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A wall-modelled large eddy simulation approach is proposed in a discontinuous Galerkin
(DG) setting, building on the slip-wall concept of Bae et al. (J. Fluid Mech., vol. 859,
2019, pp. 400–432) and the universal scaling relationship by Pradhan and Duraisamy
(J. Fluid Mech., vol. 955, 2023, A6). The effect of the order of the DG approximation
is introduced via the length scales in the formulation. The level of under-resolution is
represented by a slip Reynolds number and the model attempts to incorporate the effects
of the numerical discretization and the subgrid-scale model. The dynamic part of the
new model is based on a modified form of the Germano identity – performed on the
universal scaling parameter – and is coupled with the dynamic Smagorinsky model. A
sharp modal cutoff filter is used as the test filter for the dynamic procedure, and the
dynamic model can be easily integrated into any DG solver. Numerical experiments on
channel flows show that grid independence of the statistics is achievable and predictions
for the mean velocity and Reynolds stress profiles agree well with the direct numerical
simulation, even with significant under-resolution. When applied to flows with separation
and reattachment, the model also consistently predicts one-point statistics in the reverse
flow and post-reattachment regions in good agreement with experiments. The performance
of the model in accurately predicting equilibrium and separated flows using significantly
under-resolved meshes can be attributed to several aspects that work synergistically: the
optimal finite-element projection framework, the interplay of the scale separation and
numerical discretization within the DG framework, and the consistent dynamic procedures
for subgrid and wall modelling.
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1. Introduction
Wall-bounded turbulent flows are of particular relevance to many engineering applications.
Computational costs of large eddy simulations (LES) increase significantly with the
increase in Reynolds number. This is especially true for flows at a friction-velocity-based
(uτ ) Reynolds number Reτ > 103, which is the range of Reynolds numbers relevant to
industrial applications (Smits & Marusic 2013). A direct numerical simulation (DNS)
resolves all the relevant scales of motion and offers the highest possible fidelity (Moin &
Mahesh 1998). However, substantial grid requirements along with time-step limitations at
high Reynolds numbers make DNS infeasible for computing flows of practical relevance.
On the other hand, Reynolds-averaged Navier–Stokes (RANS) equations model all the
relevant scales of motion and places less restrictive demands on computational costs but
offers a lower fidelity (Wilcox 1998). It may not be a reliable tool for computing flows for
which the turbulence models are not calibrated.

A wall-resolved LES (WRLES) resolves dynamically important energy-carrying eddies
and models the nearly universal and nearly isotropic small-scale structures, i.e. subgrid
scales (SGS) (Sagaut 2005). For a WRLES of a turbulent boundary layer at high Reynolds
number, however, a vast majority of the computational resources have to be spent on the
viscous and logarithmic layers since the grid point requirement for each of these layers
scale as O(Re2

τ ) (Larsson et al. 2016). To alleviate this ‘near-wall problem of LES’, wall-
modelled LES (WMLES) offers a practical solution, which aims to bypass the resolution of
the inner layer of the turbulent boundary layers. In WMLES, turbulent motions in the inner
layer are modelled, whereas outer layer turbulent motions are resolved as in a conventional
LES (Piomelli & Balaras 2002). Wall-stress models and hybrid LES/RANS are the two
different approaches to model the inner layer and perform WMLES. As these approaches
still resolve the outer layer of the turbulent boundary layer, they can – in principle – offer
better fidelity than RANS techniques.

A hybrid RANS/LES technique, including the detached eddy simulation in a WMLES
set-up, uses RANS equations in the inner layer to estimate the wall stress and switches
to the LES mode in the outer layer (Heinz 2020). The LES solution is used to feed
information to a RANS model at some distance away from the wall. The predictions,
however, depend on the choice of the RANS model and the modelling of the RANS/LES
interface (Piomelli et al. 2003; Davidson & Dahlström 2005; Davidson & Billson 2006;
Keating & Piomelli 2006; Shur et al. 2008; Choi, Edwards & Baurle 2009). On the other
hand, a wall-stress model computes wall shear stress using a log law or the solution of
some form of thin boundary layer equations (TBLE) on an embedded grid between the
first grid point and the wall (Larsson et al. 2016; Bose & Park 2018). In this approach, the
filtered wall shear stress is estimated at each time step using the LES information from an
off-wall grid point on an LES mesh. The wall shear stress is then passed onto the LES grid
as a Neumann boundary condition. Several wall-stress modelling strategies with varying
complexities have been developed and studied over the years (Deardorff 1970; Schumann
1975; Piomelli et al. 1989; Piomelli 1999; Cabot & Moin 2000; Piomelli & Balaras 2002;
Sagaut 2005; Piomelli 2008; Larsson et al. 2016; Bose & Park 2018).

A traditional algebraic equilibrium wall-stress model (EQWM) using a log law, e.g.
Reichardt’s profile (Reichardt 1951), has the advantage of low computational cost.
However, it generally performs poorly in non-equilibrium conditions and complex
geometries, in particular, involving flows with boundary layer separation (Park 2017;
Goc, Bose & Moin 2020; Whitmore, Bose & Moin 2024). Moreover, non-monotonic
grid convergence in the prediction of the size of turbulent separation bubbles is also
observed for the EQWMs (Goc et al. 2020; Whitmore et al. 2021; Agrawal et al. 2022).
On the other hand, several non-equilibrium wall models have shown promise in predicting
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separated flows (Balaras, Benocci & Piomelli 1996; Wang & Moin 2002; Hickel et al.
2013; Park & Moin 2014, 2016a). However, the two-layer zonal wall models employing
embedded grids require some effort in grid generation and domain decomposition in the
pre-processing step, especially on unstructured meshes (Bodart & Larsson 2011; Park
& Moin 2016a,b). The model predictions obtained using a wall-stress model depend on
the choice of the exchange location (EL), i.e. the location from which the instantaneous
LES solution is sampled to feed into the wall model, even for the simple geometry of
a turbulent flow in a channel (Kawai & Larsson 2012; Frère et al. 2017). Consequently,
the EL becomes a parameter of the simulation, which needs to be adjusted according to
the flow field characteristics. Setting the EL requires knowledge of the boundary layer
thickness, which is a property of the solution. Moreover, many of the wall-stress models
introduce complexities with accompanying empiricism to treat complex flows, e.g. sensors
to turn off the wall-stress models at the separation point (Bodart & Larsson 2011; Bose &
Park 2018; Agrawal, Bose & Moin 2024).

Accurate and reliable prediction of separated flows at high Reynolds numbers remains a
pacing research issue within the computational fluid dynamics (CFD) community. Several
efforts to validate the state-of-the-art WMLES techniques in predicting separated flows
at appropriate Reynolds numbers in a realistic external aerodynamics configuration have
been undertaken recently. NASA CFD Vision 2030 report (Slotnick et al. 2014)) has
identified WMLES for complex three-dimensional flows of practical relevance as one
of the key milestones along the CFD technology development roadmap. Park & Moin
(2016b), Lehmkuhl et al. (2018), Goc et al. (2020, 2021) have investigated predictive
capabilities of equilibrium and non-equilibrium models within the WMLES framework
in the characterization of the flow around an aircraft by considering the JAXA standard
model and NASA common research model with wing/body/tail configuration, showing
promise in practical applications, yet identifying several areas of improvement.

Since the solution may not be accurately computed near the wall on coarser near-wall
LES grids due to the presence of steep wall-normal gradients, one promising alternative
to the wall-stress models is the virtual-wall model in which the LES domain is terminated
at some finite distance above the wall (Chung & Pullin 2009; Inoue & Pullin 2011;
Cheng, Pullin & Samtaney 2015). Instantaneous slip velocities obtained using a reduced
form of the TBLE are then provided at this virtual boundary or the ‘virtual wall’,
which corresponds to the location of the bottom boundary in the LES. The offset of the
virtual wall is set to be proportional to the mesh size. This treatment of the wall slip
boundary condition has been shown to capture the quantitative features of a separation–
reattachment turbulent boundary layer flow at low to moderately large Reynolds numbers.
However, identification of the lifted virtual wall can be challenging for complex practical
engineering geometric configurations.

Bose & Moin (2014) propose a wall modelling strategy in which formal boundary
conditions for the filtered Navier–Stokes equations are derived instead of relying on the
true (unfiltered) boundary conditions for the filtered fields. Unlike traditional wall-stress
models and hybrid RANS/LES approaches, the method does not use a wall-stress model
or a RANS model in the inner layer to estimate the wall stress. As a result, sampling
of the LES solution at the off-wall grid points is not required. The model is derived
using the properties of a modified form of the differential filter (Germano 1986), and
it does not make any assumptions about the local state of the boundary layer or any
RANS/LES hybridization. Instantaneous wall slip velocities can be estimated using this
slip-wall model when the near-wall solution is under-resolved in the case of coarse grid
resolutions. The model is compatible with an arbitrary LES filter and can be motivated
using the RANS-type momentum equation (Yang & Bose 2017). It offers a promising
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alternative to the wall-stress models to predict high-Reynolds-number flows with complex
geometries involving separation and reattachment.

The slip-wall model relates the velocity field at the wall to the wall-normal derivative
of the velocity field via a wall-adjacent length scale called slip length. The slip length
depends on a model coefficient Cw and the near-wall grid resolution Δ. The model
recovers the no-slip condition as the near-wall grid is refined and in the limit Δ→ 0,
and smoothly admits a wall slip velocity as the near-wall grid resolution is coarsened and
the flow is no longer fully resolved. The slip-wall model is a general boundary condition
applicable to any geometrically complex surface, including two orthogonally or non-
orthogonally intersecting walls. Moreover, it is naturally suited to handle boundary layer
separation as it will smoothly revert to a no-slip condition at the separation point without
additional sensors or damping functions.

