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The Boltzmann kinetic equation is considered to compute the transport coefficients
associated with the mass flux of intruders in a granular gas. Intruders and granular gas
are immersed in a gas of elastic hard spheres (molecular gas). We assume that the granular
particles are sufficiently rarefied so that the state of the molecular gas is not affected by
the presence of the granular gas. Thus, the gas of elastic hard spheres can be considered
as a thermostat (or bath) at a fixed temperature Tg . In the absence of spatial gradients, the
system achieves a steady state where the temperature of the granular gas T differs from that
of the intruders T0 (energy non-equipartition). Approximate theoretical predictions for the
temperature ratio T0/Tg and the kurtosis c0 associated with the intruders compare very
well with Monte Carlo simulations for conditions of practical interest. For states close
to the steady homogeneous state, the Boltzmann equation for the intruders is solved by
means of the Chapman–Enskog method to first order in the spatial gradients. As expected,
the diffusion transport coefficients are given in terms of the solutions of a set of coupled
linear integral equations which are approximately solved by considering the first Sonine
approximation. In dimensionless form, the transport coefficients are nonlinear functions
of the mass and diameter ratios, the coefficients of restitution and the (reduced) bath
temperature. Interestingly, previous results derived from a suspension model based on an
effective fluid–solid interaction force are recovered when m/mg → ∞ and m0/mg → ∞,
where m, m0 and mg are the masses of the granular particles, intruders and molecular
gas particles, respectively. Finally, as an application of our results, thermal diffusion
segregation is exhaustively analysed.
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1. Introduction
One of the most relevant characteristics of granular systems is that they are constituted
of macroscopic particles (or grains) that collide inelastically among themselves. Due
to this fact, the kinetic energy of the system decreases over time. Thus, to observe
sustained diffusive motion of the grains, an external energy input is usually introduced
to compensate for the energy lost by collisions and reach a non-equilibrium steady state.
Several mechanisms are used to inject energy to a system in real experiments, e.g.
mechanical boundary shaking (Yang et al. 2002; Huan et al. 2004), bulk driving (as
in air-fluidised beds (Schröter, Goldman & Swinney 2005; Abate & Durian 2006)) or
magnetic forces (Sack et al. 2013; Harth et al. 2018). However, since in most experimental
realisations the formation of large spatial gradients in the bulk region goes beyond the
Navier–Stokes domain, it is quite difficult to provide a rigorous theoretical treatment of
these sorts of situations. In computer simulations, the above obstacle can be circumvented
by the introduction of external forces (or thermostats) (Evans & Morriss 1990) that heat
the system and compensate for the energy dissipated by collisions. Unfortunately, it is not
clear so far what the relation is between each specific type of thermostat and experiments.

A more realistic example of thermostatted granular systems consists of a set of
solid particles immersed in an interstitial fluid of molecular particles. This provides a
suitable starting point to mimic the behaviour of real suspensions. Needless to say, the
understanding of the flow of solid particles in one or more fluid phases is in fact quite an
intricate problem. Among the different types of multiphase flows, a simple but interesting
set corresponds to the so-called particle-laden suspensions (Subramaniam 2020). In this
sort of suspension, a set of small and dilute particles are immersed in a carrier fluid (such
as water or air). When the dynamics of grains in gas–solid flows is essentially dominated
by collisions, the extension of the conventional kinetic theory of gases (Chapman &
Cowling 1970; Ferziger & Kaper 1972) to dissipative dynamics can be considered as a
reliable tool to describe this sort of system. However, at a kinetic level, the description
of flows involving two or more phases is really a complex problem since one should start
from a set of kinetic equations for each one of the velocity distribution functions of the
different phases. In addition, the different phases evolve over quite different spatial and
temporal scales. Due to these difficulties, a coarse-grained approach is usually adopted
and the influence of gas-phase effects on the dynamics of solid particles is incorporated in
the starting kinetic equation in an effective way by means of a fluid–solid interaction force
(Koch 1990; Gidaspow 1994; Jackson 2000). In some cases, a Stokes linear drag law for
gas–solid interactions is only accounted for (Louge, Mastorakos & Jenkins 1991; Tsao &
Koch 1995; Sangani et al. 1996; Wylie et al. 2009; Heussinger 2013; Wang et al. 2014;
Chamorro, Vega Reyes & Garzó 2015; Saha & Alam 2017; Alam, Saha & Gupta 2019;
Saha & Alam 2020; Chassagne, Bonamy & Chauchat 2023). Other models include an
additional Langevin stochastic term (Garzó et al. 2012; Hayakawa, Takada & Garzó 2017;
Gómez González & Garzó 2019; Gómez González, Khalil & Garzó 2020; Garzó 2023).

Although the effective suspension models based on the Langevin-like equation provide
a reliable way of capturing the impact of gas-phase effects on the dynamic properties of
grains, it could be convenient from a more fundamental point of view to begin with a
model that accounts for the effect of the (real) collisions between solid and gas particles.
In this context, inspired by a paper by Biben, Martin & Piasecki (2002), a (discrete)
suspension model has been recently proposed (Gómez González & Garzó 2022b). As in
the case of the most effective models reported in the granular literature (Louge et al. 1991;
Tsao & Koch 1995; Sangani et al. 1996; Wylie et al. 2009; Garzó et al. 2012; Heussinger
2013; Wang et al. 2014; Chamorro et al. 2015; Hayakawa et al. 2017; Saha & Alam 2017;
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Alam et al. 2019; Saha & Alam 2020; Gómez González & Garzó 2019; Gómez González
et al. 2020), the model is based on the following assumptions. First, one assumes that
the granular particles are sufficiently dilute so that the state of the interstitial gas is not
affected by the presence of the grains. This means that the molecular surrounding gas
can be treated as a bath (or thermostat) of elastic hard spheres at a constant temperature
Tg . This assumption can be clearly justified in the case of particle-laden suspensions
where the granular particles are sufficiently rarefied. Second, although the density of solid
particles is very small, the grain–grain collisions (which are inelastic and characterised by
the coefficient of restitution α) are accounted for in the kinetic equation for the velocity
distribution function f (r, v, t) of grains. Thus, it is quite obvious that this suspension
model (granular particles immersed in a molecular gas of elastic hard spheres) can be seen
as a binary mixture where one of the species (the grains) is present in tracer concentration.
In the homogeneous state, a steady state is reached when the energy lost by grains (due to
their inelastic collisions) is exactly compensated for by the energy gained by them due to
their elastic collisions with gas particles (Biben et al. 2002; Santos 2003).

It is worth noting that the suspension model introduced by Gómez González & Garzó
(2022b) has some features in common with the microscopic theory of transport for dilute
molecular suspensions, as reported by Sung & Stell (1984a,b) years ago. In this theory,
the dynamics of the solute–solvent collision is treated within the Enskog approximation,
conveniently modified by the presence of the solvent sea. The solvent is treated as a
continuum using appropriate generalised boundary conditions. These conditions allow
the diffusion coefficient to properly account for dynamic memory (repeated collision
events), which is neglected in the conventional Enskog theory. Additionally, the solute
particles are sufficiently dilute so that the interaction between them may be neglected, yet
concentrated enough to permit a statistical treatment. The theoretical expression for the
self-diffusion coefficient is in excellent agreement with molecular dynamics simulations
(Alder, Gass & Wainwright 1970). However, the microscopic theory of Sung & Stell
(1984a,b) differs from the suspension model employed by Gómez González & Garzó
(2022b). Firstly, the theory of Sung & Stell (1984a,b) is for elastic collisions, whereas
the model of Gómez González & Garzó (2022b) considers the effect of the inelastic
collisions between the solute (grains) particles on the distribution function. Secondly, the
theory of Sung & Stell (1984a,b) considers finite values of the solid volume fraction of the
solvent, whereas the suspension model introduced by Gómez González & Garzó (2022b)
is restricted to the low-density regime. In this density regime, the inelastic Boltzmann
kinetic equation applies, and it is justified to neglect the effect of dynamic correlations in
repeated collisions on the transport coefficients. In this context, it is important to recall that
for moderate densities the corresponding version of the inelastic Enskog equation (which
goes beyond the Boltzmann description) can still be considered as a good approximation
for obtaining the transport coefficients of dense granular fluids since the Enskog results
(Garzó & Dufty 1999a,b; Garzó et al. 2007a,b) have been shown to compare quite well
with molecular dynamics simulations (Lutsko, Brey & Dufty 2002; Dahl et al. 2002; Lois,
Lemaître & Carlson 2007; Mitrano et al. 2011; Chialvo & Sundaresan 2013; Mitrano,
Garzó & Hrenya 2014) and with experimental data (Yang et al. 2002; Huan et al. 2004)
for moderately high densities and values of α � 0.8.

In contrast to coarse-grained approaches for granular suspensions, the model proposed
by Gómez González & Garzó (2022b) introduces two new input parameters: the diameter
σ/σg and mass m/mg ratios. Here, σg and mg are the diameter and mass of the particles
of the surrounding molecular gas, respectively, while σ and m are the diameter and mass
of the solid particles, respectively. For small spatial gradients, this suspension model has
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been solved by means of the Chapman–Enskog method (Chapman & Cowling 1970) and
the expressions of the Navier–Stokes transport coefficients of the granular suspension have
been explicitly obtained in terms of the parameter space of the system (Gómez González &
Garzó 2022b). An interesting result is that the Navier–Stokes expressions derived from
this collisional model reduce to those previously derived from a coarse-grained approach
(Gómez González & Garzó 2019) when the particles of the molecular gas are much lighter
than the granular particles (Brownian limit, mg/m → 0). This agreement may justify the
use of this sort of effective Langevin-like model for obtaining the dynamic properties of
grains when m � mg (Pelargonio & Zaccone 2023).

