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Abstract: Evidence Synthesis has seen an enormous increase recently, across many 

different scientific disciplines. Despite its popularity, it has also been the subject of 

significant criticism. One of the main critiques of evidence synthesis, is the existence 

and treatment of heterogeneity between primary studies. The aim of this paper is to 

re-examine heterogeneity in evidence synthesis, including perspectives from 

evolutionary biology, ecology and conservation. I argue that while some of the 

critiques of heterogeneity remain valid, there are contexts where it is much less 

problematic. Furthermore, I propose that heterogeneity can be useful, as analysing it 

can provide valuable information. 
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1. Introduction  

In many scientific disciplines, including Medicine, Psychology and Biology, there are 

often multiple individual studies addressing each research question. These are referred to as 

‘primary research’ and are usually observational or experimental studies that directly 

investigate a question or phenomenon, by observing connections between causes and effects 

or actively manipulating systems to bring about certain effects. However, primary studies 

usually differ in a number of ways: whether they are observational or experimental, whether 

the experiment is in a laboratory or in the field, which variables are being measured, the type 

and size of the population being studied, and so on.  So, replicating the results of a study is 

not always feasible (Hardwicke et al. 2020; Koricheva et al. 2013; Marsden et al. 2018; 

Mueller-Langer et al. 2019). Moreover, these differences between primary studies often make 

comparing their results difficult. Scientists are increasingly using ‘evidence synthesis’, which 

primarily consists of systematic review and meta-analysis, to integrate and synthesise results 

from individual studies, so as to provide general answers to the original research questions, as 

well as information about the scope of their results (Gurevitch et al. 2018, Koricheva et al. 

2014, Stegenga 2011).  

There has been an explosion of evidence synthesis in the literature, with many disciplines 

seeing an exponential increase in systematic review and meta-analysis papers between the 

1990s and the 2010s (see for example Cadotte et al., 2012; Chen & Jhanji, 2012; Fontelo & 

Liu, 2018; Taylor & Munafò, 2016). Perhaps unsurprisingly, the reception of evidence 

synthesis has progressed along the typical trajectory of novel methodologies, with an initial 

period of hype, followed by a wave of skepticism about its role and usefulness in the greater 

context of scientific practice. Following some savage critiques of particularly problematic 

instances of meta-analysis (Ioannidis 2005; 2016), the excitement surrounding the 

methodology dampened. Established scholars in various fields began to take on evidence 

synthesis, warning scholars not to rely on these methods, as they would not only fail at their 

intended goals (e.g. of minimizing bias and helping to overcome the replication crisis) but 

could actively lower the overall quality of research in a field. The two main critiques are: (i) 

that evidence synthesis perpetuates existing biases and introduces new types of bias 

(Ioannidis 2005; 2016; Romero 2016; Stegenga 2011; Watkins et al. 2021), and (ii) that 

primary studies are too diverse to allow for meaningful comparisons or synthesis, so any 

synthesis will necessarily be flawed (Carpenter 2020; Ioannidis et al. 2007; Spake et al. 2022; 

Whittaker 2010).  
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Philosophers have begun to enter the furore surrounding evidence synthesis (Berchialla et 

al. 2020; Bruner and Holman 2019; Fletcher 2022; Holman 2019; Jukola 2017; Kovaka 2022; 

LaCaze and Osimani 2020; Maziarz 2022; Stegenga 2011; Worrall 2002). Yet the 

philosophical coverage of the various topics is not comprehensive, as most papers focus on 

evidence synthesis in the context of medicine and parts of psychology (Berchialla et al. 2020; 

Bruner and Holman 2019; Fletcher 2022; Holman 2019; Jukola 2017; 2017; LaCaze and 

Osimani 2020; Maziarz 2022; Worrall 2002). In addition, many philosophical accounts side 

with the skeptics, emphasizing the misuses of meta-analysis rather than its potential value 

(Jukola 2017; Maziarz 2022; Romero 2016; Stegenga 2011). Finally, there have been no 

thorough philosophical examinations of the issue of heterogeneity in evidence synthesis, 

which take into account evidence synthesis in biology as well as medicine and the social 

sciences.  

The aim of this paper is to re-examine the issue of heterogeneity in evidence synthesis. 

While the original critiques of heterogeneity highlight some valid points, I will argue that 

these points are mostly relevant when the main goal is to generate causal confidence, which 

usually occurs in the field of medicine. However, evidence synthesis can be used for different 

purposes, such as arbitrating between contradictory results and exploring the scope of 

generalisations, as is often the case in evolutionary biology, ecology and conservation. In 

cases like these, heterogeneity is less problematic than it has hitherto been portrayed, and can 

sometimes be positive, in the sense that it can provide useful information and even, on 

occasion, yield novel insights. I begin by providing a short overview of some key terms and 

processes in evidence synthesis (section 2). I then delve deeper into the notion of 

heterogeneity and outline the main critiques levelled against it (Section 3). I argue that 

evidence synthesis is used for different purposes, which usually align with different 

disciplines (e.g. medicine vs biology) (section 4). In section 5, I explain when and why 

heterogeneity is genuinely problematic, and in section 6, I contrast these cases with some 

where heterogeneity can be valuable. Section 7 provides some concluding remarks.   

2. Evidence Synthesis: key terms and procedures 

The terminology surrounding evidence synthesis can be confusing, as different bodies of 

literature have emerged within each discipline that utilises it. While the Cochrane Handbook 

is often cited as the final word in terms of definitions, there are some terms that are discipline 

specific (Gurevitch et al. 2018; Nakagawa et al. 2020; Siddaway et al. 2019). In the 

philosophical literature, most papers adopt the terminology from various branches of 
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medicine or psychology, yet some philosophers have coined new terms to describe aspects of 

‘meta-research’ (see for example Osimani, 2020 and table 1). As this paper focuses primarily 

on evidence synthesis in biology, I will be following the terminology of that field. I should 

note that this terminology (i.e. in the biology literature) is quite comprehensively thought out, 

as there are a number of papers which explain and justify key terms, while the majority of 

these terms follow, or at least are compatible with, the Cochrane Handbook’s terminology 

(Gurevitch et al. 2018; Nakagawa et al. 2020). Finally, this terminological usage is 

widespread and relatively consistent within the biological evidence synthesis literature.  

