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Abstract. The impact of compressor gratings and transport optics imperfections on the 

power contrast ratio (PCR) is considered analytically taking into account diffraction and all 

dispersion orders. All types of imperfections, including surface roughness, reflectivity 

fluctuations, surface dirt/damage/obscuration as well as the roughness and obscuration on the 

optics used to write holographic gratings are allowed for. For the same roughness and obscuration, 

the contribution to the PCR of the latter is significantly greater than the contribution of the gratings. 

Comparison of the PCR caused by obscuration and by roughness showed that at short times the 

latter prevails, whereas at long times the obscuration is dominant. The radiation scattered by the 

second and third gratings arrives at the target before the main pulse in the form of a vertical strip 

near the beam axis. Then this strip moves uniformly towards the axis, reaching it simultaneously 

with the main pulse. 

 

Keywords: holographic difraction gratings, surface roughness, power spectral density 

 

1. Introduction 

The key technologies of all high-power lasers are CPA or OPCPA. Pulse stretching, amplification 

and compression inevitably lead to temporal contrast degradation, i.e., to the formation of a pre-

pulse long before the main pulse and the post-pulse after the main pulse. Contrast degradation 

occurs in a wide time interval from 100 fs to nanoseconds. The pre-pulse is hazardous, as the target 

may be destroyed before the arrival of the main pulse, which restrains laser application, especially 

in experiments with solid targets. Many causes of contrast degradation are of a temporal nature, 

so they may be analysed, as a rule, in the time domain. These include the amplified spontaneous 

emission from a seed laser and amplifiers (both laser and parametric), amplitude and phase 

distortions of the temporal spectrum of the pulse, and residual reflections and nonlinearity of the 

refractive index [1]. A special place belongs to light scattering on optical elements, which leads to 

the appearance of a noise field with a wide spatial spectrum. The propagation of such a field in a 

compressor or a stretcher leads to space-time coupling (see [2, 3] and references therein). 

The physical reason for contrast degradation due to space-time coupling is the 

overtaking/lagging of the scattered pulse behind the main pulse. Lagging is the most frequent case. 

However, if one pair of gratings is located between the scatterer and the target (“half” of 

compressor or stretcher), part of the scattered radiation overtakes the main pulse, resulting in the 

appearance of a pre-pulse. Since the time of overtaking is proportional to the spatial frequency, 

only small-scale fluctuations in the field amplitude or phase are significant for the contrast. 

There are several reasons for scattering. First of all, it is an imperfect surface quality of the 

optical elements. The influence of imperfection on contrast was first numerically revealed in [4]. 

Most subsequent works were devoted to numerical [5-13] and experimental [5, 8, 10-12, 14-19] 
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studies of this effect both in the stretcher [5-8, 10-19] and in the compressor [6, 8-13]. A theory 

without allowance for the diffraction and dispersion of a spatial chirp was proposed in [20], 

developed in [21], and later supplemented in [19]. It was shown that the contrast is determined by 

the power spectral density (PSD) of the surface profile of the second and third gratings of 

stretcher/compressor and stretcher mirrors. These works are mainly focused on the intensity 

contrast in the far field, which is extremely difficult to measure. As a rule, the power contrast ratio 

(PCR) ℂ(𝑡) is measured: 

ℂ(𝑡) ≡
<𝑃𝑜𝑢𝑡(𝑡)>−𝑃0,𝑜𝑢𝑡(𝑡)

𝑃0,𝑜𝑢𝑡(0)
,      (1) 

where < 𝑃𝑜𝑢𝑡(𝑡) > is the pulse power, and 𝑃0,𝑜𝑢𝑡(𝑡) is the power of the main pulse (neglecting 

scattered field). Since the near and far fields are related by the spatial Fourier transform, then, 

according to Parseval's theorem, 𝑃(𝑡) is the same in the near and far fields; consequently, ℂ(𝑡) is 

also the same. Moreover, the analysis of the expression (13) from [21] shows that in the near field 

the intensity contrast differs little from the power contrast. This means that the magnitude of ℂ(𝑡) 

is measured, even if the contrast meter covers only part of the aperture. Expressions for the PCR 

as a function of the PSD of the compressor/stretcher grating surface and the transport optics were 

obtained in [22] taking into account diffraction and all orders of dispersion. 