The value of the model parameter, i.e. the slip length, is found to depend on the Reynolds
number Reτ of the flow, grid resolution, SGS model and the numerical discretization
(Carton & Murman 2017; Bae et al. 2019; Pradhan & Duraisamy 2023). Bose & Moin
(2014) proposed a dynamic procedure to calculate the slip length based on the Germano
identity. However, attempts to reproduce the results for a high Reτ channel flow were
unsuccessful (Bae et al. 2019). The wall-stress invariant dynamic wall model (WSIM) of
Bae et al. (2019) provides an alternate dynamic procedure to estimate the slip length. The
model predictions for the channel flow at the high Reτ cases are found to depend on the
grid resolution and grid convergence studies were not carried out. Numerical experiments
with arbitrary constant values of slip length using NASA’s discontinuous Galerkin (DG)
solver eddy in the implicit LES set-up failed to yield stable computations when applied
to a channel flow at Reτ � 1000 with a high-order polynomial basis (p = 3 and p = 7)
(Carton & Murman 2017).

Existing dynamic versions of the slip-wall model of Bose & Moin (2014), Bae et al.
(2019) are found to be sensitive to the numerical implementation details, including the
numerical discretization and the choice of SGS model in a finite-volume framework.
Moreover, some models (Bae et al. 2019) show a significant log-layer mismatch with the
DNS. Given the limitations of the existing dynamic slip-wall models, recent works use a
Prandtl mixing length-based model to estimate slip lengths (Whitmore et al. 2024). Other
strategies to estimate optimal slip lengths include an optimization procedure to reproduce
a known wall shear stress distribution for turbulent channel flows at a range of Reynolds
numbers and grid resolutions and model the behaviour of the slip lengths using a curve fit
(Whitmore & Bose 2023). Ad hoc sensor-based modelling strategies to change the model
forms for the slip lengths that switch between the mixing-length-based and parameterized
forms in the separation regions have also been studied (Whitmore et al. 2024). Application
of the static slip-length models to separated flows in the Boeing speed bump and the
JAXA standard model configurations suggests that robust separation predictions require
the development of an accurate method for computing slip lengths.

Pradhan & Duraisamy (2023) employed an optimal finite-element projection framework
to obtain a priori estimates of the wall slip velocity for a typical WMLES using DNS
data for a channel flow (Lee & Moser 2015) and proposed improvements to the slip-wall
model of Bose & Moin (2014). The optimal projection framework is used to modify the
slip length, and it is represented as a function of the Reynolds number based on local slip-
velocity magnitude and near-wall local grid resolution Reslip. A new model parameter λ
is introduced to represent the effect of the numerical method or the order of projection p
in the DG set-up and SGS model. Using an a priori estimate for λ, the Reslip model for
the modified slip length is shown to give good predictions for a range of high Reτ channel
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flow cases with the constant coefficient Smagorinsky SGS model using a DG solver with
orders of projection up to p = 3.

The present study begins with the modified form of the slip-wall model proposed
by Pradhan & Duraisamy (2023), which uses the Reslip model for the modified model
coefficient. The main objective is to establish a dynamic modelling procedure for the
model parameters. We use the dynamic Smagorinsky model (DSM) as the SGS model
(Germano et al. 1991). The choice of the SGS model is found to be critical to obtain the
correct slope of the velocity profile in the log layer (Bae et al. 2019). On the other hand,
values of the slip length are found to be responsible for a shift in the mean velocity profile
relative to the DNS data, and they do not affect the shape of the mean velocity profile.

The paper is organized as follows. Section 2 presents the DG discretization framework
used in the present work. Section 3 provides an overview of the original slip-wall model
formulation by Bose & Moin (2014) along with the modification introduced by Pradhan
& Duraisamy (2023). The dynamic modelling procedures of Bose & Moin (2014) and
Bae et al. (2019) to calculate the slip length are discussed briefly in § 4. The proposed
dynamic modelling strategy to estimate the model parameter λ using a modified form of
the Germano identity and the Reslip model is presented in § 5. The key assumptions to
arrive at the final form of the dynamic model are also discussed. The proposed dynamic
slip-wall model is tested on a range of channel and periodic hill flows in § 6 and results are
compared with the available DNS and experimental data along with an EQWM. Finally,
conclusions are drawn in § 7.

2. Discontinuous Galerkin discretization
The governing equations in this work are the compressible Navier–Stokes equations in
their conservative form written as

∂U
∂t

+ ∇ · F(U)− ∇ · G(U,∇U)= 0, (2.1)

where U ∈Rs is the conservative state vector of rank s, consisting of density, momentum
and total energy components, F is the inviscid flux and G is the viscous flux. We note
that boldface denotes a state vector. We use the DG method for the spatial discretization.
The DG method combines the concepts of finite-element and finite-volume methods and
allows for high-order approximations, geometric flexibility and natural parallelization.
The computational domain Ω is divided into non-overlapping elements K , each having
a subdomainΩK and boundary ∂ΩK . These elements can have arbitrary shapes and sizes,
allowing for efficient representation of complex geometries. A polynomial approximation
is typically used to represent the solution using a L2 projection within each element. The
degree of the polynomial p can vary, and higher-degree polynomials enable higher-order
accuracy. The DG space Vh is defined as

Vh �
{
φ ∈ L2(Ω) : φh ≡ φ|ΩK ∈ P p, ∀ΩK ∈Ω} , (2.2)

where the space of polynomials up to degree p is denoted as P p and φh is the basis
function defined on ΩK . Defining Vh in this manner allows for discontinuities in the
solution across element boundaries. The elementwise solution Uh that approximates U
in Ωk takes the form

U(x, t)≈ Uh(x, t)=
n p∑
j=1

Wk, j (t)φk, j (x), x ∈Ωk, (2.3)
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where Uk, j represents the coefficients associated with the j th basis function φk, j and n p
represents the total number of degrees of freedom within the element k of order p.

The DG method employs a weak formulation of the governing equations that is obtained
by multiplying (2.1) by test functions, which are the same as the basis functions, integrating
by parts and coupling the elements via numerical fluxes:∫

ΩK

φT
h
∂Uh

∂t
dΩ −

∫
ΩK

∇φT
h · [F (Uh)− G (Uh,∇Uh)] dΩ

+
∫
∂ΩK

φT
h

[
F̂
(
U+

h ,U−
h

)− Ĝ
(
U+

h ,U−
h ,∇U+

h ,∇U−
h

)] · n dS

−
∫
∂ΩK

(
U+

h − {Uh})T G
(
U+

h ,∇φ+
h

) · n dS = 0 for all φh ∈Vh . (2.4)

Here ∂ΩK represents the element boundary and, on that boundary, (·)+ and (·)− represent
quantities taken from the current and neighbouring element, respectively. Approximate
numerical fluxes are denoted by (̂·), {·} represents a face average or boundary value and
n is the outward pointing normal vector. The boundary conditions are set through the
numerical fluxes.

Substituting (2.3) into (2.4), we get the final update equation that can be written as

M
dW
dt

= −RHS, (2.5)

where M is the spatial mass matrix and RHS consists of the volume and surface integrals.
Then, the spatial residual vector can be defined as

R ≡ dW
dt

= −M−1RHS. (2.6)

We solve for the expansion coefficients W that then provide an approximation of the
solution to the governing equations over the entire computational domain. The solver used
in the present study is discussed in § 6 and Appendix A.

3. Slip-wall modelling
The slip-wall model is essentially a wall boundary condition. The main idea is that the slip
velocity is a natural consequence of the near-wall under-resolution of the LES mesh. This
has also been shown by Pradhan & Duraisamy (2023) using the optimal finite-element
projection framework wherein the L2 projection of channel flow DNS data onto grids
suitable for a WMLES results in slip velocities at the wall. Also, the magnitude of the
slip velocity is shown to increase with an increase in near-wall grid under-resolution.
This shows that the near equivalence in the boundary conditions for the unfiltered and
filtered variables does not hold in the case of a coarse LES when wall modelling becomes
necessary. A slip-wall model is an alternative to the traditional wall-stress modelling
approach wherein the wall stress is not estimated directly but is indirectly affected through
the non-vanishing filtered velocities at the wall. It provides estimates of the slip velocities
at the wall when the LES grid resolution is insufficient to accurately resolve the near-wall
region and the no-slip condition is not satisfied.

Bose & Moin (2014) use the properties of a modified differential filter to derive a slip-
velocity boundary condition given as

ui = CwΔw
∂ui

∂n
, (3.1)
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where n is the wall-normal direction, Cw is a tunable model coefficient, whereas Δw is
related to the near-wall grid resolution. In (3.1) the slip velocity only depends on the wall-
normal derivative of the velocity field and is a direct consequence of the constraint placed
on the differential filter that the slip length vanishes at the boundaries. The magnitude of
the slip length, i.e. CwΔw, imposes a filter length scale at the wall; if it vanishes at the
wall then the filtered velocity field will exactly satisfy a no-slip boundary condition. The
slip-wall boundary condition smoothly admits a wall slip velocity as the near-wall LES
resolution is coarsened and the flow is no longer fully resolved. It is pertinent to note that
while (3.1) is derived from a specific choice of the form of the filter kernel, previous studies
(Carton & Murman 2017; Pradhan & Duraisamy 2023) show that the slip-wall model can
still perform well even without using the specified filter explicitly.

Pradhan & Duraisamy (2023) characterize the wall slip velocity in a WMLES in terms
of a Reynolds number based on slip-velocity magnitude and near-wall under-resolution
using the optimal finite-element projection framework and propose a modified form of the
slip-wall model given by

ui = Cw,λ

λ
Δw

∂ui

∂n
, where Cw = Cw,λ

λ
. (3.2)

The model coefficient Cw,λ is a function of the slip-velocity-based Reynolds number
Reslip and λ, where Reslip = us(Δ

e
w/p)/ν. Here, us is the magnitude of the wall slip

velocity and ν is the kinematic viscosity of the fluid. Note that p denotes the order of the
polynomial basis used in the DG solver with Δe

w being the element size adjacent to the
wall, and their ratio represents the effective grid size. The model parameter λ contains the
effect of the order of projection p and, hence, the numerical method along with the SGS
model. Using the above form of Cw,λ, it is found that given an SGS model Cw,λ/λ admits
a universal scaling relationship for a particular value of λ for a wide range of the parameter
space. As a result, the model incorporates the effect of Reynolds number, near-wall grid
under-resolution, SGS model and numerical discretization.

