at the same time,
vorticity magnitude over the other wall pair remains significant. The reader might note that
occasionally, I reaches larger absolute values, indicating the transitional concentration of
vorticity around one of the wall bisectors and suggesting the onset of a relatively well-
defined four-vortex state with vortices either in the y = 41 or x = %1 orientation with the
relatively quiescent flow next to the remaining walls. Comparing temporal variations of f
(as well as fy and fy) and I, we observe that during periods over which f (as well as f,
and f)) decreases below (f;) — 20 and the flow field becomes increasingly symmetric,
the absolute value of I increases above 0.75. This indicates that during symmetrisation,
vorticity concentrates around one of the two wall bisectors suggesting that the four-vortex
state should be expected. Also, this state coincides with a decrease in perturbation energy
and hydraulic losses.

Using symmetry quantification, perturbation energy variation and the vortex placement
indicator I, we select three time periods for further discussion and flow averaging. The
first period marked A, spans the 2000 time units from ¢ = 10* up to r = 1.2 x 10%, and
corresponds to the period over which the value of I switches from positive to negative
and leads to the usual eight-vortex state when averaged. At the same time, during this
period, the flow, at least as quantified by symmetry, friction factor and perturbation energy,
remains close to respective averaged values. The second period marked B and the third C
span a much shorter duration of 200 time units and focus on periods when the absolute
value of the vortex placement indicator / becomes large, while perturbation energy, the
symmetry measure and hydraulic resistance decrease substantially. This suggests the onset
of a relatively quiescent, regular state of the flow with the value of / implying a four-
vortex state. Period B ranges from ¢ = 6.4 x 10’ to t = 6.6 x 10°, and the positive value
of I corresponds to vortices oriented along the wall bisector y =0 and positioned next
to the walls x = 1. Period C spans the time from ¢ = 1.26 x 10* to r = 1.28 x 10* with
vortices oriented around the bisector x = 0 and positioned next to the y = £1 wall pair.

The character of the flow state during selected time periods A, B and C is shown
in figures 12 and 13, depicting instantaneous snapshots of the flow, representative of
selected time periods and showing the iso-contours of the second invariant of the velocity
gradient tensor (representing vortex structures) Q, normalised by (wj) for the turbulent
flow in figure 12 and variation of the streamwise velocity w in figure 13. Snapshots
have been taken at 7 = 10* (panel a), t = 6.4 x 103 (panel b) and at t = 1.26 x 10* (panel
c). Comparing the three states depicted in figure 12, we note that during the relatively
quiescent interludes B and C, the region indicated by the Q iso-surface, occupies a
much smaller portion of the domain in comparison to the more common flow character,
represented by A. The distribution of the Q iso-surfaces suggests streamwise localisation
of the turbulent fluctuations in the cases B and C while, in the case of A, those seem
to be rather uniformly distributed in the streamwise direction. We observe that, in the
case of the snapshot shown in A, vortex structures occupy the domain uniformly, while
in cases B and C, those structures seem to be organised along one of the wall bisectors
of two opposing wall pairs and absent from the remaining pair. We suspect that this
vorticity configuration stems from vortex pairs formed next to the respective wall pairs
and influences the streamwise velocity distribution next to the duct walls, which we shall
now discuss.
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Figure 12. Turbulent states visualised by contours of the second invariant of the velocity gradient tensor
normalised by (wyp) of the turbulent flow, taken at Q/(wp)2 =4 x 10~!. A, B and C correspond to the time
periods distinguished in figures 9 and 10. (a) Snapshot taken at r = 10* and a quasi-uniform distribution
of vortex structures along the streamwise and in-plane directions; (b,c) flow state at = 6.4 x 10> and
t =1.26 x 10%, respectively, and the relatively quiescent structures with pronounced streamwise localisation
and an apparent spanwise organisation of the structures, exemplified by ellipses in the cross-axial plane view
on the right.

Figure 13 shows snapshots of the streamwise velocity component w at slices located
at x, y ==0.8 in the proximity of duct walls x, y ==£1 (panel a) and at evenly spaced
cross-sectional planes at z =0, 2w, 47 and 67 (panel b). The distinctive feature that
can be immediately noticed on the streamwise oriented slices are regions of decreased
streamwise velocity corresponding to low-velocity streaks that form close to wall bisectors
and, generally, run through the entire length of the duct. The corresponding cross-sectional
slices show the low-momentum flow being displaced from the wall proximity and towards
the duct centre, which is a manifestation of the rotational flow component due to the vortex
pair forming near wall bisectors. We note that in the snapshots corresponding to B and
C, the low-velocity streaks are well defined only on the two opposing walls. The streaks
appear on the slices x = +0.8 in the proximity of the walls x = 1 for B and on the
slices y = 0.8 in the proximity of the walls y = %1 for C, while in the proximity of the
walls y = &1 for B and of the walls x = %1 for C, the flow remains relatively quiescent.
However, the flow depicted in A shows a more disturbed and not so well-defined structure.
The low-velocity streaks remain present and well defined next to the wall pair x = 41 and
to a lesser degree in the proximity of the other wall pair y = +1.