While the study of transport properties in granular suspensions reported in Gómez
González & Garzó (2022b) has been restricted to a monocomponent granular suspension
(granular gas immersed in a molecular gas), extending this analysis to the more
realistic case of a bidisperse granular suspension presents significant new conceptual and
technical difficulties and is far from straightforward. Indeed, the evaluation of Navier–
Stokes transport coefficients for multicomponent suspensions introduces significant new
challenges. Not only does the number of relevant transport coefficients increase due to
the complexity of particle interactions in mixtures, but also these coefficients are defined
by a set of coupled integro-differential equations. Furthermore, new parameters emerge,
such as the mass and size ratios, along with the coefficients of restitution for each pairwise
collision, making the problem substantially more intricate than in the monocomponent
case. Thus, to gain some insight into the general problem, we make in this paper a first step
in the understanding of transport in multicomponent granular suspensions: we consider a
granular binary mixture (immersed in a molecular gas) where the concentration of one
of species (impurities or intruders) is much smaller than the other one (tracer limit). As
mentioned before, in the tracer limit one can assume that (i) the state of the excess species
(granular gas) is not perturbed by the presence of intruders and (ii) one can also neglect
collisions among tracer particles themselves in their corresponding kinetic equation.

At a kinetic level, the tracer limit greatly simplifies the application of the Chapman–
Enskog method (Chapman & Cowling 1970) to bidisperse granular suspensions since the
transport properties of the excess species (the pressure tensor and the heat flux) are the
same as those for the monocomponent granular suspension. These transport coefficients
were already derived by Gómez González & Garzó (2022b). Consequently, the mass
transport of impurities j0 is the relevant flux of the problem. In accordance with the
results of tracer diffusion in granular gases (Garzó 2019), one expects that the Navier–
Stokes constitutive equation for the mass flux (that is, linear in the spatial gradients) can
be written as

j (1)
0 = −m2

0
ρ

D0∇n0 − mm0

ρ
D∇n − ρ

T
DT ∇T − DU

0 �U, (1.1)

where ρ = mn is the mass density of the granular gas, n0 is the number density of
the intruders, n is the number density of the particles of the granular gas, T is the
granular temperature and �U = U − Ug , U and Ug being the mean flow velocities of the
granular and molecular gases, respectively. In addition, D0 is the kinetic (tracer) diffusion
coefficient, D is the mutual diffusion coefficient, DT is the thermal diffusion coefficient
and DU

0 is the velocity diffusion coefficient. While the first three diffusion coefficients are
the coefficients of proportionality between the mass flux and hydrodynamic gradients, the
coefficient DU

0 links the mass flux with the velocity difference �U . Although this latter
contribution to the mass flux does not appear in dry granular mixtures, it is also present
in the heat flux of a granular suspension composed of two different phases (a granular gas
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immersed in a molecular gas) (Gómez González & Garzó 2022b). Here, as is shown later,
by symmetry reasons the mass flux j (1)

0 is also expected to be coupled to �U .
The determination of the diffusion transport coefficients D0, D, DT and DU

0 is the main
goal of the present paper. As usual for elastic (Chapman & Cowling 1970) and inelastic
(Garzó 2019) collisions, these transport coefficients are given in terms of a set of coupled
linear integral equations (see the supplementary material available at https://doi.org/10.
1017/jfm.2025.10806). These integral equations are approximately solved by considering
the leading terms in a Sonine polynomial expansion. However, as occurs in the case of
a monocomponent granular suspension (Gómez González & Garzó 2022b), evaluating
the diffusion coefficients for general unsteady conditions requires numerically solving
a set of nonlinear differential equations. In the bidisperse case, these equations differ
fundamentally from those of the monocomponent case due to the presence of two
mechanically different species, resulting in the emergence of additional parameters.
To simplify the analysis and obtain analytical results, we focus here on steady-state
conditions. This enables us to get analytical results and express the diffusion transport
coefficients in terms of the parameter space of the system.

The above set of diffusion transport coefficients has been recently determined in two
different systems. Thus, in Gómez González et al. (2024) we considered a collisional
model (the so-called �-model) to analyse the density flux of tracer particles in a confined,
quasi-two-dimensional, moderately dense granular gas of inelastic hard spheres. More
relevant to the present work, the diffusion coefficients of a binary granular suspension
where one of the species (of mass m0) is present in tracer concentration have been
determined by solving the set of (inelastic) Enskog equations (Gómez González & Garzó
2023). In contrast to the suspension model considered here, a coarse-grained approach was
adopted, whereby the influence of the interstitial fluid on grain motion was accounted for
via effective forces (Langevin-like model). This simplification allowed us to derive explicit
forms for the diffusion coefficients up to the second Sonine approximation. When m0 is
much greater than mg , the results obtained in this study (which apply for arbitrary values
of the mass ratio m0/mg) reduce to those derived in Gómez González & Garzó (2023) in
the low-density regime and when only the first Sonine approximation is considered. In this
sense, the present work subsumes previous studies (Gómez González & Garzó 2023) that
are recovered in some limiting cases (m0/mg → ∞ and m/mg → ∞).

Given that the explicit forms of the diffusion coefficients are at hand, as an interesting
application of our results, we derive a segregation criterion for the intruders based on
the knowledge of the so-called thermal diffusion factor (see e.g. Grew & Ibbs 1952;
Goldhirsch & Ronis 1983a,b; Kincaid, Cohen & López de Haro 1987; Brey, Ruiz-
Montero & Moreno 2005; Garzó 2006, 2008; Brito & Soto 2009; Gómez González &
Garzó 2023; Gómez González et al. 2024). Segregation is induced here by both gravity
and a temperature gradient. Three different situations are considered: one without gravity,
another dominated by gravity and an intermediate case. Surprisingly, the segregation
dynamics found here differs from that derived by using a Langevin-like approach in
Gómez González & Garzó (2023). However, despite the plots appearing so different,
we can explain those differences. They stem essentially from the way the molecular
gas thermalises the grains in our (discrete) suspension model, which contrasts with the
effective thermostat used in the coarse-grained approaches (Gómez González & Garzó
2023). Additionally, our model captures the full mass ratio dependence and therefore
reveals how segregation varies as a function of the mass ratios m0/mg and m/mg, offering
a more general description beyond the Brownian limit (m0/mg → ∞ and m/mg → ∞)
considered in Gómez González & Garzó (2023). This is in fact one of the new added
values of the present work.
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The structure of the paper is as follows. Section 2 introduces the Boltzmann kinetic
equation for granular particles immersed in a molecular gas and analyses the homogeneous
steady state (HSS). In § 3, some intruders are added to the granular gas and the
corresponding Boltzmann–Lorentz kinetic equation is derived. We first consider the HSS
for intruders and show how the non-equipartition of energy is affected by the mass ratio
m0/mg . Section 4 presents the set of integral equations governing the diffusion transport
coefficients, while § 5 provides approximate expressions (based on the so-called first
Sonine approximation) for these coefficients. These coefficients are explicitly determined
in terms of the background temperature, volume fraction, restitution coefficients and the
masses and diameters of the bidisperse system. Six appendices in the supplementary
material provide technical details of the calculations and simulation techniques. The con-
vergence to the results obtained by Gómez González & Garzó (2022a) from the Langevin-
like model is also demonstrated. Section 7 examines thermal diffusion segregation. The
paper concludes in § 8 with a brief discussion of the results reported in this paper.

2. Granular gas in contact with a bath of elastic hard spheres. Boltzmann kinetic
description

We consider a gas of inelastic hard disks (d = 2) or spheres (d = 3) of mass m, diameter σ

and coefficient of normal restitution α. We assume that the spheres are perfectly smooth
and therefore the collisions between particles are inelastic and characterised by a (positive)
constant coefficient of normal restitution α � 1. For elastic collisions α = 1, while α < 1
for inelastic collisions. The granular gas is immersed in a molecular gas consisting of hard
disks or spheres of mass mg and diameter σg . The collisions between the granular particles
and the gas molecules are assumed to be elastic. As mentioned in § 1, we also assume that
the number density of the granular particles is much smaller than that of the molecular
gas, so that the state of the latter is not significantly affected by the presence of grains.
In this sense, the molecular gas can be treated as a thermostat or bath in equilibrium at
temperature Tg . Thus, its velocity distribution function fg(Vg) is

fg(Vg) = ng

( mg

2πTg

)d/2
exp

(
− mgV 2

g

2Tg

)
, (2.1)

where ng is the number density of molecular gas and Vg = v − Ug . In principle, the mean
flow velocity of molecular gas Ug is different from the mean flow velocity U of solid
particles (see its definition in (2.8)). In addition, for the sake of simplicity, we take the
Boltzmann constant kB = 1 throughout the paper.

In the low-density regime, the velocity distribution function f (r, v, t) of granular
particles verifies the Boltzmann kinetic equation. Moreover, although the granular gas
is sufficiently rarefied and hence the properties of the molecular (interstitial) gas can
be supposed to be constant, one has to take into account the collisions among grains
themselves in the kinetic equation of f (r, v, t). Thus, in the presence of the gravitational
field g, the distribution f verifies the Boltzmann equation:

∂ f

∂t
+ v · ∇ f + g · ∂ f

∂v
= J [ f, f ] + Jg[ f, fg]. (2.2)

Here, the Boltzmann collision operator J [ f, f ] gives the rate of change of f due to
inelastic collisions among granular particles. Its explicit form is (Brilliantov & Pöschel
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2004; Garzó 2019)

J [v1| f, f ] = σ d−1
∫

dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2 f (v′′

1) f (v′′
2) − f (v1) f (v2)

]
,

(2.3)
where g12 = v1 − v2 is the relative velocity, σ̂ is a unit vector that joins the centres of
the colliding particles and Θ is the Heaviside step function. In (2.3), the double primes
denote pre-collisional velocities. The relation between them and their corresponding post-
collisional velocities (v1, v2) is

v′′
1 = v1 − 1 + α

2α
(σ̂ · g12)σ̂ , v′′

2 = v2 + 1 + α

2α
(σ̂ · g12)σ̂ . (2.4)

In (2.2), the Boltzmann–Lorentz operator Jg[ f, fg] accounts for the rate of change of
f due to elastic collisions between particles of the granular and molecular gas. Its form is
(Résibois & de Leener 1977)

Jg[v1| f, fg] = σ d−1
∫

dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
f (v′′

1) fg(v
′′
2) − f (v1) fg(v2)

]
,

(2.5)
where σ = (σ + σg)/2 and the relationship between (v′′

1, v′′
2) and (v1, v2) is

v′′
1 = v1 − 2μg(σ̂ · g12)σ̂ , v′′

2 = v2 + 2μ(σ̂ · g12)σ̂ . (2.6)

Here,

μg = mg

m + mg
, μ = m

m + mg
. (2.7)

As is customary, the effect of gravity on the properties of molecular gases under ordinary
conditions is neglected in the present analysis. This approximation is justified by the fact
that the influence of gravity on a molecule between successive collisions is negligible, i.e.
	 � h, where 	 denotes the mean free path for hard spheres and h = v2

th/g represents the
characteristic length scale over which gravitational effects become significant (vth being
the thermal velocity). For instance, under terrestrial conditions at room temperature, this
ratio is of the order of 	/h ∼ 10−11 (Tij, Garzó & Santos 1999), thereby validating the
omission of gravitational effects in the description of molecular gas behaviour.