At the same time, in addition to surface roughness, other optics imperfections whose 

influence has not been studied before also contribute to the PCR. First of all, it is the radiation 

scattering on dirt/damage/obscurations which inevitably appear both during the production of 

gratings and mirrors and in the course of their operation in high-power laser facilities [23]. 

Following [23], we will assume that the obscurations ‘‘absorb’’ all incident laser light. Besides the 

roughness and obscurations of the beamline optics (gratings and mirrors), the roughness and 

obscurations of the mirrors used for writing holographic gratings also lead to degradation. They 

give rise to groove shape fluctuations leading to reflectivity fluctuations [24] as well as to non-

equidistance and non-parallelism of the grooves, which in turn result in wave front fluctuations of 

diffracted radiation [25-28]. In this work, we investigate in a general form the PCR caused by four 

reasons: roughness and obscurations of both beamline optics and writing optics. The only 

constraint that will be used is the spatial scale of obscurations and roughnesses and, hence, of the 

scattered radiation fluctuations much smaller than the beam diameter. 

A general expression relating the PCR to the PSD of scattered field fluctuations is obtained 

in Section 2 without specifying the cause of scattering. Then, the PSD fields are found for 

obscurations of beamline optics (Section 3), for roughness of beamline optics (Section 4), and for 

obscurations and roughness of writing optics (Section 5). Section 6 provides an example of 

calculating the PCR using the obtained formulas and a discussion of the results. 

 

2. General expression for power contrast ratio ℂ(𝒕) 

Most lasers use the Treacy compressor [29] shown in Fig. 1, which has three parameters: 𝑁 is the 

groove density, L is the distance between the gratings along the normal, and α is the angle of 

incidence on the first grating. In a general case of an out-of-plane compressor [30], there is one 

more parameter γ that is the angle of incidence on the first grating in the plane orthogonal to the 

diffraction plane. The angle of reflection 𝛽 for the central frequency 𝜔0 = 𝑐𝑘0 = 2𝜋𝑐/𝜆0 is 

determined from the expression for the grating 𝑠𝑖𝑛𝛽 = −𝜆0𝑁/𝑐𝑜𝑠𝛾 + 𝑠𝑖𝑛 𝛼. An important special 

case of an out-of-plane compressor is the Littrow compressor [31, 32], in which 𝛼 = 𝛼𝐿, where 𝛼𝐿 

is the Littrow angle. It is convenient to start the consideration with the field 𝐸0(Ω, 𝒓) (Ω = 𝜔 −
𝜔0) incident on an imperfect optical element that may be any diffraction grating G1-G4, input and 

output optics Min and Mout, as well as gratings and stretcher mirrors. We will search for the contrast 

ℂ(𝑡) caused by each element separately, assuming that all other elements are perfect. After 

reflection, the field takes the form 

𝐸1(Ω, 𝒓) = 𝐸0(Ω, 𝒓) + 𝐸0(Ω, 𝒓)(Θ(𝒓) + 𝒜(𝒓) + 𝑖𝜑(𝒓)),                  (2) 
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where 𝒜(𝒓) ≪ 1, 𝜑(𝒓) ≪ 1, and Θ(𝒓) are real, homogeneous, ergodic random functions (fields) 

characterizing the fluctuations of the field amplitude and phase, as well as the presence of 

obscurations: Θ(𝒓) = 1 inside and Θ(𝒓) = 0 outside the obscurations. Following [23], we assume 

that the obscurations ‘‘absorb’’ all incident laser light, thus they affect only the amplitude of the 

incident beam, but not its phase. The size and coordinates of the obscurations on the surface of the 

optical element are random variables. The second term in Eq. (2) will be further called noise for 

brevity, and the noise energy will be taken to be much lower than the energy of the main pulse 

𝑊0 = ∫|𝐸0(Ω, 𝒓)|2 𝒅𝒓𝑑Ω: 

𝑊X = ∫|X(𝒓)𝐸0(Ω, 𝒓)|2 𝒅𝒓𝑑Ω = σX
2𝑊0 ≪ 𝑊0       (𝑋 =  Θ, 𝒜, 𝜑)          (3) 

 

Fig. 1. Compressor scheme. G1-G4 – diffraction gratings, OAP – off-axis parabola, Min – input optics, Mout – output optics. 