Averaging over a selected time period and streamwise direction leads to an ensemble
average of the form:

1 [
(@ (x, y) = L_/o (u(x, y,z,0)dz, (4.5)
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Figure 13. Snapshots of the streamwise velocity component w taken along the streamwise direction z at x =
+0.8, y ==£0.8 and at duct cross-sections placed at z =0, 27, 4, 67. A, B and C correspond to the time
periods distinguished in figures 9 and 10. (a) Snapshot at £ = 10* and noticeable low-velocity streaks in the
proximity of the duct wall bisectors, more pronounced at x = %1 and present but less distinct at y = +1. (b,c)
Snapshot at 1 = 6.4 x 10% and ¢ = 1.26 x 10*, respectively, which shows low-velocity streaks forming close to
bisectors of opposing, x = %1 (or y = =£1) walls of the duct i.e. at x = £0.8 (or y = £0.8), with the flow near
the other two walls remaining relatively quiescent. For consistency, colour scale used for w is the same as in
figures 14 and 15.
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Figure 14. Ensemble average (u)) defined by (4.5) applied over respective time periods A, B and C. (a) Long-
time average taken over the period designated as (a) A, (b) B and (c¢) C. The upper row shows contours of the
streamwise vorticity component {(w.)), with negative values indicated with dashed lines, and contours of the
streamwise velocity component (w)) are shown in the lower row with arrows illustrating the in-plane velocity
components (#)) and {v)). For consistency, colour scale used for w is the same as in figures 13 and 15.

where (-)) indicates average over time and the z coordinate. Choosing the averaging time to
correspond to periods A, B or C, the resulting ensemble average (u)) depicts the dominant
configuration that the flow adopts over those periods. Figure 14 shows contours of the
average streamwise vorticity {w;)) in the upper row and components of the mean velocity
in the lower row. The streamwise mean flow {w})) is shown using contour lines, while
arrows depict in-plane mean velocity components {u)) and {(v)). Averaging over period A
yields a well-defined eight-vortex topology, while averages over periods B and C lead to
four-vortex configurations that form along respective wall bisectors.

We find the structure of the mean flow shown in figure 14(b) reminiscent of the LB
invariant state that we characterised in § 3. Figure 15(a) shows the streamwise (contours)
and in-plane (arrows) velocity components at the slice through the invariant state velocity
vector field taken at the streamwise position corresponding to the streamwise maximum
of the E, . The illustrated velocity field corresponds to the solution lying on the LB at
Re =4000. The figure provides an insight into the in-plane position of the two vortex pairs
(centres marked by red-filled triangles) that have formed around the wall bisector y = 0.
We note that the effect of those vortices is in the local modification of the distribution
of the streamwise velocity component, i.e. vortex pairs rotate in such a way as to push
the low-momentum fluid from the wall centre and into the core of the flow. Locally, this
leads to the formation of low-velocity streaks positioned around the wall bisector y =0
and next to the walls x = %1. For comparison, figure 15(b) shows the in-plane (arrows)
velocity component of the ensemble-averaged (u)) (x, y) flow from the relatively quiescent
period B of the turbulent flow (see figure 14b) with vortices (centres marked by purple-
filled squares) placed around the y =0 bisector. For reference, positions of the centres
of vortices from averaged flow from period C are also marked in the figure (cyan-filled
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Figure 15. (a) Slice through the velocity field of the LB (Re =4000) invariant solution at the streamwise
position of the maximum of cross-flow energy (z = 4, see figure 5), (b) in-plane components of the ensemble-
averaged velocity field from period B and (c) a slice at z =4 through the UB (Re =4000) solution shown
in figures 7 and 8. Contours in panels (a) and (c¢) depict streamwise velocity. In-plane velocity components
are illustrated using arrows in all the panels. Centres (elliptic stagnation points) of the four vortices of the LB
invariant state and their 7 /2-rotated positions around the duct centre are marked by triangles, and compared
with positions of vortex centres resulting from averaging the flows over the entire streamwise length and through
periods B (purple squares) and C (cyan squares), as shown in figure 14. Colour scale used for w is the same as
in figures 13 and 14.

squares) and compared with the orange-filled triangles that identify vortex centres of the
identified LB invariant state, but in a configuration where vortices form around the x =0
bisector (;r /2-rotation). It turns out that the four vortices in the identified LB invariant state
appear at the cross-sectional positions close to those in the quiescent states with the four-
vortex configuration of significant symmetrisation, observed in turbulent square-duct flow.
Finally, for comparison, figure 15(c) shows the slice at the same position as in figure 15(a)
through the UB solution at Re = 4000 (see also figure 8), implying that the positions of
the vortices in the UB invariant state are not consistent with those in the quiescent states
of the turbulent flow.