To avoid further confusion, I have summarised some key terms in the following table 

(Table 1), indicating relevant references, along with some clarifications that may be helpful to 

the readers.  

Following the biology literature, I will use ‘evidence synthesis’ as the term which 

includes systematic review and meta-analysis. These two procedures are not entirely 

independent from each other, in the sense that meta-analyses include the steps that constitute 

systematic reviews, yet systematic reviews are a legitimate stand-alone tool for evidence 

synthesis (see Table 1).  

3. Heterogeneity and its effects 

The main source of heterogeneity in evidence synthesis is the primary research on which 

the synthesis is based. Primary studies differ in many ways, in terms of their inputs (such as 

experimental setup, type of intervention, length of treatment, phenomenon/species/taxon 

being studied) and outputs (such as effect size, magnitude/direction of effect, how the effect 

is measured/presented). The more variation there is in the sample of papers that are analysed, 

the more heterogeneity there is in the synthesis. In addition, the larger the basic pool of 

papers is, the more heterogeneous they are likely to be, as a larger pool of papers increases 

the likelihood that there will be differences between inputs (experimental setup, species 

studied, dosage etc). Any differences in inputs are likely to result in differences of outputs 

(effect size, magnitude/direction of effect etc.). Still, limiting the number of studies too much 

is also dangerous, as it can increase the risk of bias (such as publication bias, which occurs 

because positive results tend to be published more often than neutral or negative results 

(Sánchez-Tójar et al., 2022)). Thus, researchers aim to find the ‘sweet spot’ so that their 

synthesis is broad enough to reduce biases yet homogeneous enough to make comparisons 

meaningful. As we shall see, this sweet spot differs greatly depending on the discipline and 

the aim of the evidence synthesis.  
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3.1. Measuring Heterogeneity  

As shown in table 1, important steps in a meta-analysis include assigning a weight to each 

study, based on its quality, and estimating the overall effect of all the primary studies taken 

together. Cases with low heterogeneity, i.e. with little variation between primary studies, are 

deemed ‘simple’. Here, any differences in the observed effects between primary studies is 

assumed to be due to sampling error (Senior et al. 2016). Accordingly, the weight of the study 

is based on its sample size: the larger the sample size the higher the quality of the study and 

consequently, the more weight it is assigned (Dettori et al. 2022; Nakagawa et al. 2022). In 

statistical terms, this amounts to the inverse of the overall error variance.  

In more ‘complicated’ cases, i.e. those with high heterogeneity between primary studies 

or non-independent
1
 data sets, researchers use random effects or multi-level statistical models 

(Nakagawa and Santos 2012). In these cases, the level of heterogeneity (or non-

independence) affects the weighting of the primary studies: rather using the inverse of error 

variance, researchers use the inverse of the error variance plus the ‘variance in true effects’. 

This, in essence, dampens the effect of the weighting, so the higher the amount of 

heterogeneity, the smaller the effect of the weighting. The reason for doing this is that in 

cases of high heterogeneity, a higher sample size only protects against some types of bias, but 

not all, so our confidence in the overall effect size should not be inflated just because of large 

sample sizes.  

The amount of heterogeneity in the study pool is also reflected in the final stage of a 

meta-analysis, where researchers qualify the overall effect by an ‘index of precision’, i.e. 

variance, standard error, or confidence interval. In medicine, this is usually achieved through 

a ‘Risk of Bias Assessment’ which amounts to a set of statistical tests that are aimed to 

identify what, if any, biases can be identified in the literature as a whole, and the meta-

analysis in particular (J. P. Higgins et al. 2019; Sterne et al. 2019). Biologists are currently 

developing a risk of bias framework adapted for the particularities of meta-analysis in 

ecology and evolution (i.e. where the levels of heterogeneity and non-independence are much 

                                                 
1
 Non-independence refers to a situation where the data within or between primary studies is somehow related 

(and thus can lead to double counting, or at least artificially magnifying the effect of some 

variables/relationships). In biology, this usually occurs when (i) multiple proxies are used to measure a certain 

trait (e.g. mating success, breeding success and survival as a proxy for fitness) or when (ii) in studies that span 

multiple species there is phylogenetic relatedness between a subset of these species.  

https://doi.org/10.1017/psa.2025.10176 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10176


 

higher than those in medicine (Konno et al. 2024). These statistical tests offer a standardised 

method to interpret the results of the meta-analysis, in the sense that they can help researchers 

determine the confidence they should attach to the overall effect size of the meta-analysis. 

For example, a widely used measure of heterogeneity is I
2
, which refers to the percentage of 

variance between effect sizes that cannot be accounted for by sampling error (Higgins and 

Thompson 2002). In fact, the widespread use of I
2
 has allowed for the adoption of 

heterogeneity benchmarks, with 25%, 50%, and 75% respectively referring to small, medium, 

and high heterogeneity (Senior et al. 2016). 