4. Previous dynamic slip-wall models
Bose & Moin (2014) presented a dynamic procedure to compute the slip length (CwΔw)

in the slip-wall model given by (3.1). It uses a modified form of the Germano identity,
which represents the invariance of the total Reynolds stress at the test-filtered level. The
model coefficient (CwΔw) is computed as(

CwΔw
)2
Δ2

R
∂ ûi

∂n

∂ û j

∂n
+ Ti j − τ̂i j = ûi u j − ûi û j , (4.1)

whereΔR = (Δ̂w/Δw) is the ratio of the test filter width to the grid filter width at the wall,
and a value of ΔR = 1.4 is recommended. Here, (·) represents a grid-filtered quantity, a
hat, i.e. (̂·), denotes the test filtering operation, Ti j and τi j depict the SGS stress tensors at
the test and grid filter levels, respectively. The slip length is assumed to be equal for the
three spatial directions. Equation (4.1) is solved for (CwΔw) using a least squares method.
The model was tested on a series of high-Reynolds-number channel flows and NACA 4412
airfoil at near-stall conditions.

Bae et al. (2019) proposed an alternate dynamic modelling strategy for the slip length
(CwΔw) as an improvement over the Bose & Moin (2014) dynamic model. The dynamic
model is based on a combination of the invariance of the wall-stress condition under test
filtering and a modified form of the Germano identity and is referred to as the wall-stress
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invariant model (WSIM). The proposed dynamic modelling approach, however, is not
unique, and different modelling choices are possible. The dynamic model is given by(

CwΔw
)2 = Li j Mi j + Fi j Mi j

Mkl Mkl
, (4.2)

where

Li j = ui u j − ûi û j , (4.3)

Mi j =
[
∂ui

∂n

∂u j

∂n
−Δ2

R
∂ ûi

∂n

∂ û j

∂n

]
, (4.4)

and Fi j contains different wall stresses, namely Reynolds stress, subgrid stress, viscous
stress and pressure tensors computed from the specified velocity field. The model was
tested on a statistically stationary plane turbulent channel, a non-equilibrium three-
dimensional transient channel and a zero-pressure-gradient flat-plate turbulent boundary
layer.

5. A new dynamic slip-wall model
We propose a dynamic procedure to compute the model coefficient λ in the modified
slip-wall model given by (3.2) rather than the slip length in (3.1) following insights from
Pradhan & Duraisamy (2023). We start with the Germano identity (Germano et al. 1991),
which can be written as

Ti j − τ̂i j = ûi u j − ûi û j , (5.1)

where the SGS stresses at the grid and test-filtered levels are given by

τi j = ui u j − ui u j and Ti j = ûi u j − ûi û j . (5.2)

Equation (5.1) represents an exact identity and does not involve any assumptions.
Subtracting (ûi u j − ui u j ) from both sides of (5.1), we get

Ti j − τ̂i j − (ûi u j − ui u j )= ui u j − ûi û j . (5.3)

We assume that the slip velocity at the test-filtered level takes a form similar to that for
the grid-filtered level, and it is given by

ûi = ĈwΔ̂w
∂ ûi

∂n
, (5.4)

where the model coefficient Ĉw = Ĉw,λ/λ has a form similar to that of the coefficient at
the grid-filtered level Cw = Cw,λ/λ. Next, we assume that λ is constant between the grid
and test-filtered levels. This assumption is based on the findings of Pradhan & Duraisamy
(2023) using the optimal finite-element projection framework. The universality of the
model coefficient λ depends on the choice of the length scale Δw used in the slip-wall
model. If the cube root of the cell volume is used as the length scale, λ is found to remain
fairly constant across different resolutions and Reynolds numbers for a given SGS model.
Next, we assume the slip length to be equal in the streamwise and spanwise directions,
while zero in the wall-normal direction, i.e. no transpiration based on the findings of
Pradhan & Duraisamy (2023). In general, it can be different in the streamwise, spanwise
and wall-normal directions as observed in the a priori studies on the slip-wall model
using the optimal finite-element projection framework by Pradhan & Duraisamy (2023).
However, numerical experimentation using arbitrary constant values of the slip lengths in
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the streamwise and spanwise directions for turbulent channel flows did not significantly
affect the model predictions. Similar observations are made in the numerical experiments
of Bae et al. (2019). Notably, in the previous works on dynamic slip-wall models (Bose
& Moin 2014; Bae et al. 2019), slip length is assumed to be the same in the three spatial
directions.

The model coefficient Ĉw,λ is assumed to be a function of Reynolds number based on
slip-velocity magnitude and the near-wall grid resolution at the test-filtered level along
with λ. Substituting for the slip velocities at the grid-filtered level and test-filtered level
using (3.1) and (5.4) on the right-hand-side of (5.3), we get(

CwΔw
)2 ∂ui

∂n

∂u j

∂n
−
(

ĈwΔ̂w

)2 ∂ ûi

∂n

∂ û j

∂n
= ui u j − ûi û j . (5.5)

Now, Δw and Δ̂w depend on the grid resolution, p, and the filter used. On the other
hand, the model coefficients Cw and Ĉw depend on Reslip, p at the grid- and test-
filtered levels, respectively, and the model coefficient λ. In principle, we can use the above
equation to find λ for a given model for Cw and, hence, Ĉw. However, this would result in a
significantly complex nonlinear equation in λ. We choose an alternate approach to simplify
the process with an aim to keep a balanced mixture of physical content and mathematical
simplicity and rewrite (5.5) as

(
CwΔw

)2 [∂ui

∂n

∂u j

∂n
− C2

wRΔ
2
R
∂ ûi

∂n

∂ û j

∂n

]
= ui u j − ûi û j , (5.6)

where CwR = Ĉw/Cw. In this work, we use the value forΔw as per Pradhan & Duraisamy
(2023) and ΔR is given by

ΔR = Δ̂w

Δw
= p

p�
, (5.7)

where p� is the sharp modal cutoff filter order, as discussed in Appendix A. On the other
hand, Pradhan & Duraisamy (2023) show that the model coefficient Cw,λ is a function of
grid resolution, and its value increases when the grid resolution is changed from Δ+ to
2Δ+. In other words, given that the test filter width is coarser than the grid filter width, Ĉw

can be expected to be greater than Cw, thereby resulting in the ratio CwR to be greater than
one. We use a value of CwR = 2 in this work. Sensitivity studies using different plausible
values of CwR are shown in Appendix C.

Let

Mi j =
[
∂ui

∂n

∂u j

∂n
− C2

wRΔ
2
R
∂ ûi

∂n

∂ û j

∂n

]
and Li j = ui u j − ûi û j (5.8)

for notational convenience. Equation (5.6) can then be equivalently written as(
Cw,λ

λ
Δw

)2

Mi j = Li j . (5.9)

Equation (5.9) represents six independent equations in space for a single unknown λ given
the model for Cw,λ. Thus, the system is overdetermined and we use the method of least
squares to obtain λ, which is then given by
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Cw,λ

λ
Δw

)2

= max

( 〈Li j Mi j 〉
〈Mkl Mkl〉 , 0

)
, (5.10)

where 〈〉 indicates that the numerator and denominator are first averaged over an element
followed by an averaging over the directions of homogeneity, i.e. streamwise and spanwise
in the case of channel flows and spanwise in the case of periodic flows, and the ratio is
clipped to have a maximum value of zero. We can rewrite the above equation as

Cw,λ

λ
Δw − ls = 0, (5.11)

where

ls =
√

max

( 〈Li j Mi j 〉
〈Mkl Mkl〉 , 0

)
. (5.12)

Pradhan & Duraisamy (2023) provide a model fit for Cw,λ based on L2 projected
channel flow DNS data, which is given by

Cw,λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.725 log10 (Reslip/λ)− 0.925 if log10(Reslip/λ) > 4.25,
0.6 log10 (Reslip/λ)− 0.41 if log10(Reslip/λ) > 3.18,
0.475 log10 (Reslip/λ)− 0.003 if log10(Reslip/λ) > 0.7,
0.33 otherwise.

(5.13)

Substituting for Cw,λ in (5.11), we get a nonlinear equation with λ as the only unknown,
which can be found dynamically using a numerical method. The Secant method is used
to find λ using (5.11) and (5.13). The parameter λ, thus obtained, can reach unrealistically
high values, especially at high Reynolds numbers on coarse near-wall LES meshes. We
prescribe an upper limit to λ as

λ f = max(λ, 3λCC SM ), where λCC SM = 1.125. (5.14)

Here, λCC SM is the value of λ for the constant coefficient Smagorinsky model obtained
in the a priori analysis of channel flow DNS data and traditional wall model predictions
using the optimal finite-element projection framework in Pradhan & Duraisamy (2023).
The limiter value is based on numerical experimentation across the range of Reynolds
numbers and flow configurations considered in this work. Finally, we use λ f in (3.2).

The dynamic model in (5.11) is essentially identical to the dynamic slip-wall model
of Bose & Moin (2014). The model given by (5.11) can be transformed to (4.1) using
the Germano identity. However, the model form in (4.1) is found to be sensitive to the
implementation details including the numerical discretization and the choice of the SGS
model in a finite-volume framework in previous studies (Park & Moin 2016b; Bae et al.
2019). Our attempts to use this model form in the DG framework with p � 2 resulted
in unstable simulations with the constant coefficient and the dynamic Smagorinsky SGS
models.

We remark that the dynamic modelling procedure to obtain λ as discussed above is not
unique. The model coefficient can be obtained using a number of modelling choices, e.g.
modified form of the Germano identity used in Bae et al. (2019). Equation (5.10) has a
form similar to that of the dynamic model of Bae et al. (2019), but it does not contain the
additional wall-stress terms in the numerator, which originates from the invariance of the
wall-stress condition under test filtering. Those additional wall-stress terms are expected
to predict the same wall stress regardless of the grid resolution (or filter) and act as an
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effective self-regulating mechanism to control the changes in slip length to predict the
correct wall stress. In our case, a similar effect is obtained by enforcing the Pradhan &
Duraisamy (2023) model for Cw,λ, which is a function of the slip-wall velocity and near-
wall grid resolution via the slip-based Reynolds number. The parameter Cw,λ and, hence,
the slip length appropriately changes when the near-wall grid is refined or coarsened and/or
when the Reynolds number is increased or decreased, resulting in an appropriate change
in the wall stress. Note that the wall stress can be related to the slip length (CwΔw) and
slip velocity Uslip using the slip-wall model as τw = (ν + νSGS)(Uslip/(CwΔw)), where
νSGS is the SGS or eddy viscosity.