4.3. Streamwise localisation

Focusing on the interludes throughout which the flow features increased symmetrisation,
i.e. times when f;; drops below ( f;) — 20, we attempt to examine the possible streamwise
localisation property of the flow. In what follows, we focus on one of the quiescent
interludes, marked B in figures 9 and 10. We note, however, that results remain qualitatively
similar at other times (e.g. around ¢ = 2000 or at the period marked C). We start by
considering the following averaging operator:

1 n
ug(x,y,z;8)= —(11 ) / u(x,y,z—st,t)dt 4.6)
_ o

over the fixed time (#; — f9) with a constant, streamwise shift per unit time s, where
(to, 11) = (6.4, 6.6) x 103 correspond to the quiescent period B. The meaning of (4.6)
corresponds to the time averaging of the flow while continuously moving the averaging
domain in the streamwise direction at speed s. In principle, the averaging operation (4.6)
highlights flow details that persist under the streamwise shift at speed s, and blurs and
attenuates remaining features. This should, in principle, highlight the persisting, coherent
structures present in the flow and attenuate remaining fluctuations.
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Figure 16. Cross-flow energy density E; for u; along the streamwise direction for three values of the
streamwise shift, s = 0.37, 0.397 and 0.43. The extreme of £, for s =0.397 (thick curve) gives a maximum in
figure 16.
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Figure 17. Variation of the streamwise maximum of the cross-flow energy E | for u; with the
streamwise shift s.

Applying (4.6) over the selected period while varying the speed of the streamwise
shift s, we look for the value of s that maximises the extreme of E| taken over the
streamwise direction z. Plots in figure 16 show variations of the cross-flow energy E |
for ug with the streamwise direction for three values of streamwise shift per unit time s.
The reader might note that there seems to be a value of s which maximises the extreme
value of the cross-flow energy across the streamwise direction and at the same time,
and around this particular value of s, i.e. s =0.397 as will be shown later, the extreme
value of E| becomes distinctly larger from neighbouring turbulent backgrounds in E |,
suggesting a streamwise localisation of the coherent structures propagating downstream.
Variation of the extreme value with the shift s is shown in figure 17 and illustrates a well-
defined overall maximum, which we evaluate to be approximately s = 0.397 by bisection.
Figure 18 illustrates iso-surfaces of the second invariant of the velocity gradient tensor Q
computed for the averaged velocity field u; obtained for s =0.397 and normalised with
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Figure 18. Contours of the second invariant of the velocity gradient tensor Q computed for the vector field
resulting from the averaging operator (4.6) for s = 0.397 taken at Q/(wp)> = 1.5 x 10", Contour level is the
same as in figures 3 and 7.

(wp) of the turbulent state. For comparison purposes among figures 3, 7 and 18, we take
the same contour threshold so we can confirm the similar streamwise localisation as well
as the in-plane orientation of the vortex structures. In figure 12(b), we can also observe
less significant but visible streamwise localisation of the intense vortices even in the flow
snapshot taken from the corresponding quiescent period B. Overall, the state resulting
from the application of the averaging operation (4.6) for the appropriate value of s suggests
that the instantaneous flow structure in the quiescent state of turbulence could be related
to the invariant state identified in § 3.

Finally, we would like to stress that the evaluated shift speed s with respect to
(wp) & 0.284 for the turbulent flow is s &~ 1.397(wy), which is strikingly similar to the
relation of the propagation speed of the symmetric sub-space edge state on the LB to the
corresponding wp, i.e. s & 1.424wy,.

5. Conclusions

We have identified a symmetric travelling-wave solution to square-duct flow that features
significant streamwise localisation and, simultaneously, is a symmetric sub-space edge
state. The identified state remains an invariant solution in the full space, but its stable
manifold is already co-dimension three. The importance of finding this solution lies in the
fact that it is the first localised solution to the square-duct flow and, at the same time,
seems to transpire during quiescent periods of the turbulent flow history. We tracked
this state in Re down to the bifurcation point around Re = 3030 and determined the
upper branch, which also features streamwise localisation but possesses several unstable
directions. A consequence of significant streamwise localisation, the determined, invariant
state remains close to the laminar solution in the sense of the velocity perturbation energy
and hydraulic losses. Following this, we studied the turbulent square-duct flow with a
focus on structures that transpire in the flow, both in the long and shorter time frames, and
illustrated the onset of the eight- and the four-vortex flow configurations. Presented results
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indicate that the latter corresponds to the relatively quiescent periods in the flow time
history, accompanied by flow field symmetrisation and the onset of streamwise localisation
of turbulent structures and position of vortices reminiscent of the identified invariant state.
The presented results show a striking similarity between the propagation speed of the
identified travelling-wave invariant solution and the recovered turbulent structure with
respect to respective bulk velocities that are responsible for conveying the flow structures
downstream. This, together with topological similarity, points towards the conclusion that
the identified travelling-wave solution occasionally transpires in turbulent flow, making it
all the more relevant.