How much heterogeneity is typical? The answer depends on the discipline. In medicine, 

heterogeneity is relatively low, with 30-55% of studies having an I
2 

value of 0 (that is, in 30-

55% of studies there are differences in effect sizes that cannot be explained by sampling 

error) (Cuijpers et al. 2021; Higgins and Thompson 2002; Senior et al. 2016). This is because 

studies tend to focus on one species (humans), a single type of intervention (e.g. a particular 

drug) and similar protocols. Here heterogeneity comes from differences in the population 

samples (e.g. age group, geographical region, gender), experimental setup or intervention 

procedures (e.g. different dosages). In biology, heterogeneity is typically much higher 

(Nakagawa and Santos 2012; Whittaker 2010). More specifically, Senior et al. (2016) show 

that ecologists should expect an I
2
 of 90% or more, with only 4.65% of studies having an I

2 

value of 0. This is not surprising, as primary research in biology can vary in many more 

ways, including the species being studied and the method used to collect data. For example, 

when estimating primary productivity, the methods employed for measurement are radically 

different, depending on the types of vegetation being studied. In grasslands, it is usual to 

measure the ratio of above to below ground biomass, whereas in forests, measurements focus 

on above-ground biomass (the uprooting of entire trees being rather inefficient and not 

always ethical) (Whittaker, 2010).  

3.2. The problem of heterogeneity  

The worry with heterogeneity in evidence synthesis is that too many differences between 

primary studies renders comparisons between them difficult, misleading, or even completely 

meaningless (Carpenter 2020; Ioannidis et al. 2007; Spake et al. 2022; Whittaker 2010). For 

example, if one study tests the effect of drug A on lowering blood pressure, but another tests 

the effect of the same drug on the rate of heart attacks, then the effect in each study is 

different and so there is no way to calculate an overall effect. More specifically, heterogeneity 

between primary studies can create artificial differences between effect sizes of different 
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studies, thus obscuring the true effect of the intervention. For example, if studies of the same 

drug differ in terms of dose or in terms of the time the dose is administered, then the overall 

effect could be lower, thus suggesting that the drug is less effective than it actually is. Perhaps 

more worryingly, if only the larger dose was actually effective, but also created side effects in 

the patients, then pooling the studies could obscure the percentage of patients experiencing 

adverse effects, effectively concealing the problem.  

Similar arguments can be made for heterogeneity in biology, where heterogeneity is much 

larger (see section 3.1) (Senior et al., 2016). One of the most vociferous critiques of 

heterogeneity in biology is Whittaker’s (2010) argument against meta-analyses of the 

Species-Richness-Productivity Relationship (SRPR), which, he believes, amount to ‘mega-

mistakes’. A meta-analysis of SRPR typically aims to determine whether higher levels of 

species richness contribute to higher levels of productivity. As stated in section 3.1, primary 

productivity can be measured in two different ways (total biomass, vs ratio of above to below 

ground biomass). The reason for this difference is both legitimate and unlikely to change, as 

the former does not require the uprooting of the entire individual – something with cannot 

realistically be performed on trees, and only works in the context of grasses. Nonetheless, 

when a meta-analysis finds a difference between the productivity of grasslands and forests, is 

that a real difference between the two biomes or is it merely an artefact of the different 

methods used to measure productivity?  

Whittaker argues that we cannot be sure and concludes that meta-analyses in ecology are 

therefore meaningless. In contrast, he argues that if we keep variation in primary studies to a 

minimum, then any variation in the results of primary studies will be due to real causal 

factors (i.e. differences in the relationship between species richness and productivity). Thus, 

for example, a meta-analysis where all these factors are kept constant could reveal that high 

levels of species richness matter more for productivity in forests than it does for grasslands. 

Whittaker concedes that these constraints are quite high, yet he believes that they are 

essential for a good meta-analysis. Moreover, he uses the stringency of the constraints as an 

argument against the use of meta-analysis, as he believes biologists simply do not have the 

right kind of data to conduct meta-analyses of sufficiently high quality.   

Admittedly, Whittaker’s paper is, by now, fifteen years old, and the rhetoric feels 

somewhat dated. Evidence synthesis in biology has come a long way since 2010, in the sense 

that it is more widespread but also more thoroughly scrutinized (Gurevitch et al. 2018; 

Koricheva and Gurevitch 2014; Nakagawa et al. 2017; Nakagawa and Santos 2012). 

Biologists currently have more sophisticated statistical tools at their disposal (Nakagawa et 
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al. 2022; Nakagawa and Santos 2012), and more collective experience in conducting meta-

analyses and overcoming various problems that arise (Nakagawa and Cuthill 2007; Sánchez-

Tójar et al. 2018; Sánchez‐Tójar et al. 2020). Still, the high levels of heterogeneity worry 

even the staunchest advocates of meta-analysis in biology.  

There are two additional worries expressed in the biological literature. The first is that 

heterogeneity is not adequately reported in biological meta-analyses (Nakagawa and Santos 

2012; O’Connor et al. 2017; Schielzeth and Nakagawa 2022; Spake et al. 2022). This is 

problematic because it gives a false sense of security to meta-analytic results. Consider the 

following example (adapted from Spake et al., 2022): if a meta-analysis investigating the 

effect of land use change on biodiversity found an overall effect size of zero, this could be 

interpreted as evidence that land use change does not have an effect on biodiversity. 

However, this interpretation would only be correct if there was low heterogeneity between 

the studies, i.e. that all studies showed no (or at least non-significant) effects. If, on the other 

hand, there was high heterogeneity between studies, this would mean that some primary 

studies showed significant effects while others showed small or negative effects. In this case, 

we could not assume that the overall effect was representative of all cases. At the very least, 

we would need to conduct further investigations to determine what accounts for the 

heterogeneity and whether or not it could be reduced.  