5.1. Implementation of the wall boundary condition
We assume that there is no transpiration and slip is only allowed in the wall-parallel
directions. It is useful to note that, the slip-wall model allows for transpiration as
considered in the previous studies of Bose & Moin (2014), Carton & Murman (2017)
and Bae et al. (2019). However, using the optimal finite-element projection framework,
Pradhan & Duraisamy (2023) show that the slip length associated with the wall-normal
velocity is approximately zero. Hence, it can be set to zero without significant loss
of generalizability. In the current implementation of the dynamic slip-wall model, we
compute the wall-normal derivatives of the slip-velocity components at the wall using
(3.2). The wall-parallel slip-velocity components at the wall are computed using the
solution inside the element adjacent to the wall. This is then used to compute the wall
stress and it is applied as a Neumann boundary condition complemented by a slip boundary
condition for the velocity. The numerical implementation is done using the following steps.

(i) At every integration point, a ghost value is created, where the wall-parallel slip-velocity
components at the wall are obtained from the element interior state U+

h as

ub
h,i = u+

h,i − u+
h, j n j ni . (5.15)

Wall-normal velocity gradients are also calculated using the interior solutions.
(ii) Slip-wall parameters Cw,λ and λ are computed using the dynamic slip-wall model.

(iii) The wall-normal derivatives of the slip-velocity components at the wall are then
computed using the slip-wall model given by (3.2) as

∂uh,i

∂n

∣∣∣∣
w

= ub
h,i

Δ(Cw,λ/λ)
. (5.16)

(iv) Finally, wall-stress components at the quadrature points of the boundary faces are
computed using

τ ′
w = (ν + νSGS)

∂uh,i

∂n

∣∣∣∣
w

, (5.17)

where we consider the contribution of the mean wall stress from the viscous and
subgrid stresses for the wall stress.

(v) The projected wall stress τw,i = τ ′
wni is applied as a Neumann boundary condition.

6. Numerical experiments
In this work we use CaslabDG, an in-house DG solver for the computations. The governing
equations are the filtered compressible Navier–Stokes equations in conservative form. The
solver was successfully used previously to compute statistically stationary channel flows at
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high Reτ (Pradhan & Duraisamy 2023) using a constant coefficient Smagorinsky model
with up to 3 orders of the polynomial basis p. The solver is parallelized using the message
passing interface (MPI). Inviscid fluxes are approximated using the Roe approximate
Riemann solver (Roe 1981). An SGS model is used for the unresolved SGS stresses in the
filtered Navier–Stokes equations. The SGS viscosity is added to the molecular viscosity
and the viscous flux contains both molecular and turbulence contributions. The second
form of Bassi and Rebay (Bassi & Rebay 2000), popularly known as the BR-2 scheme, is
used for the viscous fluxes. The governing equations are marched in time using an explicit
third-order Runge–Kutta total variation diminishing (RK3-TVD) scheme.

The solver uses the Lagrange nodal basis evaluated at the Gauss–Legendre quadrature
points and the number of quadrature points ngp in each of the three directions is related to
the polynomial degree of approximation by ngp = (p + 2). The integrals are approximated
using the Gauss quadrature rule. The basis and test functions are created using a tensor
product of the one-dimensional Lagrange interpolating polynomials that forms a non-
hierarchical nodal basis. The corresponding number of degrees of freedom in each element
is (p + 1)3. We use a Lagrange polynomial basis of degree p = 2 for all the WMLES
computations. It is to be noted that we do not use an explicit filter for the spatial filtering
operation, but rely on implicit filtering through the numerical discretization and grid
resolution. Also, the polynomial basis degree of p = 2 used in this work does not warrant
for polynomial dealiasing, which can be achieved by explicitly filtering the solution at
every time step (Diosady & Murman 2013; Gassner & Beck 2013; Brazell et al. 2015).

The results obtained using the dynamic slip-wall model are compared with those
obtained using an EQWM. For the EQWM, we compute the wall friction τw from the
instantaneous velocity taken at the furthest distance from the wall inside the first element.
The computed wall friction is then used as the Neumann boundary condition applied at
the quadrature points of the boundary faces. Our implementation is similar to the work of
Carton & Murman (2017). We use the Reichardt function of the form

u+ = 1
κ

ln(1 + κz+)+ 6.646
[

1 − exp

(−z+

11

)
− z+

11
exp

(−z+

3

)]
, (6.1)

where κ = 0.38, as the EQWM, and use the Newton–Raphson method to iterate on the
values of u+ and y+. This wall function supports the theoretical velocity profile down to
the wall. We have chosen this approach for its simplicity and efficiency, and it is shown
to give excellent results for statistically steady channel flows at high Reynolds numbers in
Carton & Murman (2017). Note that, for the simulations of separated flows in periodic hill
configuration, we do not use any adjustments to the implementation of the EQWM like
turning off the model in the separation region.

6.1. Sharp modal cutoff filter as a test filter
The dynamic modelling procedure requires filtering at two different levels, i.e. grid filter
and test filter, to calculate the value of the model coefficient λ. In a DG framework this
is equivalent to using two different orders of polynomial basis for approximating the
solution. The Lagrange interpolation polynomials, which are used as the basis functions
within our work, are not hierarchical, i.e. every basis function contains high-order solution
content. As a result, unlike a spectral method, we cannot directly use a sharp cutoff
filter to remove the higher-order modes. To reduce the order of projection that would
result in a coarser filtering operation, the solution coefficients need to be transformed
to a modal representation, the hierarchical form of which allows for a classification of
solution modes based on polynomial degree. The solution can then be coarsely filtered
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by setting the higher-order modes to zero or by scaling the higher-order coefficients by
a factor α ∈ [0, 1]. In this work, we use a cutoff filter order p� = 1 and set the modes
of degree greater than one to zero for the test filter. This is equivalent to assuming a
test filter to be about twice the width of the grid filter, which is generally followed in
finite difference or finite-volume methods (Pope 2000). Once the filtered forms of modal
solution coefficients are obtained, an inverse transformation is performed to get the filtered
nodal solution coefficients, thereby obtaining the coarse-filtered solution. In this work, we
follow the procedure outlined by Brazell et al. (2015) to implement the sharp modal cutoff
filter in our solver, and it is discussed in detail in Appendix A.

6.2. Dynamic Smagorinsky model
The DSM is a simple eddy viscosity model that relates the unresolved SGS stresses to the
resolved strain rate Si j via a turbulent viscosity νSGS as

τ SGS
i j = 2ρνSGS Si j , where Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (6.2)

The SGS eddy viscosity is related to a characteristic velocity and a length scale on
dimensional grounds, and it is given by

νSGS = (CSΔ)
2|S|, (6.3)

where CS is the Smagorinsky coefficient, |S| =
√

2Si j Si j is the strain-rate magnitude and
Δ is the filter width or a representative grid size. The DSM improves upon the original
Smagorinsky model by dynamically adjusting the model coefficient (CSΔ) based on local
flow properties. The idea is to seek a more accurate representation of the turbulence,
especially in regions with varying flow conditions. The DSM also provides a near-wall
correction that can lead to proper near-wall behaviour of the SGS viscosity without the
use of wall-damping functions. The dynamic calculation of the coefficient is based on an
explicitly performed second-level filter operation called the test filter that is applied to the
grid-filtered variables. As mentioned before, we denote the test filter operation by a hat
and we use the sharp modal cutoff filter as the test filter, as discussed in (6.1). The model
coefficient (CSΔ) is calculated as

(CsΔ)
2 = 1

2

Ld
i j Mi j

Mkl Mkl
, (6.4)

where the Leonard stress tensor Li j and its deviatoric part Ld
i j are given by

Li j = ûi u j − ûi û j , Ld
i j = Li j − 1

3
Lkkδi j (6.5)

and

Mi j = ̂|S|Si j −Δ2
R |̂S |̂Si j . (6.6)

The derivative and the test filter operations do not commute for the sharp modal cutoff
filter. We follow Brazell et al. (2015) to determine the second term of Mi j by computing
the test-filtered velocity followed by the derivatives of the test-filtered velocity to form
the strain-rate tensor. Another possible choice is to use the test filter operation on the
grid-filtered strain rate, but this approach does not have any advantages over the method
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used here as shown by Brazell et al. (2015). The parameter ΔR is calculated as per the
recommendation of Brazell et al. (2015) and it is given by

ΔR = Δ̂w

Δw
= p + 1

p� + 1
. (6.7)

The numerator in (6.4) can assume local negative values and this is physically consistent
as it corresponds to energy backscatter, i.e. energy from the SGS scales is transferred back
to the resolved scales. However, negative SGS viscosity values can numerically destabilize
the simulation, especially when the sum (ν + νSGS) becomes negative. Thus, it is
customary to perform some type of averaging of the numerator and denominator, generally
in the directions of homogeneity. In this work, we perform two-step averaging. First, the
numerator and denominator are averaged over an element to get their representative single
values in each element. After this, the numerator and denominator are averaged over the
homogeneous directions to get the final averaged numerator and denominator as 〈Ld

i j Mi j 〉
and 〈Mkl Mkl〉, respectively. Finally, the ratio [0.5(〈Ld

i j Mi j 〉/〈Mkl Mkl〉)] is clipped to get
non-negative values.

6.3. Application to statistically stationary channel flows
The new dynamic slip-wall model is applied to a series of statistically stationary turbulent
channel flows that are homogeneous in directions parallel to the wall. The fully developed
turbulent flow between the two parallel walls is separated by a distance 2δ in the
z direction, where δ is the half-channel height. The flow is assumed to be periodic in
the streamwise (x) and spanwise (y) directions. The simplicity of geometry and boundary
conditions makes this canonical flow configuration an appealing test case, and it has been
used to validate the performance of previous dynamic slip-wall models (Bose & Moin
2014; Bae et al. 2019).