The number density n, mean flow velocity U and granular temperature T of the granular
gas are defined as the first few velocity moments of f :

{n, nU, dnT } =
∫

dv
{

1, v, mV 2
}

f (v), (2.8)

where V = v − U is the peculiar velocity. As said before, the difference �U = U − Ug
is in general different from zero (Gómez González & Garzó 2022b). In fact, as we show
later, �U induces a non-vanishing contribution to the mass flux of intruders.

The macroscopic balance equations for the granular gas are obtained by multiplying
(2.2) by {1, v, mV 2} and integrating over velocity. The result is (Gómez González & Garzó
2022b)

Dt n + n∇ · U = 0, (2.9)
ρDt U = −∇ · P + ρg +F[ f ], (2.10)

Dt T + 2
dn

(∇ · q + P : ∇U
) = −T ζ − T ζg. (2.11)
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In (2.9)–(2.11), Dt = ∂t + U · ∇ is the material derivative and the pressure tensor P and
the heat flux vector q are given, respectively, as

P =
∫

dv mV V f (v), q =
∫

dv
m

2
V 2V f (v). (2.12)

The production of momentum term F[ f ] appearing in (2.10) is defined as

F[ f ] =
∫

dv mV Jg[ f, fg]. (2.13)

This term is in general different from zero since the Boltzmann–Lorentz collision operator
Jg[ f, fg] does not conserve momentum. The form of F[ f ] can be made more explicit
when one takes into account the property (Brilliantov & Pöschel 2004; Garzó 2019)∫

dv1Ψ (v1)Jg[v2| f, fg] = σ d−1
∫

dv1

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12) f (v1) fg(v2)

× [
Ψ (v′

1) − Ψ (v1)
]
, (2.14)

where v′
1 = v1 − 2μg(σ̂ · g12)σ̂ . Using (2.14), F[ f ] is

F[ f ] = −2π(d−1)/2

Γ
(

d+3
2

) mmg

m + mg
σ d−1

∫
dv1

∫
dv2 g12 g12 f (v1) fg(v2). (2.15)

Finally, the partial production rates ζ and ζg appearing in the balance equation (2.11)
are given, respectively, as

ζ = − m

dnT

∫
dv V 2 J [v| f, f ], ζg = − m

dnT

∫
dv V 2 Jg[v| f, fg]. (2.16)

While the cooling rate ζ provides the rate of change of kinetic energy of grains due to
their inelastic collisions, the term ζg gives the transfer of kinetic energy in the collisions
between the particles of the molecular and granular gases. The quantity ζ = 0 for elastic
collisions (α = 1) while ζg = 0 when the particles of the molecular and granular gases are
mechanically equivalent.

It is interesting at this point to note the meaning of the granular temperature T . To
understand this, it is important to remember that our study is limited to the so-called rapid
flow regime, namely a situation where grains are subjected to a strong external excitation
(e.g. vibrating or shearing walls or air-fluidised beds). In this regime, the external energy
supplied to the granular gas can compensate for the energy loss due to collisions and the
effects of gravity. Since in this regime the motion of the grains is quite similar to the
chaotic motion of atoms or molecules in an ordinary gas, as discussed in previous works
(Gómez González & Garzó 2022b), it is tempting to establish a relationship between the
statistical motion of the grains and some kind of temperature. In this context, as usual in
conventional kinetic theory (Chapman & Cowling 1970), the granular temperature T can
be interpreted as a measure of the fluctuations of the velocities of grains with respect to its
mean value U . Since granular gases are athermal systems (i.e. their thermal fluctuations
have a negligible effect on the dynamics of grains), the granular temperature T has no
thermodynamic interpretation in contrast to the temperature Tg of the molecular gas (see,
for example, the review paper of Goldhirsch (2008) for a discussion of this issue). In any
case, within the context of statistical thermodynamics, the thermodynamic temperature
Tg can be also understood as a statistical quantity measuring the deviations of molecular
particle velocity v from its mean value Ug .
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Before closing this section, it is worth analysing the limiting case m � mg . It is in fact
a quite realistic case for granular suspensions (Subramaniam 2020) where the particles of
the interstitial molecular gas are much lighter than the particles of the granular gas. In the
limit m/mg → ∞, a Kramers–Moyal expansion (Résibois & de Leener 1977) allows us
to approximate the Boltzmann–Lorentz operator Jg[ f, fg] to the Fokker–Planck operator
J F P

g [ f, fg]:

Jg[ f, fg] → J F P
g [ f, fg] = γ

∂

∂v
·
(

v + Tg

m

∂

∂v

)
f (v), (2.17)

where the friction coefficient γ is

γ = 4π(d−1)/2

dΓ
(

d
2

) (mg

m

)1/2
(

2Tg

m

)1/2

ngσ
d−1. (2.18)

Upon deriving (2.17), it has been assumed that Ug = 0 and that the distribution function f
of the granular gas is a Maxwellian distribution.

Most of the theoretical works for suspension models reported in the granular literature
are essentially based on the use of the Fokker–Planck operator (2.17) to account for in
an effective way (coarse-grained approach) the influence of the surrounding fluid on the
dynamics of grains (Koch & Hill 2001; Garzó et al. 2012; Chassagne et al. 2023; Garzó
2023). These sorts of models have been considered to obtain the Navier–Stokes–Fourier
transport coefficients of the suspension (Gómez González & Garzó 2019).

3. Intruders in granular suspensions
We assume now that a few intruders (or tracers) of mass m0 and diameter σ0 are added to
the granular gas. In this situation, intruders and particles of the granular gas are surrounded
by the molecular gas (bath of elastic hard spheres). The system can be seen as a ternary
mixture where one of the components (intruders) is present in tracer concentration. Apart
from the restitution coefficient α for inelastic grain–grain collisions, the coefficient of
normal restitution α0 � 1 characterises the inelastic collisions between the intruders and
the particles of the granular gas. As in the case of the granular gas, collisions between
intruders and particles of the surrounding molecular gas are elastic.

Since the concentration of intruders is much smaller than that of the granular gas (tracer
limit), their presence does not affect the state of the granular gas. Under these conditions
and in the presence of the gravitational field, the velocity distribution function f0(r, v, t)
of the intruders obeys the kinetic equation:

∂ f0

∂t
+ v · ∇ f0 + g · ∂ f0

∂v
= J0[ f0, f ] + J0g[ f0, fg], (3.1)

where the (inelastic) version of the Boltzmann–Lorentz collision operator J0[ f0, f ] gives
the rate of change of f0 due to the inelastic collisions between the intruders and particles
of the granular gas. It is given by (Garzó 2019)

J0[v1| f0, f ] = σ ′(d−1)

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
α−2

0 f0(v
′′
1) f (v′′

2) − f0(v1) f (v2)
]
.

(3.2)
As in (2.3), g12 = v1 − v2 is the relative velocity, σ̂ is a unit vector and Θ is the Heaviside
step function. In addition, σ ′ = (σ + σ0)/2,

v′′
1 = v1 − 1 + α0

α0
μ′(σ̂ · g12)σ̂ , v′′

2 = v2 + 1 + α0

2α0
μ′

0(σ̂ · g12)σ̂ (3.3)
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and

μ′ = m

m + m0
, μ′

0 = m0

m + m0
. (3.4)

In (3.1), the collision operator J0g[ f0, fg] provides the rate of change of f0 due to elastic
collisions between intruders and particles of the molecular gas. Similarly to the operator
J0[ f, fg], it is given by

J0g[v1| f0, fg] = σ d−1
0

∫
dv2

∫
dσ̂Θ(σ̂ · g12)(σ̂ · g12)

[
f0(v

′′
1) fg(v

′′
2) − f0(v1) fg(v2)

]
.

(3.5)
Here, σ 0 = (σ0 + σg)/2,

v′′
1 = v1 − 2μg0(σ̂ · g12)σ̂ , v′′

2 = v2 + 2μ0g(σ̂ · g12)σ̂ (3.6)

and

μg0 = mg

m0 + mg
, μ0g = m0

m0 + mg
. (3.7)

Although the granular temperature T is the relevant one at a hydrodynamic level, an
interesting quantity at a kinetic level is the local temperature of the intruders T0. This
quantity measures the mean kinetic energy of the intruders. It is defined as

T0(r, t) = m0

dn0(r, t)

∫
dv V 2 f0(r, v, t). (3.8)

As confirmed by kinetic theory calculations (Garzó & Dufty 1999b), computer simulations
(Garzó 2019) and experiments (Feitosa & Menon 2002; Wildman & Parker 2002; Puzyrev
et al. 2024), the global temperature T and the temperature of impurities T0 are in general
different.

Intruders may freely exchange momentum and energy with the particles of the granular
and molecular gas. Thus, only the number density of intruders

n0(r, t) =
∫

dv f0(r, v, t) (3.9)

is conserved. This yields the balance equation

∂ρ0

∂t
+ ∇ · j0 = 0, (3.10)

where ρ0 = m0n0 is the mass density of intruders and

j0(r, t) =
∫

dv m0V f0(r, v, t) (3.11)

is the mass flux of intruders.
As in the case of the Boltzmann–Lorentz operator Jg[ f, fg], in the limiting case m0 �

mg the operator J0g[ f0, fg] reduces to the Fokker–Planck operator:

J0g[ f0, fg] → J F P
0g [ f0, fg] = γ0

∂

∂v
·
(

v + Tg

m0

∂

∂v

)
f0(v), (3.12)

where the friction coefficient γ0 is

γ0 = 4π(d−1)/2

dΓ
(d

2

) (mg

m0

)1/2
(

2Tg

m0

)1/2

ngσ
d−1
0 . (3.13)
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Note that the expression (3.13) for γ0 differs from the macroscopic Stokes law describing
the Brownian motion of a massive particle in an equilibrium host fluid (Bocquet, Hansen &
Piaseck 1994a,b; Gómez González & Garzó 2022a). This means that the results derived
in this paper in the Brownian limit do not exactly reduce to those obtained by using a
coarse-grained approach (Gómez González & Garzó 2022a).