The second worry is that meta-analytic results with high heterogeneity might not support 

generalisations (Nakagawa and Cuthill 2007; Spake et al. 2022). For example, Nakagawa & 

Cuthill (2007), despite advocating for the adoption of ‘meta-analytic thinking’ in biology, 

claim that “care should be taken with meta-analytic reviews in biology. Biological research 

can deal with a variety of species in different contexts, whereas in social and medical 

sciences research is centred around humans and a narrow range of model organisms, often in 

controlled settings. While meta-analysis of a set of similar experiments on a single species 

has a clear interpretation, generalization from meta-analysis across species and contexts may 

be questionable.” (pp. 594-5). The worry seems to be that only when all the primary studies 

in a meta-analysis focus on the same type of experiment or species are claims about that 

experiment or species legitimate. In contrast, when the meta-analysis includes data from 

multiple species, experimental setups etc., the overall effect size might not be equally 

representative of/applicable to each and every species or experimental setup. Thus, for 

example, a meta-analysis on the effects of fire on biodiversity that included primary research 

on different species, might be more representative of some communities than others, so that 
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the overall effect, e.g. fire has no effect on biodiversity, is true of some communities, where 

key species have adapted to fire regimes, but not others, where there is no adaptation to fire.  

With the exposition of heterogeneity and its main critiques in place, it is now time to take 

a closer look at the motivations for engaging in evidence synthesis.  

4. Different goals of Evidence Synthesis 

Evidence synthesis is often described as a quantitative method for amalgamating and 

synthesizing results from individual studies, so as to provide accurate and useful answers to 

the original research questions (Gurevitch et al. 2018, Koricheva et al. 2014, Stegenga 2011). 

Yet if we look a bit deeper it becomes clear that syntheses can be used for different purposes. 

In this section I will distinguish between three such goals and explain their main differences. 

Before delving in, I should note that these different goals are not mutually exclusive. The 

same tool can be used for different goals and also be used for more than one goal 

simultaneously. Thus, for example, the same meta-analysis can be used to generate causal 

confidence and also make sense of any contradictory results. However, it is important, in 

order to avoid confusion and opaqueness, for the goals of the meta-analysis to be clearly 

stated and distinguished.  

4.1. Generating Causal Confidence  

The most well-known goal of evidence synthesis is to generate or increase causal 

confidence. This goal pertains primarily to meta-analysis in the biomedical sciences, 

especially in the context of evidence-based medicine. The underlying motivation for these 

meta-analyses is that most primary research in medicine, such as randomised control trials 

(RCTs), are necessarily limited in terms of sample size. In RCTs, patients are randomized and 

placed in the treatment or control groups, the latter of which receive a placebo rather than the 

treatment. RCTs are viewed positively (compared to, say, observational studies) because they 

aim to control for confounding variables and identify genuine causal links between the 

intervention and the outcome. However, they are usually quite small, because of various 

inherent difficulties: acquiring subjects, testing rare conditions, availability of drugs, costs of 

conducting trials and so on. The problem is that with such small sample sizes, it is difficult or 

even impossible to definitively conclude whether or not an intervention has an effect (Egger 

et al. 2002; Stegenga 2011). This is where meta-analysis comes in. It is often the case that a 

particular intervention has been tested multiple times, at different laboratories around the 

world. If we assume that these studies are replicates of each other, we can pool their results 
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and generate a greater sample size, so any effect will be more likely to be statistically 

significant (Berlin and Golub 2014; Carpenter 2020; Egger et al. 2002).  

For example, consider a meta-analysis that includes a number of studies on the effects of 

a drug on depression. A large effect size of drug A is meant to show that it is an effective way 

to tread depression. If each individual study shows a small (often not statistically significant) 

result, amalgamating data could provide more robust evidence of the effectiveness of the 

treatment. In other words, each individual study alone provides some evidence of a causal 

relationship between two variables, yet our confidence regarding each individual study is 

usually small. A meta-analysis which shows that many studies identify the same causal 

relationship will increase our confidence that the causal relationship truly holds. In addition, a 

meta-analysis could be used to compare the relative effectiveness of different drugs. For 

example, if a meta-analysis of drug A yields a larger overall effect than a meta-analysis of 

drug B, then drug A is more effective for the treatment of depression.  

One interpretation of this use of meta-analysis is that by increasing our confidence that 

the results of clinical trials have indeed established causal links between certain interventions 

and outcomes, meta-analysis improves the quality of primary research. On this view, RCTs 

are referred to as the ‘gold standard’ of evidence, making systematic reviews and meta-

analyses, which attempt to eliminate or at least minimize their deficits, the ‘platinum standard 

of evidence’ (see discussion in Stegenga, 2011). This is quite a controversial interpretation of 

the use of evidence synthesis, which has generated a lot of critique (Ioannidis 2016; Stegenga 

2011; Worrall 2002). Moreover, as we shall see in section 5, this is the context in which 

heterogeneity is most problematic.  

4.2. Arbitrating between Contradictory Results 

Sometimes, the results of primary studies do not merely differ, but are downright 

contradictory, with some studies finding a positive relationship between two variables and 

others finding a negative relationship between the same variables. Meta-analyses can be used 

to help researchers determine how to deal with varying or contradictory results by providing 

an overall assessment of the effect. One way to achieve this is through the process of 

weighting (see section 3.1). For example, a meta-analysis could reveal that the studies 

showing no effects of drug A, have extremely small sample sizes and should be weighted less 

heavily. Thus, a meta-analysis can show that some apparent contradictions between primary 

studies can be resolved.  
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This process of weighting the primary studies is considered to be a significant advance 

for evidence synthesis, and one of the main reasons to prefer meta-analysis to its 

predecessors, especially ‘vote-counting’ (Koricheva et al. 2013; Nakagawa and Poulin 2012). 

This involves sorting primary research into three categories (significant results in favour of 

hypothesis, significant results against hypothesis and non-significant results),  determining 

which category has the highest number of studies, and declaring that category the ‘winner’ 

(Koricheva and Gurevitch 2013). A major problem with vote counting that it cannot take into 

account the quality of the primary studies, giving equal weight to high and low-quality 

studies i.e., those with low sample sizes. This leads to biased and misleading results at the 

meta-research level, which has been extensively documented (Koricheva and Gurevitch 

2013; Nakagawa et al. 2017; Nakagawa and Poulin 2012).  