The friction Reynolds number is set as Reτ = ρuτ δ/μ, with uτ = √
τw/ρ, uτ being

the friction velocity based on the wall shear stress τw taken from the available DNS.
The friction Reynolds number is imposed through a constant forcing in the x-momentum
equation using the pressure gradient 〈dp/dx〉 = −τw/δ. A number of WMLES studies use
the constant pressure gradient as the forcing strategy in finite-volume (Yang & Bose 2017;
Bae et al. 2019) and DG frameworks (Carton & Murman 2017; Frère et al. 2017; Lv et al.
2021). For a DNS, Quadrio, Frohnapfel & Hasegawa (2016) show that the specific choice
of the forcing term, i.e. constant mass flow or constant pressure gradient, does not produce
important statistical consequences and one-point statistics do not show any appreciable
difference between the simulations.

The size of the computational domain is 2πδ in the x direction and πδ in the y direction.
The degree of polynomial p used for all the simulations presented here is 2 and the sharp
modal cutoff order p� is 1. For all the cases considered, the flow is initially evolved for
at least time 20δ/uτ units and statistics are sampled for an additional 10δ/uτ time units.
One-point statistics including the mean velocity and Reynolds shear and normal stresses
are compared with the DNS of Lee & Moser (2015) and Hoyas, Oberlack & Laux (2022).

The performance of the proposed dynamic slip-wall model is validated using the cases
listed in table 1, which shows the simulated Reynolds numbers and the grid resolutions
in inner and outer layer units. The meshes are uniform in the streamwise, spanwise and
wall-normal directions. The first element size in the wall-normal direction for all the
considered cases is significantly coarser than a conventional LES mesh and the resolution
is insufficient to resolve near-wall turbulent structures. As a result, none of the simulated
Reynolds numbers with the grids given in table 1 are wall resolved.
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Case Reτ Nx × Ny × Nz Δ+
x Δx/δ Δ+

y Δy/δ Δ+
z Δz/δ

DSW-2000-G1 1994.756 8 × 8 × 8 720.68 0.393 360.34 0.196 229.4 0.125
DSW-2000-G2 1994.756 16 × 16 × 16 360.34 0.196 180.17 0.098 114.7 0.0625
DSW-2000-G3 1994.756 32 × 32 × 32 180.17 0.098 90.1 0.049 57.35 0.03125
DSW-5200-G1 5185.897 8 × 8 × 8 1627.35 0.393 813.67 0.196 518 0.125
DSW-5200-G2 5185.897 16 × 16 × 16 813.67 0.196 406.84 0.098 259 0.0625
DSW-5200-G3 5185.897 32 × 32 × 32 406.84 0.098 203.42 0.049 129.5 0.03125
DSW-10000-G1 10049 8 × 8 × 8 3935 0.393 1967.52 0.196 1252.56 0.125
DSW-10000-G2 10049 16 × 16 × 16 1967.52 0.196 983.76 0.098 626.28 0.0625
DSW-10000-G3 10049 32 × 32 × 32 983.76 0.098 491.88 0.049 313.14 0.03125

Table 1. Summary of mesh parameters for the different simulated Reynolds numbers. Here, Δx , Δy and Δz
are the effective grid sizes in the streamwise (x), spanwise (y) and wall-normal (z) directions, respectively, δ
is the half-channel height and Δ+

x , Δ+
y and Δ+

z are normalized with wall units. Here Nx , Ny and Nz represent
the number of elements in the streamwise, spanwise and wall-normal directions, respectively. The number of
degrees of freedom in each direction is given by (p + 1)Nx , (p + 1)Ny and (p + 1)Nz , where p is the degree
of the polynomial basis. Note that the numerical experiments are labelled following the convention: [dynamic
slip-wall model (DSW)]-[Reτ ]-[grid resolution].
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Figure 1. Grid refinement study for the proposed dynamic wall model showing comparisons between model
predictions and DNS for the streamwise mean velocity at Reτ ≈ 10 000. (a) Classical visualization and
(b) visualization focused on the bulk profile and the top interface of the first element.

A grid sensitivity study for channel flow at Reτ ≈ 10 000 is shown in figure 1. Starting
with a coarse mesh with 8 × 8 × 8 elements, the number of elements in each of the three
directions is doubled at each level of refinement. This corresponds to three different coarse
near-wall resolutions of Δz = 0.125δ, 0.0625δ, and 0.03125δ, i.e. Δ+

zw ≈ 1253, 626 and
313. The details of the mesh parameters are given in table 1. For all the cases, the first off-
wall grid point lies in the log layer. The results are plotted starting from the second off-wall
element at (p + 1) quadrature points in each element. It can be seen that the mean velocity
for the coarsest mesh G1 has a slight positive log layer mismatch that reduces upon grid
refinement. The difference between the model predictions at each of the successive grid
refinement levels is less than 1 %. A grid refinement study for the other two Reynolds
number cases shows a similar trend.

A comparison between the dynamic slip-wall model and the EQWM predictions with
the DNS is shown in figure 2. The model predictions are obtained on grid G2 with
16 × 16 × 16 elements. The slope of the mean velocity profiles obtained using the two
models is similar, however, there is a slight shift between them. Both the mean velocity

1017 A35-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
17

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10171


P. Raje and K. Duraisamy

0
10–1 100 101 102 103 104

10

20

30

(a) (b)

(c) (d )

30

28

26

24

22

20

18
102

0 5000 10 0000
0

0.5

1.0

5000

z+ z+

z+

U+

–
〈u

w
〉+

–
〈u

w
〉+

U+

z+

10 000
0

1

2

3

103 104

Equilibrium wall-stress model

Dynamic slip-wall model

DNS

Equilibrium wall-stress model

Dynamic slip-wall model

DNS

〈u ′2+〉1/2

〈v ′2+〉1/2

〈w ′2+〉1/2

Figure 2. Comparison between the proposed dynamic slip-wall model and EQWM predictions using grid G2
with the DNS for the (a) full mean velocity profile, (b) mean velocity in the log region, (c) Reynolds shear
stress, (d) root-mean-square (r.m.s.) velocity fluctuations at Reτ ≈ 10 000.

profile predictions match well with the DNS. The two model predictions for the Reynolds
shear stress profiles also match the DNS well. The streamwise Reynolds stress predicted
by the two models is also similar but there is a slight mismatch with the DNS. On the
other hand, the spanwise and wall-normal Reynolds stress profiles obtained using the two
models closely agree with the DNS.

One-point statistics on grid G2 at Reτ ≈ 2000, 5200 and 10 000 are presented in
figure 3 and compared with the available DNS. The first and second moments agree
well with the DNS at the three Reynolds numbers. The model parameter Cw and mean
streamwise slip velocity Uslip at the three Reynolds numbers and grid resolutions are
plotted in figure 4. It is important to note that the slip-wall model is sensitive to the
numerical implementation details, including the numerical discretization and the choice
of the SGS model. Consequently, different optimal slip lengths are required for the correct
prediction of the wall stress depending on the numerical set-up. As a result, the quantitative
assessment of model parameters like Cw or λwith DNS is difficult. However, Cw variation
with the near-wall grid resolutionΔ+

w follows an expected trend that is qualitatively similar
to that observed by Whitmore & Bose (2023) for the optimal slip length estimates, i.e.
larger slip lengths on coarser near-wall grid resolutions and decay of the slip length in the
limit Δ+

w → 0. Moreover, the slip-wall velocity trend is also consistent with the a priori
filtering tests of Pradhan & Duraisamy (2023) using the optimal finite-element projection
framework, i.e. an increase in the slip velocity with an increase in the Reynolds number
on identical grids, and an increase in slip velocity at the same Reynolds number upon
coarsening the grid.

1017 A35-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
17

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10171


Journal of Fluid Mechanics

10–1 100 101 101

16

20

24

28DNS : Re
τ
 = 2000

DNS : Re
τ
 = 5200

DNS : Re
τ
 = 10 000

DSW-2000-G2
DSW-5200-G2

DSW-10 000-G2

DNS : Re
τ
 = 2000

DNS : Re
τ
 = 5200

DNS : Re
τ
 = 10 000

DSW-2000-G2

DSW-5200-G2

DSW-10 000-G2

102

0
0

0.5

1.0

5000 10 000

0
0

1

2

3

0

1

2

3

0

1

2

3

5000 10 000 0 5000 10 000 0 5000 10 000

103 104 102 103 104
0

10

20

30

z+ z+

z+

z+ z+ z+

U+ U+

–
〈u

w
〉+

〈u
′2

+
〉1

/2

〈w
′2

+
〉1

/2

〈v
′2

+
〉1

/2

(a)

(d )

(b)

(c)

Figure 3. Comparison between DNS and proposed dynamic slip-wall model predictions using grid G2 for the
(a) full mean velocity, (b) mean velocity profile in the log region, (c) Reynolds shear stress, (d) r.m.s. velocity
fluctuations at Reτ ≈ 2000, 5200 and 10 000.

The model parameter Cw and, hence, the slip length are found to increase as the near-
wall grid is coarsened at the considered Reynolds numbers (see figure 4). The slip length
modifies how momentum is transferred between the wall and the fluid. It effectively
tunes the wall stress to account for near-wall turbulence effects without fully resolving
the boundary layer. A larger slip length increases the velocity slip at the wall as seen
in figure 4, leading to a higher velocity near the boundaries. For the considered cases,
this results in the reduction of wall shear stress. For the same driving pressure gradient,
this implies that more of the pressure gradient contributes to accelerating the bulk flow
instead of being dissipated near the walls. As a result, the velocity profile is modified such
that the mass flow rate Ub = (1/2δ)

∫ δ
−δ u(z)dz and, hence, the bulk Reynolds number

Reb = Ubδ/ν are found to increase for these cases as evident from the shift in mean
velocity profiles relative to the DNS in figures 1 and 3. The maximum increase in the
mass flow rate relative to the nominal value is about 6 % on the coarsest grid G1 and the
increase reduces upon grid refinement. Figure 5 shows the change in the mass flow rate
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Figure 4. Slip parameter Cw (filled symbols) and streamwise slip velocity Uslip (unfilled symbols) as a
function of near-wall grid resolution Δ+

w at Reτ ≈ 2000 (squares), 5200 (circles) and 10 000 (deltas). Colour
code: black for grid G1, red for grid G2, blue for grid G3.
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Figure 5. Change in the mass flow rate relative to the nominal value plotted as a function of the flow through
time obtained at Reτ ≈ 2000 on grid G2.

variation relative to its nominal value with the flow through time (Lx/Ub) at Reτ ≈ 2000
on grid G2, and similar trends are observed for the other cases.