4. Homogeneous steady state
Before considering inhomogeneous situations, it is pertinent to analyse the HSS for the
system (intruders and granular gas immersed in a molecular gas) in the absence of the
gravitational field (g = 0). The study of this state for the intruders is crucial since the HSS
plays the role of the reference state in the Chapman–Enskog method (Chapman & Cowling
1970).

In the HSS, the densities n and n0 and the granular temperature T are spatially uniform.
Moreover, without loss of generality, the mean flow velocities vanish (U = Ug = 0) with an
appropriate choice of the frame of reference. Under these conditions, (2.2) for the granular
gas reads

∂t f = J [ f, f0] + Jg[ f, fg], (4.1)

while (3.1) for the intruders becomes

∂t f0 = J0[ f0, f ] + J0g[ f0, fg]. (4.2)

4.1. Homogeneous steady state for the granular gas
Given that the HSS for the granular gas was already analysed by Gómez González & Garzó
(2022b), only a few results are provided here. Since in the HSS the distribution f (v) is
isotropic in v, then F[ f ] = 0. On the other hand, the kinetic energy is not conserved
by collisions and so ζ �= 0 and ζg �= 0. The most interesting quantity in the HSS for the
granular gas is the temperature ratio χ = T/Tg , which is in general different from 1. The
only non-trivial balance equation in the homogeneous state for the granular gas is that of
the temperature (2.11):

∂T

∂t
= −T

(
ζ + ζg

)
. (4.3)

After a transient period, it is expected that the granular gas achieves a steady state.
Thus, according to (4.3), the steady-state condition is ζ + ζg = 0. As discussed by Gómez
González & Garzó (2022b), as the molecular gas acts as a thermostat in the steady
state, then the mean kinetic energy of the granular particles is smaller than that of the
molecular gas (T < Tg). This necessarily requires that ζg < 0 so that, in the steady state,
the production rates ζ and |ζg| exactly compensate each other and one achieves the
condition ζ + ζg = 0.

However, to determine ζ and ζg one needs to know the velocity distribution function
f (v) for the granular gas. For inelastic collisions (α < 1) this distribution is not exactly
known to date. On the other hand, the results obtained for the fourth cumulant or kurtosis
c of the distribution f in Gómez González & Garzó (2022b) clearly show (see figure 3 of
Gómez González & Garzó (2022b)) that the magnitude of c is in general very small for
not quite strong inelasticity (e.g. α � 0.5). Thus, to estimate the production rates ζ and ζg
one can replace the true distribution f (v) by the Maxwellian distribution:

fM (v) = n
( m

2πT

)d/2
exp

(
−mv2

2T

)
. (4.4)
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In the Maxwellian approximation, the dimensionless production rates ζ ∗ = ζ/ν and ζ ∗
g =

ζg/ν are given by (Gómez González & Garzó 2022b)

ζ ∗ =
√

2π(d−1)/2

dΓ
(d

2

) (1 − α2), ζ ∗
g = 2x(1 − x2)

(
μT

Tg

)1/2

γ ∗, (4.5)

where ν = nσ d−1√2T/m is an effective collision frequency,

x =
(

μg + μ
Tg

T

)1/2

(4.6)

and

γ ∗ = ε χ−1/2, ε = 	γ√
2Tg/m

=
√

2πd/2

2ddΓ

(
d

2

) 1

φ
√

T ∗
g

. (4.7)

Here, 	 = 1/nσ d−1 is proportional to the mean free path of hard spheres,

φ = πd/2

2d−1dΓ

(
d

2

)nσ d (4.8)

is the solid volume fraction and

T ∗
g = Tg

mσ 2γ 2 . (4.9)

In the Maxwellian approximation (i.e. when one replaces f by fM ), the steady
temperature ratio T/Tg can be obtained by inserting the expressions (4.5) of ζ ∗ and
ζ ∗

g , respectively, into the (exact) steady-state condition ζ ∗ + ζ ∗
g = 0. This yields a cubic

equation for the quantity x whose physical solution is given by (4.14) of the supplementary
material of Gómez González & Garzó (2022b). In terms of x , the final expression of
the temperature ratio T/Tg is given by (4.15) of that supplementary material. In spite of
considering the Maxwellian approximation for the distribution f , an excellent agreement
between theory and simulations for the temperature ratio is observed over the whole range
of values of α studied (see figure 1 of Gómez González & Garzó (2022b)).

4.2. Homogeneous steady state for the intruders
We analyse now the HSS for the intruders. The balance equation for the intruders’
temperature T0 can be easily obtained from (4.2) as ∂t ln T0 = −(ζ0 + ζ0g), where

ζ0 = − m0

dn0T0

∫
dv v2 J0[v| f0, f ], ζ0g = − m0

dn0T0

∫
dv v2 J0g[v| f0, fg]. (4.10)

In the HSS, ∂t T0 = 0 and the condition for obtaining T0 is

ζ0 + ζ0g = 0. (4.11)

As in the case of the granular gas, the exact form of the distribution function f0(v) for
inelastic collisions is not known to date. The departure of f0(v) from its Maxwellian form

f0,M(v) = n0

( m0

2πT0

)d/2
exp

(
− m0v

2

2T0

)
(4.12)
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Figure 1. Plot of the kurtosis c0 associated with the distribution function of the intruders as a function of
the coefficient of normal restitution α for d = 3, φ = 0.0052, T ∗

g = 1000 and four different values of the mass
ratio m0/mg (from top to bottom, m0/mg = 20, 50, 100 and 1000). Moreover, in all the curves m0/m =
10, σ0/σ = 5 and σ0/σg = (m0/mg)1/3. The solid lines are the theoretical results while the symbols are the
DSMC simulation results. The dashed line is the result obtained from the Fokker–Planck approach (3.12) to
the operator J0g[ f0, fg]. Diamonds refer to DSMC simulations implemented using the time-driven approach
(Gómez González & Garzó 2022b).

can be measured by the kurtosis c0. It is defined as (Garzó 2019)

c0 = 1
d(d + 2)

m2
0

n0T 2
0

∫
dv v4 f0(v) − 1. (4.13)

Some technical details on the determination of c0 are given in the supplementary
material. Given that the expression of c0 is very large and not very illuminating, its final
form is not displayed here. In terms of dimensionless quantities, the parameter space of a
d-dimensional system is given by the set

ξ ≡
{

σ

σg
,
σ0

σg
,

m

mg
,

m0

mg
, α, α0, φ, T ∗

g

}
. (4.14)

In contrast to the monocomponent case (Gómez González & Garzó 2022b), note that the
diameter ratios σ/σg and σ0/σg appear also as input parameters of the system.

Figure 1 shows c0 versus the (common) coefficient of restitution α = α0 for d = 3,
φ = 0.0052 and T ∗

g = 1000. Four different values of the mass ratio m0/mg (20, 50, 100
and 1000) are considered keeping the ratio m0/m = 10. In addition, σ0/σ = 5 and we have
assumed that the intruders and molecular gas particles have the same mass density (i.e.
σ0/σ = (m0/mg)

1/3). As occurs for the kurtosis c of the granular gas (see figure 3 of
Gómez González & Garzó (2022b)), it is quite apparent from figure 1 that the magnitude
of c0 is in general quite small. We observe that the agreement between theory and direct
simulation Monte Carlo (DSMC) simulations is excellent even for quite extreme values of
inelasticity.

The fact that c0 is small allows us to guarantee that a good estimate of the production
rates ζ0 and ζ0g can be obtained by replacing f0(v) by the Maxwellian distribution f0,M(v)

in (4.10). In this approximation, the dimensionless quantities ζ ∗
0 = ζ0/ν and ζ ∗

0g = ζ0g/ν

can be written as
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Figure 2. Temperature ratio χ0 ≡ T0/Tg versus the (common) coefficient of normal restitution α0 = α for
d = 3, φ = 0.0052, T ∗

g = 1000 and four different values of the mass ratio m0/mg (from top to bottom, m0/mg =
20, 50, 100 and 1000). Moreover, in all the curves m0/m = 10, σ0/σ = 5 and σ0/σg = (m0/mg)1/3. The solid
lines are the theoretical results while the symbols are the DSMC simulation results. The dashed line is the result
obtained by using the Fokker–Planck approach (3.12) to the operator J0g[ f0, fg]. Diamonds refer to DSMC
simulations implemented using the time-driven approach (Gómez González & Garzó 2022b).

ζ ∗
0 = 4π(d−1)/2

dΓ
(d

2

) μ′
(

σ ′

σ

)d−1 (
1 + mT0

m0T

)1/2

(1 + α0)

[
1 − μ′

2
(1 + α0)

(
1 + m0T

mT0

)]
,

(4.15)

ζ ∗
0g = 2x0(1 − x2

0)

(
μ0g

T0

Tg

)1/2

γ ∗
0 . (4.16)

In (4.15) and (4.16), we have introduced the quantities

x0 =
(

μg0 + μ0g
Tg

T0

)1/2

, (4.17)

γ ∗
0 = ε0χ

−1/2, ε0 =
(

σ 0

σ

)d−1 m

m0
ε. (4.18)

The temperature ratio χ0 ≡ T0/Tg can be finally determined by substituting (4.15) and
(4.16) into the condition (4.11). It yields the nonlinear algebraic equation

2x0(x2
0 − 1)

(
μ0gχ0

)1/2
γ ∗

0 = 4π(d−1)/2

dΓ

(
d

2

) μ′
(

σ ′

σ

)d−1 (
1 + mχ0

m0χ

)1/2

(1 + α0)

×
[

1 − μ

2
(1 + α0)

(
1 + m0χ

mχ0

)]
, (4.19)

where we recall that χ = T/Tg is given by (3.7) of the supplementary material of Gómez
González & Garzó (2022b). The numerical solution to (4.17) provides the dependence of
T0/Tg on the parameter space ξ .