Meta-analyses can also reveal how different measurements of a certain phenomenon can 

lead to different conclusions, and provide information about how to deal with the resulting 

contradictory conclusions. Consider the case of biodiversity trends, i.e. whether biodiversity 

is increasing or decreasing in the last decades. While many studies have concluded that 

biodiversity is decreasing, there have been some studies which demonstrate an increase in 

biodiversity. This is interesting but also potentially problematic, because it can have an effect 

on conservation policy and funding allocation, as it can be used as ‘evidence’ for decreasing 

the funding allocated to conservation efforts (Fieseler 2021; Pyron 2017). In a meta-analysis 

of biodiversity trends in Europe, Pilotto et al., (2020) found that many of the studies which 

found no changes or increases in biodiversity were measuring species turnover rather than 

species richness or abundance. These are instances where the overall number of species might 

be increasing, but this is due to biological invasions, i.e. the native species are actually being 

replaced by alien species. Thus, the meta-analysis showed that if we are interested in 

conservation of native species in Europe, we can discount the studies that measure species 

turnover (see also section 6).   
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4.3. Exploring the Scope of Generalisations 

Perhaps the least well-known, but in my opinion, the most useful goal of meta-analysis is 

a tool for testing the scope of generalisations.
2
 At first glance, it seems similar to the goal 

outlined in the previous section, as it is also a way to deal with differing or contradictory 

primary results. However, there is a subtle but important difference between the two goals. 

Here, a meta-analysis is not used to determine which side of the primary research ‘wins’, 

rather it is used to determine when or where a causal connection between two variables holds 

and when or where it breaks down.  

Consider, for example, the case of the ‘enemy release hypothesis’ in invasion biology. 

The basic idea is quite simple: alien species do not encounter their traditional enemies in new 

territories, so they can thrive. However, the situation becomes trickier when scientists try to 

determine how exactly enemy release manifests in each case, and what conclusions can be 

drawn from it (Heger and Jeschke 2014). For example, while there have been documented 

cases where alien plants or their seeds are not consumed by native predators, there are also 

number of cases where alien plants attracted native herbivores, and these herbivores had a 

significant negative effect on seed production and plant survival (both of which are important 

for a successful invasion) (Maron and Vilà 2001). Studies at different scales also tend to yield 

contradictory results, as larger-scale biogeographical analyses primarily show a reduction in 

the diversity of enemies in the introduced range compared with the native range, while 

smaller-scale community studies often show that alien species are no less affected by enemies 

than native species in the invaded community (Colautti et al. 2004).  

A meta-analysis conducted in 2006 revealed some interesting insights regarding these 

contradictory results. Parker et al., (2006) analysed 63 manipulative field studies of plant 

invasions which included the effect of herbivores on the outcome of the invasion (i.e. they 

included primary studies where herbivores facilitated and where they hindered the plant 

invasion). At first glance, it seemed that there was stronger evidence against the enemy 

release hypothesis: there were cases where native herbivores decreased the abundance of 

alien plants, i.e. plants encountered new enemies, and cases where alien herbivores (their 

existing enemies) increased the abundance of alien plants. However, they also found that the 

negative effect of native herbivores on the alien plants was weaker than the positive effect of 

                                                 
2
 The ideas in this section along with the following two sections were first discussed in Elliott-Graves (2023), 

section 4.2.2. What follows is a more in-depth investigation of these issues with a special focus on the role of 

heterogeneity.  
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alien herbivores on them (28% reduction in the former vs 65% increase in the latter). Probing 

deeper, they realised that some studies focused on invertebrate herbivores while others 

focused on vertebrates. It turns out that native vertebrate herbivores had a three to five-fold 

larger negative impact on alien plant survival than native invertebrate herbivores.  

What accounts for this difference in the strength of the effect across studies? A closer 

look at the primary research revealed that the native invertebrate herbivores were specialists 

(i.e. they prey on specific plant species) while the alien vertebrate herbivores were generalists 

(i.e. they prey indiscriminately on many different plant species). This is the final piece of the 

puzzle, which explains the apparent contradictions by showing the limits of the enemy release 

hypothesis. In other words, the enemy release mechanisms function normally in cases where 

the native herbivores are specialists and there are no alien herbivores; here the alien plants 

are released from their old enemies but are not affected by the native specialists, who 

continue to focus on their preferred native plants. However, the enemy release effect is 

counteracted (or at least overshadowed) by the existence of alien generalist predators, who 

consume both native and alien plants. In fact, these generalist alien predators might, in some 

cases, prefer the native plants, thus further facilitating the spread of the alien plant invaders.  

I believe that this is an extremely useful way to utilize evidence synthesis. One of the 

main problems in ecology is the difficulty of constructing generalisations that can support 

explanations and predictions (Beckage et al., 2011; Houlahan et al., 2017; Kaunisto et al., 

2016; Lawton, 1999; Mitchell, 2002; Raerinne, 2014; Turchin, 2001). More specifically, 

while ecologists are able to identify patterns in the phenomena they study, these patterns 

often break down (Elliott-Graves 2023; Doak et al., 2008). This means that ecological 

generalisations are often limited in scope (Elliott-Graves 2023; Mitchell, 2000). This creates 

problems for ecological research, as generalisations form the basis for some types of 

explanations and most predictions; a generalisation breaking down translates into knowledge 

not being transferrable across systems or across time periods (Catford et al., 2022; Spake et 

al., 2023). While ecologists are generally aware of these issues, they are nonetheless 

extremely challenging, especially in applied contexts, when ecologists only have a little time 

and few options to intervene on a system (Catford et al., 2022; Doak et al., 2008; Mouquet et 

al., 2015). Thus, any information on the scope and limits of a generalisation can be incredibly 

useful; it can make the difference between a successful and unsuccessful intervention. In the 

case of enemy release, knowing that the enemy release effect is overshadowed by generalist 

herbivores can have important effects on policy. Here, scientists aiming to save a native plant 
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from extinction should not merely focus on predation from local insects, rather they should 

focus predominantly on shielding the plant from non-native herbivores.   