It is important to note that, the underlying assumptions for the slip condition become
invalid for significantly larger near-wall grid resolutions commensurate to larger filter
sizes. The shift in the mean velocity relative to the DNS is expected to increase as the
near-wall grid is coarsened, as seen in figure 1. Similar observations are made in the study
of Bae et al. (2019) using the constant pressure gradient forcing term. Note that the increase
in mass flow upon coarsening the grid is also observed in LES with the no-slip boundary
condition albeit on relatively finer grids than the WMLES grids.

A quantitative assessment of the dynamic slip-wall model is performed in terms of the
normalized L2 error in the streamwise mean velocity U+ predictions with respect to the
DNS for all the cases presented in table 1. The calculations exclude the first near-wall
element. The normalized L2 error is determined between the second off-wall elementΔ+

2e
and the half-channel height δ+ as
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Figure 6. Normalized L2 error, E , in streamwise mean velocity U+ as a function of grid resolution Δ at
Reτ ≈ 2000, 5200 and 10 000.
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Figure 7. Snapshots of the (a) normalized streamwise slip velocity and (b) vorticity magnitude on the bottom
wall obtained using the new dynamic slip-wall model at Reτ ≈ 10 000 using grid G2.

E =
⎡⎣∫ δ+Δ+

2e
(U+

DSW − U+
DN S)

2dz+∫ δ+
Δ+

2e
(U+

DN S)
2dz+

⎤⎦1/2

. (6.8)

Here, U+
DSW and U+

DN S represent the mean velocity obtained using the proposed dynamic
slip-wall model and DNS, respectively. The error is evaluated at (p + 1) quadrature points
within each element in the wall-normal direction z+, and the integration for each element
is performed using quadrature. The error E is plotted as a function of the representative
grid size Δ in figure 6. We consider Δ based on element volume, Δ= (ΔxΔyΔz)

1/3

with Δx , Δy and Δz taken as the effective grid sizes in the streamwise, spanwise and
wall-normal directions, respectively. The L2 error slightly increases with an increase
in Reynolds number on an identical grid. However, the maximum error is less than
3 % for all the cases considered here, demonstrating the performance of the model at
practically relevant Reynolds numbers on significantly under-resolved near-wall LES mesh
resolutions.

Instantaneous snapshots of the streamwise slip velocity normalized by the friction
velocity uτ on the bottom wall at Reτ ≈ 10 000 employing the G2 grid is shown in
figure 7(a). The mean slip velocity at the wall increases as the Reynolds number increases
and the simulation resolves a smaller fraction of the inner layer of the boundary layer.
The mean streamwise slip velocities at the wall are approximately 10.9uτ , 13.9uτ and
15.35uτ for Reτ ≈ 2000, 5200 and 10 000, respectively, on grid G2; the centreline velocity
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Figure 8. Isosurafces of the Q criterion coloured with normalized streamwise velocity u/uτ obtained using
the new dynamic slip-wall model at Reτ ≈ 10 000 using grid G2.

is approximately 28uτ . This behaviour is consistent with the a priori filtering tests of
Pradhan & Duraisamy (2023) using the optimal finite-element projection framework.
A snapshot of the vorticity magnitude levels on the bottom wall is also shown. The
visualization of the near-wall eddies is shown in figure 8 using the Q criterion.

6.4. Application to separated flows
We next apply the new dynamic slip-wall model to periodic hill flows at different Reynolds
numbers. The flow configuration consists of a channel flow with constrictions and forms
a generic case of an internal flow separating from a curved surface. Periodic boundary
conditions are applied in the streamwise (x) and spanwise (y) directions. The flow
separates at the hill crest resulting in a large recirculation bubble, and it reattaches further
downstream. A Reynolds number based on the bulk velocity at the crest Reb = ρUbh/μ
determines the flow conditions for this case with Ub being the bulk velocity and h the hill
height. The constant mass flow rate is ensured by adding a source term in the x-momentum
equation. This forcing term is dynamically adjusted to provide the correct mass flow rate
at the hill crest, and therefore, the correct bulk Reynolds number. The mass flux is constant
to five digits of accuracy for the present computations after an initial transient.

The periodic hill case has been extensively studied over the past 15 years, both
experimentally and numerically. Rapp & Manhart (2011) performed experiments in a water
channel at Reb ranging from 5600 to 37 000. Several DNS and LES (Breuer et al. 2009;
Balakumar, Park & Pierce 2014; Diosady & Murman 2014; Gloerfelt & Cinnella 2015;
Krank, Kronbichler & Wall 2018) studies have also been conducted. Many studies have
also been performed to test the performance of WMLES (Balakumar et al. 2014; Carton
& Murman 2017). The availability of high-quality data from experiments, DNS and LES
makes this a good benchmark test case to evaluate the performance of the slip-wall model
in the presence of separation and reattachment processes. Carton et al. (2018) place two-
dimensional periodic hill cases at level 4 complexity in their list of benchmark test cases,
which grow in complexity from level 1 to level 5. This test case is well documented and
well posed with consistent DNS/LES predictions between different codes that match well
with the experiments. As pointed out in Gloerfelt & Cinnella (2019), this benchmark test
case has been a choice in several European projects and workshops to investigate the
reliability of RANS/LES strategies.

The periodic hill flows involve massive separation on the hill’s leeward sides, the length
of which is about 50 % of that of the periodic segment. The principal challenge of this
flow arises from the separation on the curved hill surface and the fact that the reattachment
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Figure 9. Coarse and fine grids used to compute the periodic hill flows.

point, and hence, the whole flow, are highly sensitive to the separation process. The flow
exhibits complex dynamics, including separation, reattachment, an unsteady shear layer, a
large recirculation bubble and strong acceleration on the windward wall. Resolving these
delicate flow details, especially on significantly coarser grids is a challenging task. For
example, in a recent work, Zhou, He & Yang (2021) developed a data-driven wall model
using the feedforward neural network and training data from the WRLES of the periodic
hill flows with different Reynolds numbers and hill geometries. The model shows a good
performance for the turbulent channel flows at Reτ as high as 5200. However, significant
discrepancies in the mean velocity and Reynolds stress predictions are observed between
their data-driven wall model and the WRLES for the periodic hill case with validation
studies limited to Reb ≈ 10 600.

The size of the computational domain is Lx = 9h, L y = 4.5h and Lz = 3.035h in
the streamwise (x), spanwise (y) and wall-normal (z) directions, respectively. Piecewise
third-order polynomial functions give the coordinates of the curved hill, and the second
hill geometry is described by the same equations with a horizontal translation (Rapp
& Manhart 2011). We use two grids; a coarse grid with 50 × 24 × 9 elements, i.e.
150 × 72 × 27 (= 0.2916 million) degrees of freedom, and a fine grid with 75 × 36 × 15
elements, i.e. 225 × 108 × 45 (≈ 1.1 million) degrees of freedom. In comparison to our
grids, a DNS of Reb ≈ 10 600 performed by Krank et al. (2018) using a seventth-order
DG solver, used 128 × 64 × 64 elements, i.e. 896 × 448 × 448 (≈ 180 million) degrees
of freedom, whereas to perform an implicit LES, a mesh with 448 × 224 × 224 (≈ 22.5
million) degrees of freedom was used.

The grids are approximately uniform in the streamwise and spanwise directions and a
mild stretching is used in the wall-normal direction. The mesh is perpendicular to the wall
in the first cell away from the wall. The effective element sizes at the hill crest, a key
region for the periodic hill flow, are Δx (=Δe

x/p)≈ 0.105h and Δz(=Δe
z/p)≈ 0.093h

for the coarse grid and Δx ≈ 0.065h and Δz ≈ 0.064h for the fine grid. Figure 9 shows
the two grids used in the computations. We consider two high-Reynolds-numbers cases of
Reb ≈ 10 600 and 37 000 for which high-quality experimental data are available.

We first study the effect of mesh resolution on the dynamic slip-wall model predictions
at Reb ≈ 10 600. Wall-normal variation of the mean streamwise and wall-normal velocity
profiles obtained on the coarse and fine grids is shown in figure 10, while Reynolds
streamwise, wall-normal and shear stress profiles are shown in figure 11. The model
predictions are compared with the experimental data and the WRLES results of Breuer
et al. (2009) at four streamwise locations of x = 1h, 2h, 4h and 8h that cover the separated
as well as post-reattachment regions. The mean streamwise and wall-normal velocity
profile predictions at these locations on the two grids closely match each other and they
compare well with the experiments and WRLES. Note that the wall-normal velocity
prediction at x/h = 8 is particularly sensitive to the grid refinement. This has also been
observed in previous LES studies of Gloerfelt & Cinnella (2019). Notably, the WRLES
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Figure 10. Effect of grid refinement on the mean velocity profiles in the streamwise (U) and vertical (W)
directions at different stations for the Reb ≈ 10 600 case. Red solid lines, grid G1; blue solid lines, grid G2;
unfilled circles, Rapp & Manhart (2011) experiment; filled circles, WRLES by Breuer et al. (2009).

results for wall-normal velocity, which has a lower amplitude than the mean streamwise
velocity, show discrepancies with the experiments at x/h = 8. Interestingly, WRLES
results match well with the dynamic slip-wall predictions at this location.

The reverse flow velocities are captured well on the two grids. The Reynolds shear
stress profiles on the two grids are also similar to each other and they show a good match
with the experiment at the four locations. On the other hand, streamwise and wall-normal
Reynolds stress profile predictions on the coarse grid follow the qualitative trend well and
the predictions improve on the fine grid and get closer to the experimental data. It is to
be noted that, despite the very coarse grid resolution, the agreement between the resolved
part of the Reynolds shear and normal stresses with the measurement is reasonably good.