For the sake of illustration, figure 2 shows χ0 ≡ T0/Tg as a function of the (common)
coefficient of restitution α0 = α for the same systems as in figure 1. As occurs for the ratio
T/Tg , due to the way of scaling the relevant quantities of the system, the deviation of χ0
from unity increases with decreasing the mass ratio m0/mg . The agreement between the
(approximate) theoretical results and simulations is again excellent; it clearly justifies the
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use of the Maxwellian distribution (4.12) to achieve accurate estimates of the cooling rates
ζ0 and ζ0g .

A point to consider here is that convergence to the results obtained using the Fokker–
Planck model is achieved not only in the limit m/mg → ∞ and m0/mg → ∞ but it is
also necessary that σ/σg → ∞ and σ0/σg → ∞. For convenience, we assume in the rest
of the work that m/mg → ∞ and m0/mg → ∞ also imply σ/σg → ∞ and σ0/σg → ∞,
and thus intruders and molecular gas particles have the same particle mass density (i.e.
m0/σ

d
0 = mg/σ

d
g ).

5. Chapman–Enskog method. Diffusion transport coefficients
We assume that we perturb the homogeneous state by small spatial gradients. These
perturbations induce non-vanishing contributions to the mass, momentum and heat fluxes.
The determination of these fluxes allows us to identify the corresponding Navier–Stokes–
Fourier transport coefficients of the granular suspension. As said in § 1, since in the tracer
limit the pressure tensor and the heat flux vector of the binary mixture (intruders plus
granular gas) are the same as that for the excess species (granular gas), the mass transport
of intruders j0 is the relevant flux of the problem. The Navier–Stokes–Fourier transport
coefficients of the granular gas were already determined by Gómez González & Garzó
(2022b).

To get the mass flux j0, the Boltzmann kinetic equation (3.1) is solved up to first
order in spatial gradients by means of the Chapman–Enskog expansion Chapman &
Cowling (1970) conveniently adapted to dissipative dynamics. As widely discussed in
many textbooks (Chapman & Cowling 1970; Ferziger & Kaper 1972), there are two
different stages in the relaxation of a molecular gas towards equilibrium. For times of
the order of the mean free time, one can identify a first stage (kinetic stage) where the
main effect of collisions on the distribution function is to relax it towards the so-called
local equilibrium state. Then, a hydrodynamic (slow) stage is achieved where the gas has
completely forgotten its initial preparation. In this stage, the microscopic state of the gas
is completely specified by the knowledge of the hydrodynamic fields (in the case of a
binary mixture by n0, n, U and T ). These two stages are also expected in the case of
granular gases except that in the kinetic stage the distribution function will generally relax
towards a time-dependent non-equilibrium distribution (the homogeneous cooling state for
freely cooling dry granular gases) instead of the local equilibrium distribution. A crucial
point is that although the granular temperature T is not a conserved field (due to the
inelastic character of the collisions), it is assumed that T can still be considered as a slow
field. This assumption has been clearly supported by the good agreement found between
granular hydrodynamics and computer simulations in several non-equilibrium situations
(Lutsko et al. 2002; Dahl et al. 2002; Lois et al. 2007; Mitrano et al. 2011; Chialvo &
Sundaresan 2013; Mitrano et al. 2014). More details on the application of the Chapman–
Enskog method to dry (no gas phase) granular mixtures can be found, for example, in
Garzó (2019).

Based on the above arguments, in the hydrodynamic regime, the kinetic equation (3.1)
admits a normal (or hydrodynamic) solution where all the space and time dependence
of f0 only occurs through a functional dependence on the hydrodynamic fields. As usual
(Chapman & Cowling 1970), this functional dependence can be made explicit by assuming
small spatial gradients. In this case, f0 can be written as a series expansion in powers of
the spatial gradients of the hydrodynamic fields:

f0 = f (0)
0 + f (1)

0 + · · · , (5.1)
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where the approximation f (k)
0 is of order k in the spatial gradients. In addition, in the

presence of the gravitational force, it is necessary to characterise the magnitude of the
force relative to that of the spatial gradients. Here, as in the case of conventional fluid
mixtures (Chapman & Cowling 1970), we assume that the magnitude of g is at least of
first order in the perturbation expansion. The implementation of the Chapman–Enskog
method to first order in the spatial gradients follows steps similar to those made in the
conventional inelastic hard sphere model for dry granular mixtures (Garzó & Dufty 2002;
Garzó, Dufty & Hrenya et al. 2007a,b).

In contrast to the application of the Chapman–Enskog method for dry granular mixtures,
although we are interested here in calculating the diffusion transport coefficients in steady
states, the presence of the surrounding molecular gas yields in inhomogeneous states a
local energy unbalance between the energy supplied by the bath (or thermostat) and the
energy lost by inelastic collisions. This means that we must first consider a time-dependent
reference distribution f (0)(r, v, t) to obtain the time-dependent linear integral equations
that verify the diffusion coefficients. One then assumes stationary conditions and solves
(approximately) the above integral equations by considering the so-called first Sonine
approximation. In addition, as discussed by Gómez González & Garzó (2022b), the term
�U = U − Ug must be considered to be at least of first order in spatial gradients. In this
case, the Maxwellian distribution fg(r, v, t) can be written as

fg(v) = f (0)
g (V ) + f (1)

g (V ) + · · · , (5.2)

where

f (0)
g (V ) = ng

( mg

2πTg

)d/2
exp

(
− mgV 2

2Tg

)
, f (1)

g (V ) = −mg

Tg
V · �U f (0)

g (V ). (5.3)

The mathematical steps involved in the determination of the zeroth- and first-order
distribution functions are quite similar to those made in previous works on granular
mixtures (Garzó & Dufty 2002; Garzó & Montanero 2007). Technical details carried out
in this derivation are provided in the supplementary material. In particular, the first-order
distribution function f (1)(r, v, t) is given by

f (1)
0 (V ) =A0(V ) · ∇T +B0(V ) · ∇n + C0(V ) · ∇n0 +D′

0(V )∇ · U

+D0,ij(V )

(
∂iUj + ∂jUi − 2

d
δij∇ · U

)
+ ε0(V ) · �U, (5.4)

where the unknowns (A0,B0, C0,D0,ij,D′
0, ε0) are the solutions of a set of coupled linear

integral equations displayed in the supplementary material.

5.1. Diffusion transport coefficients

The constitutive equation for the mass flux j (1)
0 is given by (1.1). The diffusion transport

coefficients are defined as

DT = −m0T

dρ

∫
dv V ·A0(V ), (5.5)

D = −n

d

∫
dv V ·B0(V ), (5.6)

D0 = − ρ

dm0

∫
dv V · C0(V ), (5.7)

DU
0 = −m0

d

∫
dv V · ε0(V ). (5.8)
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The procedure for obtaining the expressions of the set of coefficients (DT , D, D0, DU
0 )

is described in the the supplementary material and only their final forms are provided in
§ 6. It is important to recall that the expressions of the diffusion coefficients cannot be
analytically obtained for general unsteady conditions since it would require numerically
solving a set of coupled differential equations for them. Thus, to reach analytical
expressions for these diffusion coefficients, one assumes the validity of the steady-state
constraint ζ + ζg = 0 at each point of the system. This allows us to achieve explicit forms
for the set (DT , D, D0, DU

0 ).

6. Sonine polynomial approximation to the diffusion transport coefficients
in steady-state conditions

As mentioned before, the diffusion transport coefficients are given in terms of the solutions
of a set of coupled linear integral equations. As usual in kinetic theory of both molecular
and granular gases, these integral equations can be approximately solved by considering
the leading terms of a Sonine polynomial expansion of the unknowns A0, B0, C0 and ε0.
In the case of the mass flux, these quantities are approximated by the polynomials

A0(V ) → − f0,M V
ρ

T n0T0
DT , B0(V ) → − f0,M V

m0

nn0T0
D, (6.1)

C0(V ) → − f0,M V
m2

0
ρn0T0

D0, ε0(V ) → − f0,M V
DU

0
n0T0

. (6.2)

To determine D0, D, DT and DU
0 , we substitute first A0, B0, C0 and ε0 by their leading

Sonine approximations (6.1) and (6.2) in the corresponding integral equations. Then we
multiply these equations by m0V and integrate over velocity. Technical details on these
calculations are provided in the supplementary material.

6.1. Thermal diffusion coefficient DT

The thermal diffusion coefficient DT is given by

DT = n0T

ρν
D∗

T , D∗
T = τ0 − m0

m + χ
∂τ0
∂χ

βγ ∗ + ν∗
D + ν̃Dγ ∗

0
, (6.3)

where γ ∗
0 is defined by (4.18), τ0 = T0/T and

β =
(

x−1 − 3x
)

μ3/2χ−1/2. (6.4)

Here, x is given by (4.6) and in (6.3) we have introduced the (reduced) collision
frequencies

ν∗
D = 2π(d−1)/2

dΓ
(d

2

) (
σ ′

σ

)d−1

μ′
(

1 + θ0

θ0

)1/2

(1 + α0), (6.5)

ν̃D =
(

m0T0

mgTg

)1/2

μg0
(
1 + θ0g

)1/2
, (6.6)

where

θ0 = m0T

mT0
, θ0g = m0Tg

mgT0
. (6.7)

While the quantity θ0 is the ratio of the mean square velocities of the intruders and
granular gas particles, the quantity θ0g gives the ratio of the mean square velocities of
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the intruders and molecular gas particles. Moreover, the explicit form of the derivative
∂τ0/∂χ appearing in (6.3) is given in the supplementary material.

In the Brownian limiting case (m � mg and m0 � mg), ν̃D → 1, x → χ−1/2, β → 1 −
3χ−1 and (6.3) yields

D∗
T → D∗B

T =
τ0 − m0

m
+ χ

∂τ0

∂χ

ν∗
D + γ ∗

0 − 2γ ∗χ−1 − 1
2
ζ ∗

. (6.8)

Upon obtaining (6.8) use has been made of the steady-state condition

χ−1γ ∗ = γ ∗ + 1
2
ζ ∗. (6.9)

The expression (6.8) agrees with previous results derived from the Langevin-like model
based on the Fokker–Planck operators (2.17) and (3.12) (Gómez González & Garzó 2022a,
2023).