The discussion in this section was intended to foreshadow the idea that the effects of 

heterogeneity are not uniform but can differ depending on the goal of the synthesis in 

question. In the next two sections, I will examine the cases where heterogeneity is genuinely 

problematic and when it is not. 

5. When is Heterogeneity a genuine problem? 

Most cases where heterogeneity is genuinely problematic occur when our expectations of 

heterogeneity do not match reality, that is, when there is (much) more heterogeneity than we 

expected. This can occur when heterogeneity is unreported, which happens when a synthesis 

contains no (or insufficient) information about the heterogeneity of primary studies included 

in it. The problem is that unreported heterogeneity implies that there is no significant 

heterogeneity in the studies, so any overall effect is taken at face value. If, however, there is 

significant heterogeneity in the effect sizes, then the issues outlined in section 3, hold: we 

cannot be sure that the overall effect accurately represents the pool of primary studies 

(Nakagawa et al. 2017; Spake et al. 2022). Moreover, lack of information about heterogeneity 

can also hamper subsequent efforts to correct or further investigate the possible effects of 

heterogeneity as novel statistical tools are developed (Ioannidis et al. 2007; Senior et al. 

2016).   

A particularly pernicious set of cases where heterogeneity does not match expectations, 

occurs when the synthesis in question is used for the goal outlined in section 4.1., namely 

‘generating causal confidence’. Recall that this use of meta-analysis involves pooling results 

from different studies in the hope of generating a result with higher statistical significance, 

thus increasing our confidence in the result. Here, researchers treat the primary studies as 

though they are replicates of each other, i.e., they assume that there is a high level of 

homogeneity between the studies, so that any differences between control and experimental 

groups can be safely attributed to the intervention itself. However, if it turns out that 

heterogeneity between primary studies is high, then we cannot be sure that the variation is 

attributable to the intervention and the very premise of the meta-analysis is undermined.  

The issue is that heterogeneity between primary studies can create artificial differences 

between effect sizes. Consider again the example outlined in section 3, where the meta-

analysis is aiming to show a significant effect size for a certain drug, yet primary studies 

differ in terms of the dosage administered. In this example, only the higher dose of the drug is 
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actually effective yet also creates side effects in a subset of the patients. Assuming 

homogeneity and pooling the results obscures both these important issues. First, it fails to 

show that different dosages have different effects but implies that a median dosage has a 

sufficient effect. Second, it obscures the connection between the higher dosage and the side 

effects. In other words, assuming homogeneity and pooling the results, dilutes the variation 

between primary studies and obscures issues that ought to be highlighted and further 

investigated.  

6. Can Heterogeneity be valuable? 

While it is undeniable that heterogeneity is problematic in the contexts described in the 

previous section, I believe that there are other contexts where it is much less detrimental, and 

even cases where it can be useful. A number of scholars explicitly state that heterogeneity is 

not problematic per se, but only becomes problematic if it is unexpected, un(der)reported or 

un(der)investigated (Higgins, 2008; Higgins & Thompson, 2002; Nakagawa et al., 2017; 

Schielzeth & Nakagawa, 2022; Senior et al., 2016 see also discussion in section 4). When 

heterogeneity is expected and adequately reported, then researchers have access to numerous 

methods for further investigating the causes of heterogeneity along with its effects (Senior et 

al. 2016). For instance, it is becoming standard practice in biological meta-analyses to use 

random effects models or mixed effects models, which help researchers analyse heterogeneity 

rather than fixed effects models, which assume low levels of heterogeneity (Senior et al. 

2016). Mixed effects models allow heterogeneity to be partitioned, so that it is possible to 

distinguish between possible causes of heterogeneity, such as phylogenetic heritability in 

multi-species studies (Senior et al., 2016). Of course, many of these tests are time-consuming 

and require some statistical knowledge, yet they are usually readily available and free.
3
  

But how exactly can analysing heterogeneity be useful? Unlike the context of generating 

causal confidence, when we are using meta-analyses to arbitrate between contradictory 

results (4.2), or examine the scope of generalisations (4.3), heterogeneity can provide us with 

valuable information. Starting with the case of contradictory results, heterogeneity is useful 

when groups of primary studies emerge which display intra-group homogeneity and inter-

group heterogeneity, in other words, when heterogeneity clusters in interesting ways. As 

                                                 
3
 Most of these tests can be easily implemented by running existing software packages in R. In my experience, 

many of the biologists who have developed/adapted these packages for biological data are also extremely 

helpful, willing to answer questions and troubleshoot the implementation of the software.  
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shown in section 4.2, in the meta-analysis of biodiversity trends in Europe, Pilotto et al. 

(2020) found that the primary studies clustered in terms of how biodiversity was measured: 

the studies which showed decreases in biodiversity were those that measured richness or 

abundance whereas those that showed no changes or increases in biodiversity were those that 

measured species turnover. These heterogeneous clusters are quite informative when we are 

trying to make sense of contradictory results. In this case, they show us that biodiversity of 

native species is decreasing in Europe and that any increases in biodiversity are due to 

invasive species. This means that, rather than being reassured from any results that show 

increases in biodiversity, we should expand our conservation strategies to include 

management of invasive species. In other words, the clustering shows us that any 

contradiction between results is, at least from a conservation standpoint, illusory.  