The existence of streamwise-localised solutions has been reported for pipe flow (Avila
et al. 2013), and both streamwise- and spanwise-localised equilibrium solutions have been
found in Poiseulle (Zammert & Eckhardt 2014) and Couette (Brand & Gibson 2014)
flows. While the existence of two-dimensionally localised structures could be inferred
from Takeishi et al. (2015), to the best of our knowledge, two-dimensionally localised
equilibria have not been found in rectangular-duct flow at any aspect ratio until now.
Consequently, the invariant solution characterised in this paper may be a good starting
point for the study of streamwise- and spanwise-localisation of turbulence in transitional
rectangular-duct flows. Finally, the apparent relation of the quiescent periods during the
turbulent flow to the determined invariant state could be further analysed numerically and
even experimentally extending theoretical understanding of turbulent square-duct flow.
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Appendix A.

We have tested the evolution of the flow state constrained to the symmetric sub-space
starting from the LB and UB solutions at Re = 3040, perturbed in the respective unstable
directions. For both solutions, we have performed a number of simulations. Under the
symmetric sub-space constraint, the LB solution has one unstable directions (a one-
dimensional unstable manifold), while the UB solution has two (two-dimensional unstable
manifold). At this value of the Reynolds number, we found no persistent non-laminar
solution and only a chaotic transient seems to be available, irrespective of the applied
symmetry constraint. We perturb the LB solution uy p and the UB solution uyp to form
respective initial conditions u;,; rp and u;,; yp as

Wini LB=ULB + OLBIULB eig | (AT)
and
Ujni, UB = UUB + OUB JUUB eig | + OUB 2UUB eig 2 (A2)

where u;p1 and uyp;2 represent the unstable directions dictated by normalised
eigenvectors |uzp eig 1| = const. and |uyp eig 1,2/ = const. corresponding to the unstable
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Figure 19. Time variation of the perturbation energy E3p of the flow state evolution resulting from the
perturbation of the LB and UB solutions at Re = 3040 in the respective unstable direction. The unperturbed
LB and UB solutions are marked with thick dashed lines, dotted lines correspond to uneventful laminarisation
and a chaotic transient excursion is depicted with solid lines. Only cases close to the value of o leading to
laminarisation / chaotic transient are illustrated.

eigenvalues of the solution, and o7 p; and oyp 2 are the scaling factors for the LB
and the UB solution, respectively. To give some perspective on the magnitude of the
applied perturbation, the mean kinetic energy of the LB and UB solutions is approximately
0.147 and 0.144, respectively. The unstable eigenvectors, used to construct respective
perturbations, are normalised such that the mean kinetic energy of the respective
perturbation vector fields is 7.0 x 10~*. The applied scaling factors o are in the range of
4107 and the difference between the values of o leading to the uneventful laminarisation
or a transient detour is reduced to the order of 10~2! in the bisection process.

We test the evolution of the flow state starting from the perturbed LB and UB solutions.
Figure 19 shows the variation of the perturbation energy E3p for both solution branches
and selected initial conditions, resulting from the application of different o values. The
thick dashed lines represent the unperturbed LB or UB solutions. In the case of applying
the perturbation in the unstable direction, for both solution branches, depending on the
value of 07,1 or oyp 12, the flow either follows with an uneventful laminarisation (dotted
lines in figure 19) or detours towards a chaotic transient (solid lines), which is manifested
by a temporal increase in the perturbation energy followed by laminarisation. We note that
for those cases, E3p and the friction factor reach values of the turbulent state obtained
for the full space at Re =4000 (see table 1). Curves shown in figure 19 correspond to
o1.p1 and oyp 12 that lie close to the limit where the evolution of the flow changes from an
uneventful laminarisation to the chaotic transient. For the LB and UB, selecting o7 p1 or
oyp 1,2 close to this limit leads to the state of the flow stabilising on either of the solution
branches for an extended time, with it increasing in an asymptotic manner. The results
demonstrate that both the LB and UB solutions lie on the edge that separates the laminar
attractor from the region of the chaotic transient. The two distinct transients, represented by
the black and grey curves, ensuing from the perturbed UB solution suggest that within the
plane spanned by the two unstable directions of the UB solution, a heteroclinic connection
should exist to yet another simple solution, possibly also embedded within the edge.
Although we have attempted to identify it, we have not been able to converge onto it.
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