The periodic hill flow is then computed at a higher Reynolds number of Reb = 37 000
using the fine grid and comparisons between the new dynamic slip-wall model and the
EQWM predictions for the mean velocities and Reynolds stresses are shown in figures 12
and 13, respectively. The EQWM significantly underpredicts the separation and shows a
faster recovery and the mean streamwise and wall-normal velocity profiles in the separated
regions show a significant mismatch with the experiments. On the other hand, the dynamic
slip-wall model accurately captures the separation and shows an excellent match with the
experiments for the mean velocities at the four locations in figure 12. A discrepancy is
observed for the wall-normal velocity at x/h = 8 similar to the Reb ≈ 10 600 case, which
is consistent with the study of Gloerfelt & Cinnella (2019). The Reynolds shear stress
profiles predicted by the dynamic slip-wall model also closely agree with the experiments
whereas the EQWM model predictions show a considerable mismatch. This is also the
case for the streamwise Reynolds stress profiles. However, the dynamic slip-wall model
predictions for the wall-normal Reynolds stress show some discrepancies and overpredict
the levels found in the experiments. This is again consistent with the LES studies of
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Figure 11. Effect of grid refinement on the profiles of Reynolds stresses in the streamwise (U) and vertical (W)
directions at different stations for the Reb ≈ 10 600 case. Red solid lines, EQWM; red solid lines, grid G1; blue
solid lines, grid G2; unfilled circles, Rapp & Manhart (2011); experiment; filled circles, WRLES by Breuer
et al. (2009).

Gloerfelt & Cinnella (2019) that showed dramatic overprediction for the wall-normal
Reynolds stresses while getting a good match for the other Reynolds stress components.
Overall, the dynamic slip-wall model predictions are considerably better than the EQWM.

Figure 14 plots the variation of λ-normalized slip parameter Cw, i.e. Cw,λ, as a function
of the slip-velocity-based Reynolds number Reslip and λ for the two Reynolds numbers
of Reb ≈ 10 600 and 37 000 obtained on grids G1 and G2. The curves for Cw,λ are found
to collapse as a function of Reslip for the two grid resolutions, and the universal scaling
relationship discovered in Pradhan & Duraisamy (2023) for turbulent channel flows using
an a priori analysis is found to remain valid for these separated flows as well in the
posteriori computations. The parameter Cw,λ follows the expected trend; assumes lower
values at the lower Reynolds number and coarser near-wall grid resolutions and decays
as the near-wall grid is coarsened or the Reynolds number is decreased. The streamwise
variation of the slip parameter Cw is shown in figure 15 and it also follows the expected
trend at the two Reynolds numbers and grid resolutions. Variations in Cw along the
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Figure 12. Mean velocity profiles in the streamwise (U) and vertical (W) directions at different stations for the
Reb ≈ 37 000 case. Red solid lines, EQWM; blue solid lines, dynamic slip-wall model; unfilled circles, Rapp
& Manhart (2011) experiment.

streamwise direction are also observed for these cases. The sudden peaks at the start of
the hill and at x/h ≈ 7 for the high-Reynolds-number case of Reb ≈ 37 000 are indicative
of the unphysical effects due to the coarse grid resolution and these peaks vanish on the
fine grid G2.

The streamwise distributions of the mean streamwise slip-wall velocity at Reb ≈ 10 600
and 37 000 obtained on the fine grid G2 are shown in figure 16. The slip velocity Uslip for
the two cases changes the sign near the separation point, remains negative in the separation
bubble and reverses the sign near the reattachment location. For the Reb ≈ 10 600 case,
the locations where the slip velocity changes the sign closely match the experimental
measurements and WRLES results for the separation and reattachment points at x/h ≈ 0.2
and x/h ≈ 4.6, respectively. As indicated by the negative values of the slip velocity, the
separation region slightly reduces in size at the higher Reynolds case, which is physically
consistent.

7. Conclusion
Several strategies have been proposed to bypass the stringent near-wall grid resolution
requirement for performing LES of high-Reynolds-number flows in the presence of solid
walls. In this work, we focus on the slip-wall modelling approach – originally proposed by
Bose & Moin (2014) – and replace the conventional no-slip velocity boundary condition
with slip velocities at the wall. The major objective is to accurately capture the mean
flow characteristics at Reynolds numbers of practical relevance using a significantly coarse
near-wall LES mesh, and do so in a robust manner.

We present a new formulation of a dynamic slip-wall model that is consistent with the
DG framework and is tightly integrated with DG operators. The model coefficients of the
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Figure 13. Profiles of Reynolds stresses in the streamwise (U) and vertical (W) directions at different stations
for the Reb ≈ 37 000 case. Red solid lines, EQWM; blue solid lines, dynamic slip-wall model; unfilled circles,
Rapp & Manhart (2011) experiment.

modified slip-wall model of Pradhan & Duraisamy (2023) are based on a priori estimates
obtained using an optimal finite-element projection framework. Here, we propose a
dynamic modelling procedure to compute the scaling parameter λ for the slip-wall model
coefficient Cw. The dynamic part of the model is based on a modified form of the Germano
identity and coupled with the DSM. The level of under-resolution is represented by a slip
Reynolds number and the proposed model attempts to also incorporate the effects of the
numerical discretization and the SGS model.

The canonical case of a statistically stationary turbulent channel flow is first used to
validate the new dynamic slip-wall model. The model predictions are compared with
the available DNS data at three Reynolds numbers of Reτ ≈ 2000, 5200 and 10 000.
Grid independence studies are performed at these Reynolds numbers by considering
significantly under-resolved LES meshes with streamwise, spanwise and wall-normal grid
resolutions corresponding toΔx � 0.1 − 0.4δ,Δy � 0.05 − 0.2δ andΔz � 0.03 − 0.125δ,
respectively. These mesh resolutions are significantly coarser than the WMLES mesh
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Figure 14. Plot of λ-normalized slip parameter Cw , i.e. Cw,λ, as a function of Reslip and λ at Reb ≈ 10 600
(squares) and Reb ≈ 37 000 (circles). CColour code: black for grid G1; red for grid G2.
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Figure 15. Streamwise distribution of the slip parameter Cw at Reb ≈ 10 600 (solid lines) and Reb ≈ 37 000
(dashed lines) obtained on grid G1 (black lines) and grid G2 (red lines).
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Figure 16. Streamwise distribution of the slip velocity Uslip at Reb ≈ 10 600 (black line) and Reb ≈ 37 000
(red line) obtained on grid G2.
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recommendations of Larsson et al. (2016) corresponding to Δx � 0.08δ, Δy � 0.05δ and
Δz � 0.01 − 0.05δ. Mean velocity profiles show an excellent match with the DNS at the
considered Reynolds numbers on all the grids with an L2 error less than 3 % for all the
cases. Reynolds shear and normal stress profiles resolved on the significantly coarse grids
also show excellent agreement with the DNS. The model performance is shown to be
similar to that of the EQWM, which is known to predict the equilibrium wall-bounded
flows without separation accurately. This is a considerable improvement over the dynamic
slip-wall model of Bae et al. (2019) that shows a significant log layer mismatch at similar
Reynolds numbers but on comparatively finer grid resolutions.

The model performance is evaluated in flow separation and reattachment over periodic
hills at Reynolds numbers of Reb ≈ 10 600 and 37 000 using two different grid resolutions.
The meshes used for the computations are significantly coarser than the conventional
LES meshes, e.g. the fine mesh used here has about 20 times fewer degrees of freedom
than the implicit LES performed by Krank et al. (2018). The streamwise and wall-normal
mean velocity profile predictions obtained using the dynamic slip-wall model on the two
grids compare well with the experimental data in the separated and post-reattachment
flow regions at Reb ≈ 10 600. Reynolds shear stress predictions obtained using the two
grids also match very well with experiments at different streamwise locations. However,
the Reynolds normal stresses are better predicted on the fine grid. Computations at
Reb ≈ 37 000 using the fine grid show that the dynamic slip-wall model predictions for
the mean velocity profiles agree well with the experiments. The Reynolds shear stress
profiles are also in excellent agreement with the experiments, with some discrepancies in
the Reynolds normal stress predictions. On the other hand, EQWM for this case shows
significant discrepancies with the experimental data for the mean velocities as well as
Reynolds shear and normal stresses.

The new model contains parameters like Cw,λ, CwR and ΔR that are empirically
established, but the model does not assume the state of a boundary layer. It is important
to note that the main purpose of a slip-wall model is similar to that of a traditional wall-
stress model, i.e. accurate estimation of wall shear stress. Achieving this goal without prior
assumptions regarding the state of the boundary layer or embedded empirical parameters
is an outstanding challenge. Moreover, the instantaneous velocity field is intertwined
with the effects of the LES grid resolution and Reynolds number for a given numerical
discretization and SGS model as discussed in Bae et al. (2019). The modelling choices
made in this work are consistent with the observations of Pradhan & Duraisamy (2023)
and the works of Bose & Moin (2014), Bae et al. (2019). The empirical parameters in the
proposed model, especially Cw,λ, provide an explicit reference to how the near-wall flow
should behave at different near-wall grid resolutions and Reynolds numbers. The model is
found to be somewhat insensitive to the parameters CwR and ΔR in their plausible range
for the considered cases, which includes the smooth body-separated flows with separation
and reattachment.