Clusters of heterogeneity can also be informative in the sense that they can uncover biases 

in certain experimental setups, measurements or species. In the case of medicine, for 

example, if results cluster by geographical region or dosage then this is an indication that 

there is something about how the experiment was conducted in certain contexts which could 

account for the different results.
4
 In the case of biology, if the clusters correlate to particular 

species, this could indicate that there is something problematic with the measurement of the 

effect in that species. Of course, it could indicate that there is a real difference in effect in that 

species – I will discuss this issue in the next paragraph. The point here is that heterogeneous 

clusters, if properly investigated, can account for contradictory results and can sometimes 

provide additional information which explains the underlying causes of the contradiction.   

The case for preserving and analysing heterogeneity is even stronger in the context of 

exploring the scope of generalisations, as it is the existence of heterogeneity itself that 

predicts the limits of a generalisation, and in some cases can explain the limits of the 

generalisation in question. I will return to the case of the enemy release hypothesis, outlined 

in section 4.3. Here, the scientists were able to explain the reason why the primary studies 

examining the enemy release hypothesis yielded contradictory results, as they realised that 

the enemy release mechanism is sometimes overshadowed by other mechanisms (those 

generated by generalist herbivores). Thus, the heterogeneity in the primary studies provided 

important information about scope of the enemy release hypothesis, i.e. where then 

mechanism of enemy release was effective and where it was not. In fact, if the researchers 

                                                 
4
 However, as we shall see later on, when we expect low heterogeneity, certain ways of investigating 

heterogeneity can be misleading, as it can create artificial effects.   
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had reduced the heterogeneity of their sample in the traditionally approved way, i.e. by 

excluding the studies on one type of herbivore (i.e. insects or vertebrates), they would have 

missed two important insights.  

First, they would not have realised that the key difference regarding enemy release was in 

terms of whether the herbivores were specialists or generalists (which happened to coincide 

with the categories of vertebrate and invertebrate). If they had excluded one group by default, 

they would not have realised the limit in scope of the enemy release mechanism, i.e. when it 

was overshadowed by other mechanisms. Second, failing to understand this would also have 

prevented the scientists from another insight into biological invasions, namely that this 

explains the hitherto perplexing phenomenon that it is much more common for European 

plants to invade areas outside Europe, rather than vice versa. The insight is that generalist 

herbivores from Europe, such as pigs, horses and cattle, are more widespread than generalist 

herbivores from other continents and contribute more often to the success of exotic plants 

with which they have co-evolved.  

In short, ‘correcting’ for heterogeneity, i.e. leaving out the primary studies that increase 

the heterogeneity of the overall effect can sometimes create more problems than it solves. 

Here, heterogeneity is a feature rather than bug, and though all heterogeneity should be 

investigated, it should not automatically be met with suspicion. Indeed, some researchers 

argue that in disciplines with expectations of high heterogeneity, such as biology, it is 

instances of low heterogeneity that should be treated with suspicion or at least subjected to 

similar amounts of scrutiny as cases of high heterogeneity (Senior et al., 2016).  

Most of the discussion in this section pertains to disciplines such as biology, where high 

heterogeneity is expected. Moreover, in section 5, I argued that heterogeneity is indeed 

problematic when it is higher than expected, which is usually the case in medicine. But are 

there contexts in which high heterogeneity can also be useful in medicine? It seems that even 

investigating heterogeneity in medicine is sometimes problematic.  

Some medical meta-analyses investigate heterogeneity in the form of subgroup analyses 

(Cook et al. 2004; Cuijpers et al. 2021). Here, studies are divided into two or more subgroups 

to test whether the pooled effect sizes found in these subgroups differ significantly from each 

other. Thus, for example, a meta-analysis can divide the pooled individuals into sub-groups 

based on gender, age, geographical region, dosage, or type of environment (e.g. a nursing 

home) to explore whether there are differences between the groups. At first glance, this seems 

to be very similar to what Parker et al. did in the enemy release case. However, in the medical 

context, subgroup analysis seems to be more dangerous. The problem is that with small 
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sample sizes and low to middling levels of expected heterogeneity, the subgroup analysis 

could identify effects that are not really there. Thus, instead of identifying genuine causes of 

heterogeneity, it can create the illusion of genuine differences (Cook et al. 2004; Cuijpers et 

al. 2021; J. P. T. Higgins et al. 2019). Does this undermine the case for heterogeneity?  

A noteworthy point to consider is that in discussing the use of subgroup analyses in 

medicine, many authors argue that in order to avoid the above problem, the analysis should 

only include subgroups that have genuine underpinnings (which are referred to as biological 

reasons) (ibid). This can seem somewhat arbitrary. Why are biological differences more 

important than environmental differences? I think that the answer again lies in expectations 

surrounding heterogeneity. Humans are all the same species and in clinical trials they are 

treated in quite similar ways. It is therefore reasonable that any differences that emerge, 

especially when dealing with small sample sizes, are artefacts of the statistics. In contrast, in 

the case of biological meta-analyses, we are often dealing with multiple species and/or quite 

different experimental setups, hence the expectations of heterogeneity being around 90%. In 

the latter case, there are many known differences between subgroups (invertebrates vs 

vertebrates, generalists vs specialists); the question is whether these differences are relevant 

for the question being studied. Thus, it seems that in order for the statistical investigation of 

heterogeneity to be valuable, prior knowledge of heterogeneity should already have been 

established.  

Still, this does not entirely preclude heterogeneity being useful in medical contexts. It 

simply shows that we should be careful even when investigating heterogeneity and avoid 

creating the illusion of heterogeneity through statistical error. While this point is 

acknowledged in the literature, I think its importance is undervalued. The main focus in the 

medical literature still seems to be on cautioning against the dangers of sub-group analysis 

(Cook et al. 2004; Cuijpers et al. 2021; J. P. T. Higgins et al. 2019). While these cautions are 

valuable, they can be complemented with a better understanding of the potential value of 

heterogeneity.  

7. Conclusion 

Heterogeneity is a delicate topic in evidence synthesis and is the subject of significant 

controversy. I have argued that a blanket approach to heterogeneity is unlikely to be useful. 