6.2. Mutual diffusion coefficient D

The mutual diffusion coefficient D is

D = n0T

m0ν
D∗, D∗ =

ζ ∗D∗
T − m0

m
+ φ

∂τ0

∂φ

ν∗
D + ν̃Dγ ∗

0
. (6.10)

In (6.3) and (6.10), the derivatives ∂τ0/∂χ and ∂τ0/∂φ can be seen as a measure of the
departure of the perturbed time-dependent state from the steady reference state. Their
explicit forms and derivations are provided in the supplementary material.

In the Brownian limit (m � mg and m0 � mg), ν̃D → 1 and (6.10) reduces to

D∗ → D∗B =
ζ ∗D∗

T − m0

m
+ φ

∂τ0

∂φ

ν∗
D + γ ∗

0
. (6.11)

Equation (6.11) is consistent with the results obtained from the Langevin-like model
(Gómez González & Garzó 2022a, 2023).

6.3. Tracer diffusion coefficient D0

The tracer diffusion coefficient D0 is given by

D0 = mnT

m2
0ν

D∗
0 , D∗

0 = τ0

ν∗
D + ν̃Dγ ∗

0
. (6.12)

In the Brownian limit,

D∗
0 → DB∗

0 = τ0

ν∗
D + γ ∗

0
, (6.13)

which agrees with previous results (Gómez González & Garzó 2022a, 2023).

6.4. Velocity diffusion coefficient DU
0

The diffusion coefficient DU
0 is given by

DU
0 = m0n0 DU∗

0 , DU∗
0 = ξ∗

0 − ξ∗

ν∗
D + ν̃Dγ ∗

0
. (6.14)
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Here,

ξ∗
0 = ξ0

ρ0ν
= μ0gθ

−1/2
0g

(
1 + θ0g

)1/2
γ ∗

0 , (6.15)

ξ∗ = ξ

ρν
= μθ−1/2 (1 + θ)1/2 γ ∗, (6.16)

where ρ0 = m0n0 and θ = mTg/(mgT ).
In the Brownian limit, ξ∗

0 → γ ∗
0 , ξ∗ → γ ∗ and ν̃D → 1, and (6.14) reduces to

DU B∗
0 = γ ∗

0 − γ ∗

ν∗
D + γ ∗

0
, (6.17)

which is consistent with the previous results (Gómez González & Garzó 2022a, 2023)
derived from the Langevin-like model.

6.5. Self-diffusion limiting case
Another interesting limiting case corresponds to the self-diffusion problem, namely when
the intruders move in a granular gas whose particles are mechanically equivalent to it
(σ = σ0, m = m0, α = α0). In this case, ξ∗ = ξ∗

0 , τ0 = 1, ∂χτ0 = ∂φτ0 = 0, and so (6.3) and
(6.14) yield DT = DU

0 = 0 as expected. Moreover, D∗
0 = −D∗ and hence the constitutive

equation (1.1) for the mass flux becomes

j (1)
0 = −nT

ν
D∗

0,self∇x0, (6.18)

where x0 = n0/n is the concentration (or mole fraction) of the tracer species and the self-
diffusion coefficient D∗

0,self is

D∗
0,self =

1
ν∗

D,self + γ ∗ν̃D,self
. (6.19)

In (6.16),

ν∗
D,self =

√
2π(d−1)/2

dΓ

(
d

2

) (1 + α), ν̃D,self = m

m + mg

(
1 + mgT

mTg

)1/2

. (6.20)

6.6. Some illustrative systems
The expressions of the diffusion transport coefficients DT , D, D0 and DU

0 in the steady
state are given by (6.3), (6.10), (6.12) and (6.14), respectively. As usual in the study of
transport properties in dry granular gases (Brey et al. 1998; Garzó & Dufty 1999a),
to assess the impact of inelasticity in collisions on diffusion, the diffusion transport
coefficients are scaled with respect to their values for elastic collisions (α = α0 = 1). As
expected, these scaled diffusion coefficients depend in a complex way on the parameter
space (defined by the set (4.14)) of the system. Since the parameter space ξ is large, for
the sake of simplicity, henceforth we consider hard spheres (d = 3) with φ = 0.0052 (very
dilute granular gas), T ∗

g = 10 and with a common coefficient of restitution α = α0
Figures 3–6 show the α dependence of the (scaled) coefficients DT (α)/DT (1),

D(α)/D(1) D0(α)/D0(1), and DU
0 (α)/DU

0 (1), respectively. Four different values of the
mass ratio m/mg were considered; in all systems m0/m = 8 and σ0/σ = 2 (σ0/σ =
(m0/mg)

1/3). In addition, the results derived from the Brownian limiting case are also
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1.00
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D

T(
α

)/
D

T(
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Brownian limit

100
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1000

m0/mg = 20

Figure 3. Plot of the (scaled) thermal diffusion coefficient DT (α)/DT (1) versus the (common) coefficient
of restitution α = α0 for d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass ratio m0/mg

(20, 50, 100 and 1000). In all the curves m0/m = 8, σ0/σ = 2 and σ0/σg = (m0/mg)1/3. The dashed line
refers to the expression (6.8) derived in the Brownian limiting case for the ratio DT (α)/DT (1).

1.00

0.98

0.96D
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)/
D

(1
)

0.94
0 0.2 0.4 0.6 0.8 1.0

α

Brownian limit

100
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1000

m0/mg = 20

Figure 4. Plot of the (scaled) mutual diffusion coefficient D(α)/D(1) versus the (common) coefficient
of restitution α = α0 for d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass ratio m0/mg

(20, 50, 100 and 1000). In all the curves m0/m = 8, σ0/σ = 2 and σ0/σg = (m0/mg)1/3. The dashed line
refers to the expression (6.11) derived in the Brownian limiting case for the ratio D(α)/D(1).

shown for comparison. In this case, the diffusion coefficients DT , D, D0 and DU
0 are

given by (6.8), (6.11), (6.13) and (6.17), respectively. The main objective of figures 3–6 is
to show how the combined effect of both inelasticity and the mass ratio m0/mg affects
the diffusion of intruders in a granular suspension. Additionally, since our results apply to
arbitrary values of the mass ratio, we aim to evaluate for practical purposes the conditions
under which the diffusion coefficients converge to their values in the so-called Brownian
limit case.

We observe that in general the diffusion transport coefficients deviate from their
elastic forms, especially for strong inelasticity as expected. However, these deviations
are much smaller than those that have been found for dry (no gas phase) granular
mixtures (see for example, figures 4, 5 and 6 of Garzó, Murray & Vega Reyes (2013) for
x0 = 0.2). This means that the surrounding molecular gas generally hinders the diffusion
of tracer particles in a granular gas. While the (scaled) thermal diffusion and tracer
diffusion coefficients exhibit a monotonic dependence on the coefficient of restitution
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Figure 5. Plot of the (scaled) tracer diffusion coefficient D0(α)/D0(1) versus the (common) coefficient
of restitution α = α0 for d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass ratio m0/mg

(20, 50, 100 and 1000). In all the curves m0/m = 8, σ0/σ = 2 and σ0/σg = (m0/mg)1/3. The dashed line
refers to the expression (6.13) derived in the Brownian limiting case for the ratio D0(α)/D0(1).
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Figure 6. Plot of the (scaled) velocity diffusion coefficient DU
0 (α)/DU

0 (1) versus the (common) coefficient
of restitution α = α0 for d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass ratio m0/mg

(20, 50, 100 and 1000). In all the curves m0/m = 8, σ0/σ = 2 and σ0/σg = (m0/mg)1/3. The dashed line
refers to the expression (6.17) derived in the Brownian limiting case for the ratio DU

0 (α)/DU
0 (1).

(DT (α)/DT (1) (D0(α)/D0(1)) decreases (increases) with inelasticity) regardless of the
mass ratio considered, the (scaled) mutual diffusion coefficient D(α)/D(1) has a non-
monotonic dependence on α. This kind of trend is not entirely new: a similar behaviour
has already been analysed using a random-walk interpretation in the Fokker–Planck model
(Gómez González et al. 2023), where the effect was attributed to the competition between
two opposite trends: (i) the decrease of the effective mean free path with increasing α,
which reduces the persistence of the intruders’ trajectories, and (ii) the increase of the
collision frequency in the quasielastic regime, which enhances the number of effective
steps. The balance between these two competing tendencies explains the emergence of
non-monotonicities in the tracer diffusion coefficient. In the present collisional model, the
same physical mechanism could explain the observed results.

With respect to the mass ratio, for a fixed value of the (common) coefficient of
restitution, it is quite obvious that the (scaled) thermal diffusion coefficient increases
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with increasing mass ratio, while the (scaled) tracer diffusion coefficient decreases with
increasing mass ratio. The behaviour of the (scaled) mutual diffusion coefficient depends
on the range of values of α considered since there are crossings between the different
curves. The (scaled) velocity diffusion coefficient has no analogue in the dry granular case.
We see that it always increases with increasing inelasticity. Moreover, at a given value of
α, it increases with decreasing mass ratio m/mg . We also observe that the convergence
of the curves towards the Brownian limiting case is slower than that found by Gómez
González & Garzó (2022b) for monocomponent granular suspensions. In this latter case,
the results derived for finite values of m/mg practically coincide with those obtained in
the Brownian limit for values of the mass ratio around 50. Figures 3–6 clearly show that
there are still (small) discrepancies between the results derived here and those obtained in
the Brownian limit for values of the mass ratio m0/mg = 1000.