The new model can consistently predict mean velocity and Reynolds shear and normal
stress profiles for the equilibrium as well as separated flows at high Reynolds numbers
using significantly coarse near-wall LES meshes. The model performs at a computational
cost similar to the EQWM, which is the cheapest state-of-the-art WMLES strategy. In
the authors’ opinion, the excellent performance of the model may be attributed to the
integration of the optimal finite-element projection framework used to obtain the slip-wall
parameters with the consistent dynamic procedures for the SGS and slip-wall modelling
coupled with the DG framework. This work is a step towards making the slip-wall model
a viable computing tool for predicting complex engineering flows, and further evaluations
are required.
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While the present work demonstrates the implementation and validation of the dynamic
slip-wall model within a DG framework, we emphasize that the fundamental approach is
not inherently tied to DG methods. The essential requirement is a rigorous coarse graining
or scale separation operator, which can be provided by various numerical frameworks
including finite-element methods, variational multiscale approaches or projection-based
methods. For finite-volume and finite difference techniques, while the implementation
is less straightforward, agglomeration-based techniques (see, e.g. Gravemeier 2006) can
provide viable pathways. Changing the numerical framework (for instance, to continuous
finite elements) would necessitate recalibration of the base parameters, along with a
redefinition of the length scales. This requirement stems from our fundamental observation
that subgrid and wall models cannot be decoupled from the underlying numerical method
due to the strong interactions between unresolved and coarsely resolved dynamics.
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Appendix A. Sharp modal cutoff filter implementation
The implementation of the sharp modal cutoff filter is a three-step process: transforming
the nodal solution coefficients to a hierarchical modal representation, applying a filter on
the modal coefficients and then transforming back into the nodal representation. Let us
denote the nodal solution coefficients as u j , the nodal basis functions as φ j , the modal
solution coefficients as b j and the modal basis functions as ψ j . Then, we can write the
approximation uh to any flow variable u in an element as

u ≈ uh =
p+1∑
j=1

u jφ j =
p+1∑
j=1

b jψ j . (A1)

Multiplying the above equation by ψi and integrating over the standard element, we get
p+1∑
j=1

Ci j u j =
p+1∑
j=1

Mi j b j (A2)

or in matrix and vector form, we can write

[C]u = [M]b . (A3)

Here, the modal mass matrix [M] is given by

[M] = Mi j =
∫
Ωk

ψiψ j dx . (A4)

The mixed mass matrix [C] is given by

[C] = Ci j =
∫
Ωk

ψiφ j dx . (A5)

Using (A3), we can obtain the modal solution coefficients, b, from the nodal solution
coefficients u by inverting the modal mass matrix [M], i.e.

b = [M]−1[C]u. (A6)

1017 A35-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
17

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10171


Journal of Fluid Mechanics

Now that the hierarchical modal basis coefficients have been obtained, a square filter
matrix, [F], can be applied as a matrix-vector product, i.e.

b̂ = [F]b, (A7)

where b̂ are the filtered modal solution coefficients. The sharp cutoff filter matrix [F] is
diagonal with its entries being 0 or 1. If all entries are 1 giving the identity matrix, the
filtering operation returns the original solution. To obtain a cutoff filter of order (p� + 1),
all diagonal entries of the filter matrix are 1 up to and including the (p� + 1) diagonal entry
with the rest of the entries 0. The last step in the modal decomposition filtering procedure
is to transform the filtered modal coefficients back to nodal basis coefficients to give the
filtered nodal solution. This reverse transformation can be performed as follows :

û = [C]−1[M ]̂b, (A8)

= [C]−1[M][F]b by (A7), (A9)

= [C]−1[M][F][M]−1[C]u by (A6). (A10)
Let

[B] = [M]−1[C] and [̂F] = [B]−1[F][B] . (A11)

We can then write the final filtered nodal solution coefficients as

û = [̂F]u. (A12)

The final filter matrix [̂F] can be assembled as a pre-processing step as it does not have a
dependence on the solution.

The sharp modal filter is first tested in a one-dimensional DG set-up. The objective is to
find a best fit for the function u(x)= cos(2x)+ 0.3sin(8x). The degree of the Lagrange
basis function is set to p = 3, and the sharp modal cutoff filter is tested for p� = 0, 1, 2
and 3. The number of elements used is 10 with four quadrature points on each element,
and the results are presented in figure 17. The analytical solution is plotted for the domain
[−π, π ]. The nodal DG solution with p = 3 matches closely with the analytical solution,
and the jumps at the element approximation denote the discontinuous nature of the
approximation. The sharp modal cutoff filter with p� = 3 does not affect the solution and
the results are identical to the original solution. On the other hand, lower cutoff orders of
p� = 2, 1 and 0 result in a piecewise quadratic, linear and constant solution, respectively.

The modal sharp cutoff filter in its one-dimensional form discussed above is extended
to three dimensions in a tensor product fashion and applied before every RK3-TVD
step in our in-house DG code. The effect of the test filtering operation using the modal
sharp cutoff filter on the normalized instantaneous streamwise velocity u/uδ is shown in
figure 18. The degree of polynomial used is p = 3 and results are shown for the Reτ ≈ 544
case with filter orders of p� = 3, 2, 1 and 0. The snapshots of u/uτ show the loss of
information and decrease in resolution of the flow field as the filter cutoff order is reduced.

Appendix B. Wall-resolved LES at Reτ ≈ 544
A WRLES of the turbulent channel flow is performed at Reτ ≈ 544 using the DSM as
the SGS model to verify our in-house DG solver. The mesh size is 36 × 30 × 24 elements
in the streamwise, spanwise and wall-normal directions, respectively. The grid is uniform
in the streamwise and spanwise directions and it is geometrically stretched in the wall-
normal direction with a stretching ratio of 1.2. The effective grid sizes in each direction
in wall units are Δ+

x ≈ 38, Δ+
y ≈ 19 and Δ+

z at the wall is Δ+
zw ≈ 4.5 and at the channel
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Figure 17. Comparisons of analytical solution for a function u(x)= cos(2x)+ 0.3sin(8x) in the range
[−π, π ] with the best fit obtained using one-dimensional nodal DG employing 10 elements and p = 3 along
with filtered solutions for p� = 0, 1, 2 and 3. Unfilled green circles indicate the quadrature points within each
element.

centre isΔ+
zc

≈ 32.2. The grid resolution is based on the recommendation of Bose & Moin
(2014) for a WRLES, i.e. Δ+

x � 50, Δ+
y � 30 and Δ+

zw ∼ O(1). In comparison, the grid
resolution of the available DNS (Lee & Moser 2015) is Δ+

x ≈ 8.9, Δ+
y ≈ 5, Δ+

zw ≈ 0.019
and Δ+

zc
≈ 4.5. Please note that, the effective grid sizes Δx , Δy and Δz for the finite-

element grid are defined as Δx =Δe
x/p, Δe

y/p and Δe
z/p, respectively. The quantities

Δe
x , Δe

y and Δe
z represent the actual element sizes in the finite-element mesh.

The instantaneous streamwise velocities u normalized with uτ for the WRLES in the
xz plane are shown in figure 19(a). The solution is reasonably resolved. Snapshots of the
vorticity magnitude on the bottom wall are shown in figure 19(b). On the other hand,
figure 19(c) shows the isometric view of the isosurfaces of the Q criterion to visualize the
near-wall eddies.

The wall-normal variation of the mean Smagorinsky coefficient 〈Cs〉 along with mean
velocity and Reynolds shear and normal stresses for the WRLES compared with the DNS
is shown in figure 20. The Smagorinsky coefficient Cs for the DSM assumes a value of
zero at the wall as Ld

i j in (6.4) is equivalently zero at the wall owing to the no-slip velocity
boundary condition. It gradually increases in the viscous sublayer before reaching a value
of about 0.12 in the log layer at about z+ ≈ 60 after which it remains close to 0.1 − 0.12
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Figure 18. Snapshots of normalized streamwise velocity in the xz plane passing midway through the spanwise
domain dimension with p� = 3, 2, 1 and 0 showing the effects of the test filtering operation at Reτ ≈ 544.
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Figure 19. (a) Snapshot of normalized streamwise velocity in the xz plane passing midway through the
spanwise dimension, (b) snapshot of the vorticity magnitude on the bottom wall and (c) isosurface of the
Q criterion coloured with normalized streamwise velocity u/uτ for a WRLES at Reτ ≈ 544 obtained using the
DSM SGS model.
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Figure 20. Wall-normal variation of the (a) mean Smagorinsky coefficient 〈Cs〉, (b) mean velocity,
(c) Reynolds shear stress and (d) r.m.s. velocity fluctuations for a WRLES employing DSM as the SGS models
compared with the DNS at Reτ ≈ 544.

till the half-channel height δ+. The mean velocity and Reynolds shear and normal stress
profiles obtained using the WRLES are nearly identical to the DNS data.

Appendix C. Sensitivity analysis
The proposed dynamic slip-wall model involves two model parameters, namely CwR and
ΔR . The definition of the filter operation fixes the value of ΔR , which is the ratio of the
test filter width to the grid filter width. We used a value forΔR as recommended by Brazell
et al. (2015). Numerical experiments using different values for ΔR in the plausible range
of ΔR = [1, 2] for p = 2 and p� = 1 resulted in negligible differences in the results and
these observations are similar to those made by Bae et al. (2019) for their dynamic slip-
wall model. On the other hand, the parameter CwR comes into the picture because of the
use of different values of the model coefficient Cw at the test filter and grid filter levels.
The sensitivity to CwR is tested for values in the plausible range CwR = [1, 2]. Results for
the two extreme values in this range, i.e. CwR = 1 and 2, are shown in figure 21 for the
Reτ ≈ 10 000 case obtained using grid G2. The effect of CwR on the mean velocity and
Reynolds stress predictions is also found to be negligible and the results are almost iden-
tical. This suggests that the model coefficient Cw can be taken to be the same at the test-
and grid-filtered levels, which is the general practice (Bose & Moin 2014; Bae et al. 2019).

Appendix D. Computational cost
The simulations were performed on NASA’s Pleiades Supercomputer on the Broadwell
compute nodes consisting of E5-2680v4 Intel Xeon processors at 2.4 GHz. For the channel
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Figure 21. Effect of the parameter CwR values on the proposed dynamic wall model predictions for the case
DSW-10000-G2 along with DNS comparisons for the (a) mean velocity, (b) Reynolds shear stress and (c) r.m.s.
velocity fluctuations.

flow computations on the finest mesh G3 consisting of 32 × 32 × 32 elements with about
0.885 million degrees of freedom, the dynamic slip-wall model takes about 0.135 s of wall
time per time step on 512 processors. For the Reτ ≈ 10 000 case, the dynamic slip-wall
model requires a wall time of about 11.8 mins for a single flow through (= Lx/Ub) on the
grid G3. On the other hand, for the periodic hill cases using the fine grid consisting of
75 × 36 × 15 elements with about 1.1 million degrees of freedom, the wall time required
by the dynamic slip-wall model per time step is approximately 0.088s on 3330 processors.
For the Reb = 37 000 case, the wall time required for a single flow through is about 22
mins. The EQWM requires a similar time per time step as that of the dynamic slip-wall
model for the channel flow and periodic hill cases on identical grids. On the other hand, a
static slip-wall model using an arbitrary constant value of the slip length takes about 1 %
less time per time step for the channel flow on the G3 mesh and about 7 % less time per
time step for the periodic hill case on the G2 grid in comparison to the dynamic slip-wall
model on an identical number of processors.
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