What determines whether heterogeneity is a problem depends on our attitude towards it. If we 

assume that it is non-existent, when it does exist, then our synthesis will suffer. If, on the 

other hand, we have good reasons to expect heterogeneity to exist and explicitly analyse it, 
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then we can end up with a lot more information than we would from an entirely 

homogeneous set of primary research (Higgins and Thompson 2002; Spake et al. 2022). To 

sum up, heterogeneity is here to stay, but this does not seem to be the insurmountable 

problem that early critics claimed it was. The availability of new and easily implementable 

statistical packages, make exploring heterogeneity and integral but also useful dimension of 

evidence synthesis.  
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Table 1. Key Terms 

Term Definition Comments References 

Meta-

Research 

(Meta-

science) 

The study of the 

process research 

itself.  

The aim of meta-research is to evaluate and 

improve research practices 

(Ioannidis 

2018; 

Nakagawa et 

al. 2020) 

Research 

Synthesis 

The process of 

bringing together 

findings and 

attributes from 

different publications 

This is meant to be the umbrella term, which 

encompasses the various types of synthesis outlined 

below 

(Koricheva and 

Gurevitch 

2013; 

Nakagawa et 

al. 2020) 

Evidence 

Synthesis 

Quantitative or 

qualitative 

aggregation of results 

from primary studies 

In the biological literature, this term refers 

primarily to systematic reviews and meta-analyses 

but can include other types of reviews, such as 

systematic maps and rapid reviews. This is based 

on the old Cochrane Library terminology (from 

2003), which has eclipsed in more recent Cochrane 

Handbooks, where the focus goes directly to 

systematic review. Here, systematic review has 

become the more general term, referring to various 

types of synthesis.  

 

I will follow the biological literature and use the 

term to encompass systematic review and meta-

analysis 

(J. P. T. 

Higgins et al. 

2019; 

Nakagawa et 

al. 2020) 

E-Synthesis 

A Bayesian 

framework for 

analysing and 

interpreting causal 

indicators in 

pharmacology. 

This is a Bayesian approach to aggregating results 

from primary studies, distinct from and 

complementary to evidence synthesis 

(De Pretis et al. 

2019; Osimani 

2020) 

Systematic 

Review 

An amalgamation of 

all empirical evidence 

that fits pre-specified 

eligibility criteria in 

order to answer a 

specific research 

question. 

Systematic reviews use explicit and systematic 

methods for amalgamating data that are aimed at 

reducing bias.  

 

Specifically, a systematic review has three main 

components: the formulation of the research 

question, the search of the literature for original 

research on the topic and the decision of which of 

the available literature is relevant for the research 

question and will be included in the review 

 

In medicine, systematic review is sometimes used 

as the more general term, encompassing various 

types of synthesis. 

(Foo et al. 

2021; J. P. T. 

Higgins et al. 

2019; 

Nakagawa et 

al. 2020; 

Siddaway et al. 

2019) 

Meta-

Analysis 

A statistical tool for  

(i) determining the 

overall effect of an 

intervention or 

phenomenon 

(ii) arbitrating 

between 

contradictory results  

(iii) generating 

generalisations and 

investigating their 

scope 

A meta-analysis includes all the steps of a 

systematic review, thus it is sometimes referred to 

as a ‘systematic review with qualitative synthesis’.  

Main steps: 

 conduct systematic review 

 extract data from primary research 

 calculate effect size for each primary study  

 assign weight to each study 

 conduct Risk of Bias assessment 

 conduct sensitivity analysis (how much 

heterogeneity is explained by known factors?) 

 determine overall effect  

(Deeks et al. 

2019; 

Gurevitch et al. 

2018; 

Nakagawa and 

Cuthill 2007) 
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Effect Size 

a statistical parameter 

that can be used to 

compare the results 

of different studies in 

which a common 

effect of interest has 

been measured 

The standardized effect size is a way to transform 

the data on the results of each study into a 

standardized parameter, which can be analysed 

through statistical models.  

 

For example, the effect of herbivores on plant 

invasions can be measured in terms of the 

difference in total biomass of plants with and 

without herbivores. The larger the difference, the 

larger the effect size. Studies that have non-

significant results will have small effect sizes, while 

those that have negative results will have negative 

effect sizes. A study which found that the total 

biomass of plants increased with the introduction of 

herbivores would have a negative effect size. 

(Deeks et al. 

2019; 

Koricheva et 

al. 2013; 

Nakagawa and 

Cuthill 2007) 

Risk of Bias 

Assessment 

A tool comprising of 

a questionnaire with 

an associated 

algorithm which 

estimates the 

likelihood (e.g. low, 

some concern, high) 

of various biases in a 

synthesis  

There are a number of different risk of bias tools 

available, which are tailored to different types of 

studies. 

 

Examples of bias in primary studies include: 

confounding biases, exposure selection biases, 

misclassified comparison biases, performance 

biases, detection biases, outcome reporting and 

outcome assessment biases 

 

Examples of biases in secondary research include: 

searching, screening, data extraction and data 

synthesis biases 

(Boutron et al. 

2019; J. P. 

Higgins et al. 

2019; Konno et 

al. 2024; Sterne 

et al. 2019) 

 

A 

comprehensive 

list of biases 

can be found at 

catalogofbias.o

rg, a platform 

developed by 

the Centre for 

Evidence-

Based 

Medicine 

(CEBM) at 

Oxford 

University  

Heterogeneity 

the presence of 

variation in true 

effect sizes 

underlying different 

studies 

Heterogeneity or ‘true variance’ is understood as 

the variation in effect sizes that remains after we 

have accounted for sampling error.  

 

Typical measures of heterogeneity include I
2
, 

Cochran’s Q, and τ
2
 

 

(Higgins 2008; 

Higgins and 

Thompson 

2002; Senior et 

al. 2016) 
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