7. An application: segregation of intruders in a granular suspension
As mentioned in § 1, an interesting application of the results displayed in § 6 is the
the study of the segregation of intruders by thermal diffusion in a granular suspension.
Needless to say, thermal diffusion segregation is likely one of the most common
phenomena appearing in polydisperse systems. It occurs in a non-convective steady state
(U = Ug = 0) due to the existence of a temperature gradient, which causes the movement
of the different species of the mixture. In the steady state, remixing of species generated
by diffusion is balanced by segregation caused by temperature differences. To quantify the
degree of segregation along the temperature gradient it is usual to introduce the thermal
diffusion factor Λ (Kincaid et al. 1987). In a steady state without convection and where
the mass flux is zero ( j (1)

0 = 0), the thermal diffusion factor is defined as

− Λ
∂ ln T

∂z
= ∂

∂z
ln

(n0

n

)
, (7.1)

where for the sake of simplicity we have assumed that gradients occur only along the
z axis. In addition, we also assume that the gravitational field is parallel to the thermal
gradient, namely g = −gêz , where êz is the unit vector in the positive direction of the z
axis.

We consider a scenario in which the intruders have a larger size than the granular gas
particles (σ0 > σ ). Furthermore, as said before, since gravity and the thermal gradient
point in the same direction, then the lower plate is hotter than the upper plate (∂z ln T < 0).
Based on (7.1), when Λ > 0, intruders rise relative to granular gas particles (∂z ln(n0/n) >

0), leading to an accumulation of tracer particles near the cooler plate. This situation is
commonly known as the Brazil nut effect (BNE). Conversely, for Λ < 0, intruders fall
relative to granular gas particles (∂z ln(n0/n) < 0), resulting in an accumulation near
the hotter plate. This situation is known as the reverse Brazil nut effect (RBNE). A
representative diagram of segregation dynamics is shown in figure 7.

We express the thermal diffusion factor in terms of the diffusion transport coefficients.
In the steady state, to first order in spatial gradients, the momentum balance (2.10)
reduces to (

1 − εκ∗) + (
1 − εμ∗) ∂z ln n

∂z ln T
= −g∗, (7.2)

where

g∗ = ρg

n∂zT
< 0 (7.3)
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g

Λ < 0

Λ > 0

∂zT

Figure 7. A representative diagram of the BNE (Λ > 0) and RBNE (Λ < 0) for a ternary system composed of
molecular particles (blue), granular particles (green) and intruders (red).

is a dimensionless parameter measuring the gravity relative to the thermal gradient, κ∗
and μ∗ are the (reduced) thermal conductivity and diffusive heat conductivity transport
coefficients, respectively, and

ε = (d + 2)
√

π

2d+3(d − 1)

μχ−1/2

φ
√

T ∗
g

X (θ). (7.4)

Here, X (θ) = θ−1/2(1 + θ)−1/2. The explicit forms of κ∗ and μ∗ are displayed in the
supplementary material. Upon obtaining (7.2), use has been made of the result in the
leading Sonine approximation (Gómez González & Garzó 2022b):

F (1)
[

f (1)
] → 1

d + 2
ρμγ

n
κ0 X (θ)

(
κ∗∂z ln T + μ∗∂z ln n

)
, (7.5)

where

κ0 =
d(d + 2)2Γ

(
d

2

)
16(d − 1)π

d−1
2

σ 1−d

√
T

m
(7.6)

is the low-density value of the thermal conductivity for an ordinary gas of hard spheres.
According to (1.1), when �U = 0, the condition j (1)

0,z = 0 yields the relation

− D∗
0∂z ln n0 = D∗∂z ln n + D∗

T ∂z ln T, (7.7)

where D∗
T , D∗ and D∗

0 are given by (6.3), (6.10) and (6.12), respectively. From (7.2) and
(7.7), the thermal diffusion factor can be written as

Λ = ∂z ln n

∂z ln T
− ∂z ln n0

∂z ln T
= D∗

T + (
D∗

0 + D∗) (εκ∗ − 1 − g∗)
(
1 − εμ∗)−1

D∗
0

. (7.8)

In the Brownian limit (m/mg → ∞), μ → 1 and θ → ∞, so that ε → 0. In this limiting
case, Λ reduces to

Λ = D∗
T − (

D∗
0 + D∗) (1 + g∗)

D∗
0

. (7.9)

Equation (7.9) agrees with previous results derived for the segregation of massive intruders
in a granular suspension (Gómez González & Garzó 2022a).

Since (6.12) clearly shows that D∗
0 > 0, then the curves delineating the regimes between

the segregation towards the cold and the hot wall (BNE/RBNE transition) are determined
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Figure 8. Plot of the marginal segregation curve (Λ = 0) for a (common) coefficient of restitution α = α0 = 0.7
and |g∗| → 0. The parameters used are: d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass ratio
m0/mg (20, 50, 100 and 1000). The points below the curve correspond to Λ > 0 (BNE), while the points above
the curve correspond to Λ < 0 (RBNE). The dashed line is the result obtained in the Brownian limiting case.

from the condition (
1 − εμ∗) D∗

T = − (
D∗

0 + D∗) (
εκ∗ − 1 − g∗) . (7.10)

7.1. Mechanically equivalent particles
In this scenario, D∗

T = 0 and D∗ = −D∗
0 ; thus, (7.10) is valid for any values of the

coefficients of restitution, masses and diameters. Consequently, as in the Brownian limit
(Gómez González & Garzó 2023), no segregation occurs in the system.

7.2. Different mechanical properties

7.2.1. Absence of gravity (|g∗| → 0)
Let us first consider a scenario where gravitational effects are negligible (|g∗| → 0). Under
this assumption, the condition Λ = 0 reads(

1 − εμ∗) D∗
T = − (

D∗
0 + D∗) (

εκ∗ − 1
)
. (7.11)

Figure 8 shows the BNE/RBNE phase diagram for a three-dimensional system (d = 3)
with a common coefficient of restitution α = α0 = 0.7, T ∗

g = 10 and five distinct values
of the mass ratio m0/mg (20, 50, 100, 1000, and the Brownian limit m0/mg → ∞).
At first glance, we notice a quantitative discrepancy with the diagrams shown in Gómez
González & Garzó (2023) for |g∗| → 0. These discrepancies were expected since, in that
work, segregation was calculated for moderate densities, unlike here (φ = 0.0052). Also,
when using the Fokker–Planck approach (3.12) for the operator J0g[ f0, fg], we see that
the expression (4.18) of γ ∗

0 employed here slightly differs from the expression of γ ∗
0,F P

defined by Gómez González & Garzó (2023). Specifically, γ ∗
0,F P = (σ0/σ)(σ/σ 0)

d−1γ ∗
0 .

This discrepancy is because γ ∗
0,FP was obtained from the granular literature using

phenomenological arguments.
However, what is surprising is the complete reversal we see in the diagram when we

observe the RBNE effect as we increase m0/m, contrary to what is observed in Gómez
González & Garzó (2023). This requires a more subtle explanation. When calculating the
diagrams in the case of an effective model where the thermostat is modelled by a Fokker–
Planck equation, the thermostat intensity is regulated only by the (dimensionless) bath
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temperature T ∗
g . If this parameter is kept constant, as in the figures 11 and 12 reported

by Gómez González & Garzó (2023), the thermostat does not change when the mass
(m0/m) or size (σ0/σ ) ratios are modified. However, in our case, we modify m0/m (or
σ0/σ ) keeping m0/mg constant for each particular curve. Thus, by modifying the mass
ratio m0/m for a particular value of m0/mg , the relative mass between the granular and
molecular gas changes. Therefore, the effect of the collisions between the grains and the
particles of the molecular gas will be different. Concretely, if we increase m0/m without
changing m0/mg , the molecular gas will have a mass increasingly similar to that of the
grains. Consequently, the thermalising effect of the molecular gas that compensates for
the effect of inelasticity will be more effective, causing the temperature of the granular
gas to be higher and thus tend to increase with respect to that of the intruders (RBNE). We
observe the same when we increase the size ratio (σ0/σ ). In this case, for a given m0/mg
(or equivalently σ0/σg), as the size of the intruders increases, the grains will have a size
increasingly similar to the particles of the surrounding molecular gas; thus the effective
area of the grain in a collision decreases, and, with it, the number of collisions. Therefore,
the grain will have less effective thermalisation and will move to the cold zone (BNE).

On the other hand, as we increase m0/mg , we see that the transition to the RBNE
phase occurs earlier. This is because, by increasing the mass more rapidly than the size
(m0/mg = (σ0/σg)

d ), the effect of intruder–molecular gas collisions in the motion of
intruders becomes less effective. In the curves where the mass ratios m0/mg are close
to each other, the relative size also plays an important role, and crossings can be observed,
as was the case in figure 4.

Moreover, for elastic collisions (α = α0 = 1), the segregation criterion notably deviates
from the classical result obtained for molecular mixtures of hard spheres by Kincaid et al.
(1987), where, in the first Sonine approximation, the condition Λ = 0 yields the simple
segregation criterion m0/m = 1. For the present system (intruders moving in a granular
gas immersed into a molecular gas), our analysis reveals that there is no segregation for
the remaining parameters considered in figure 8.

7.2.2. Thermalised systems (∂zT → 0)
Let us explore a scenario where gravity is the main factor influencing segregation
dynamics. In this situation, |g∗| → ∞, which makes the temperature gradient negligible
(∂yT → 0), and the condition Λ = 0 leads to the relation

D∗
0 + D∗ = 0. (7.12)

Figure 9 shows the case |g∗| → ∞ with the same parameters as figure 8. In this strong-
gravity case, the explanation is simpler. Gravity is much stronger than both the energy
coming from the molecular gas and the energy lost in inelastic collisions, as seen in
granular suspensions and driven granular gases (Garzó 2008; Gómez González & Garzó
2023; Gómez González et al. 2024). Because of this, all particles fall to the bottom
plate. Heavier intruders are harder to lift, so they move downward (RBNE). However, if
the intruders are larger but keep the same mass, smaller particles hit more often. These
collisions push the smaller particles below the intruders, lifting them and creating a
buoyancy effect (BNE)

For elastic collisions (α = α0 = 1), the cooling rate vanishes (ζ ∗ = 0), and there is
equipartition of energy (τ0 = 1). Thus, it is straightforward to verify from (6.10) and (6.12)
that the segregation criterion simplifies to m0/m = 1. This result aligns with previous
findings for dry granular gases (i.e. in the absence of an interstitial gas phase) (Brey et al.
2005; Garzó 2006, 2011), as well as with those obtained in the coarse-grained approach
by using the Fokker–Planck equation (Gómez González & Garzó 2023).
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Figure 9. Plot of the marginal segregation curve (Λ = 0) for a (common) coefficient of restitution α = α0 = 0.7
and and |g∗| → ∞. The parameters used are: d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass
ratio m0/mg (20, 50, 100 and 1000). The points below the curve correspond to Λ > 0 (BNE), while the
points above the curve correspond to Λ < 0 (RBNE). The dashed line is the result obtained by using the
Fokker–Planck approach (2.17) to the operator Jg[ f, fg].
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Figure 10. Plot of the marginal segregation curve (Λ = 0) for a (common) coefficient of restitution α = α0 =
0.7 and and |g∗| = 1. The parameters used are: d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the
mass ratio m0/mg (20, 50, 100 and 1000). The points below the curve correspond to Λ > 0 (BNE), while
the points above the curve correspond to Λ < 0 (RBNE). The dashed line is the result obtained by using the
Fokker–Planck approach (2.17) to the operator Jg[ f, fg].

7.2.3. General case
As a final situation, we consider the general case where the effects of the temperature
gradient and gravity are comparable. To exemplify this, figure 10 shows the marginal
segregation curve for a reduced gravity |g∗| = 1 and for the same systems as depicted
in figures 8 and 9.

The main point is that, unlike in dry granular mixtures and granular suspensions (Garzó
2019; Gómez González & Garzó 2023; Gómez González et al. 2024), gravity has a
weaker effect than the thermal gradient, keeping the BNE/RBNE transition quite similar
to that shown in figure 8. The explanation can be the same as in the case without gravity
since, when increasing m0/m, the relative mass of the grains compared with molecular
particles decreases. As a result, the thermalisation due to the surrounding fluid does not
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Figure 11. Plot of the marginal segregation curve (Λ = 0) for a (common) coefficient of restitution α = α0 = 1
and and |g∗| = 1. The parameters used are: d = 3, φ = 0.0052, T ∗

g = 10 and four different values of the mass
ratio m0/mg (20, 50, 100 and 1000). The points below the curve correspond to Λ > 0 (BNE), while the
points above the curve correspond to Λ < 0 (RBNE). The dashed line is the result obtained by using the
Fokker–Planck approach (2.17) to the operator Jg[ f, fg].

remain constant, making thermal effects more pronounced even when gravity is present. To
complement the phase diagram shown in figure 10 for inelastic collisions, in figure 11 we
plot the marginal segregation curve (Λ = 0) for the same values of the mass ratio m0/mg
as in figure 10 but for elastic collisions. It is quite apparent from the comparison between
figures 10 and 11 that the inelasticity of collisions plays a secondary role in the segregation
behaviour in this case since we observe practically no differences between both figures.

8. Summary and concluding remarks
This paper aims to determine the diffusion transport coefficients for tracer (or intruder)
particles within a granular gas modelled as a gas of inelastic hard spheres. Intruders and
granular gas are immersed in a bath of elastic hard spheres (molecular gas). We examine
scenarios where the granular particles are sufficiently dilute, ensuring the molecular gas
remains unaffected and serves as a thermostat at a given temperature Tg . Unlike other
suspension models, which consider an effective fluid–solid force, our model accounts
for both inelastic collisions between the tracer and granular particles, as well as among
the granular particles themselves. Additionally, it takes into account the elastic collisions
between the grains and molecular gas particles, as well as between the intruders and
molecular gas. We consider the low-density regime for the suspended solid particles
and, hence, the velocity distribution functions f (r, v, t) and f0(r, v, t) for grains and
intruders, respectively, obey the (inelastic) Boltzmann equations.

To ensure a consistent theoretical framework, we first analyse homogeneous reference
states as a basis for applying the Chapman–Enskog method and obtaining then the
diffusion transport coefficients. In the homogeneous state, we present new results for
the temperature ratio χ0 = T0/Tg and the kurtosis c0 associated with the intruders.
As in the case of the granular gas (Gómez González & Garzó 2022b), we find that
the tracer temperature ratio χ0 shows larger deviations from unity as the mass ratio
m0/mg decreases. Regarding the kurtosis c0 (which measures the departure of the tracer
distribution from its Maxwellian form), as for the granular gas (Gómez González & Garzó
2022b), our results clearly show that this quantity remains small enough to validate the
use of the Maxwellian approximation for the velocity distributions.
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We compared the theoretical results derived in the HSS for χ0 and c0 with DSMC data,
and the agreement is remarkable. This justifies the use of the Maxwellian distribution
(4.12) to achieve accurate estimates of the cooling rates ζ0 and ζ0g . We also observe the
convergence of the results in the Brownian limit (m/mg → ∞ and m0/mg → ∞) with
those obtained in previous works (Gómez González & Garzó 2019, 2023) by using the
Fokker–Planck approach.

Once the homogeneous state is characterised, the corresponding set of kinetic equations
for the mixture were addressed using the Chapman–Enskog method (Chapman & Cowling
1970), up to first order in spatial gradients. From this solution, the four diffusion transport
coefficients are derived by considering the leading terms in a Sonine polynomial expansion
of the first-order distribution function. In dimensionless form, these diffusion coefficients
are given in terms of eight dimensionless parameters: the diameter ratios σ/σg and σ0/σg ,
the mass ratios m/mg and m0/mg , the coefficients of restitution α and α0, the (reduced)
bath temperature T ∗

g and the volume fraction φ (which is considered to be quite small since
we are considering a very dilute granular gas). Compared with previous attempts to obtain
tracer diffusion coefficients in granular suspensions (see e.g. Gómez González & Garzó
2023) by starting from a coarse-grained approach, our results provide a more general
description of the dependence of diffusion on mass (m/mg and m0/mg) and diameter
(σ/σg and σ0/σg) ratios. As expected, the expressions for the tracer diffusion coefficients
agree with previous results derived in the Brownian limit from the Fokker–Planck operator
(Gómez González & Garzó 2023). Thus, with respect to previous attempts for obtaining
tracer diffusion coefficients in granular suspensions (Gómez González & Garzó 2023) by
starting from a coarse-grained approach, our results provide a more general description of
the dependence of the diffusion on the mass (m/mg and m0/mg) and diameter (σ/σg and
σ0/σg) ratios. In particular, as expected, the expressions for the tracer diffusion coefficients
agree with previous results derived in the Brownian limit from the Fokker–Planck operator
(Gómez González & Garzó 2023). In this context, the present results encompass the
previous ones as a special case, thus covering interesting physical situations that had not
previously been analysed from a theoretical perspective.

In general, the diffusion coefficients exhibit significant deviations from their elastic
counterparts, particularly under strong inelasticity. A key result is that convergence to the
predictions of the effective model is achieved only at large mass ratios m0/mg ≈ 1000,
which contrasts with the convergence observed in a monocomponent granular suspension
where agreement was found at m/mg = 50 (Gómez González & Garzó 2022a). This
emphasises the ability of the model to capture more realistic scenarios beyond the scope
of Fokker–Planck-based models.

As an application, we investigate segregation driven by both thermal gradients and
gravity. We find that increasing the mass ratio m0/mg tends to push the intruders towards
the bottom plate (RBNE), regardless of the gravitational strength. This behaviour contrasts
with the results derived from the Fokker–Planck model (Gómez González & Garzó 2023).
In that model, the thermostat effect remains constant (set by T ∗

g ), whereas in our model
it depends on m0/mg , resulting in different thermalisation dynamics. The main novelty
of the study reported here, compared with previous works on dry granular mixtures
(see e.g. Garzó 2008, 2011), is the analysis of the role of m0/mg at fixed α. Unlike
the dry case, where inelasticity strongly affects BNE/RBNE transitions due to energy
non-equipartition, here its impact is reduced because the molecular gas injects energy
homogeneously, compensating collisional dissipation and effectively suppressing partial
temperature differences through thermalisation.

The results reported in this work suggest a framework to study experimentally the
influence of an interstitial gas on segregation dynamics. In this context, a feasible
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experiment can be designed following the approach discussed in Gómez González et al.
(2023). A suitable system to represent the low-Reynolds-number regime, in which the
effect of granular collisions is comparable to the effect of the thermal bath, can be realised
by immersing gold grains in hydrogen gas at low pressure. In this set-up, the molecular
gas provides a homogeneous thermal bath with appropriate viscosity ηg , such that the
Reynolds numbers remain very small (Re ∼ 10−4) and the Stokes number, T ∗

g , as well as
γ /ν, are all close to unity. This ensures that the molecular gas effectively thermalises the
granular particles, while the effect of granular collisions remains significant.

Once the particles composing the system are selected, an experimental set-up to
investigate segregation of intruders in a granular gas immersed in an interstitial fluid
can be designed based on previous studies (Möbius et al. 2001; Naylor, Swift & King
2003; Sánchez, Swift, & King 2004; Wylie et al. 2008; Clement et al. 2010; Pastenes,
Géminard & Melo 2014). The set-up can consist of a transparent container with a porous
base to allow fluid flow while maintaining particle collisions, filled with small granular
particles and a single intruder whose mass and size can be adjusted. The interstitial fluid,
either a gas or a liquid, occupies the voids between particles, enabling the study of drag
and thermalisation effects. The container is subjected to controlled vertical or horizontal
vibrations with adjustable amplitude, and the position of the intruder is tracked using
high-speed imaging. By varying the intruder’s mass and size and the properties of the
fluid, this set-up allows for systematic measurement of segregation phenomena, including
the influence of mass ratio and interstitial fluid on the BNE/RBNE transition.

Finally, it is important to remark that to facilitate the solution of the integral equations
verifying the mixture, we have considered the tracer limit where one of the species is
present at a negligible concentration. A possible extension of this work is to generalise
diffusion to a binary mixture with arbitrary concentrations. In addition, it may be
interesting to study the role of density in the diffusion and segregation diagrams using
the Enskog kinetic equation which applies to moderate densities. Moreover, revisiting the
problem within a simplified random-walk framework could shed light on the underlying
mechanisms responsible for the observed non-monotonicities and the crossing of curves
in the tracer diffusion coefficient. These studies will be developed in future projects.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.10806.
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