Dotted lines – radiation scattered by G4, scattered pulses lag behind the main one. Dashed lines – radiation scattered by G3, 

scattered pulses lag behind (green) or overtake (red) the main pulse, depending on the sign of 𝑘𝑥.   

Since in this paper we are interested in small-scale intensity fluctuations, the characteristic 

spatial scale of 𝐸0(𝒓) is much larger than the characteristic spatial scale of Θ(𝒓), 𝒜(𝒓) and 𝜑(𝒓), 

i.e., the correlation length of these functions is much smaller than the beam size. In other words, 

the spatial spectrum of the noise is much wider than the spectrum of the main beam. From 

ergodicity it follows that 

σX
2 =< 𝑋2(𝒓) >                  (4) 

with σΘ
2 = 𝑆𝑜𝑏/𝑆0, where 𝑆𝑜𝑏 is the total area of all obscurations, and 𝑆0 is the beam area. The 

angle brackets denote ensemble averaging. For clarity, Θ(𝒓), 𝒜(𝒓) and 𝜑(𝒓) are shown in Fig. 2. 

Eq. (2) has a most general form and includes all possible imperfections of the optical element. 

Note that beam clipping, which also affects the contrast [33], is not described by Eq. (2) and is 

outside the scope of this paper. The functions and their Fourier transforms will be designated by 

the same letters, but with different arguments: 

 𝐸𝑗(Ω, 𝜿) = 1

2𝜋
∫ 𝐸𝑗(Ω, 𝒓)𝑒𝑖𝜿𝒓d𝒓    𝐸𝑗(Ω, 𝒓) = 1

2𝜋
∫ 𝐸𝑗(Ω, 𝜿)𝑒−𝑖𝜿𝒓d𝜿      (5) 

and analogously for the temporal Fourier transform. Hereinafter, the range of integration, if not 

otherwise specified, is ±∞. From Eqs. (2, 5) we obtain 

𝐸1(Ω, 𝒌⊥) = 𝐸0(Ω, 𝒌⊥) − 1

2𝜋
∫ 𝒅𝒓𝑒𝑖𝒌⊥𝒓 𝐸0(Ω, 𝒓)𝒜(𝒓)   (6) 
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Fig. 2. Schematic representation of random functions Θ(𝒓), 𝒜(𝒓) and 𝜑(𝒓). 

The field on the focusing parabola (point E) up to which the field 𝐸1(Ω, 𝒌⊥) Eq. (6) passes through 

an optical system containing a pair(s) of parallel gratings and a section(s) of free space of total 

length 𝐿𝑓 is considered to be the output field 𝐸𝑜𝑢𝑡(Ω, 𝒌⊥).  Regardless of the order in which these 

elements are passed, the field 𝐸𝑜𝑢𝑡(Ω, 𝒌⊥) has the form 

𝐸𝑜𝑢𝑡(Ω, 𝒌⊥) = 𝐸1(Ω, 𝒌⊥)𝑒𝑖Ψ(Ω,𝒌⊥),    (7) 

where Ψ(Ω, 𝒌⊥) is the sum of the phase Ψ𝑓 = 𝐿𝑓√𝑘0
2 − 𝑘⊥

2  introduced by the free space of length 

𝐿𝑓 and i) by two pairs of parallel diffraction gratings from point A to point B and from point C to 

point D for Min or G1; or ii) by one pair from point C to point D for G2 or G3); or iii) there are no 

other terms for G4 or Mout. It is convenient to present the function Ψ(Ω, 𝒌⊥) as a Taylor series at 

the point Ω = 0, 𝑘𝑥 = 𝑘𝑦 = 0 (𝑘𝑥,𝑦 are the components of the vector 𝒌⊥) by extracting the term 

of the first power in Ω and designating all the other terms as Φ(Ω, 𝒌⊥):  

Ψ(Ω, 𝒌⊥) = Ω𝜏(𝒌⊥) + Φ(Ω, 𝒌⊥)        (8) 

The expressions for the phase introduced by the pair of parallel diffraction gratings 

Ψ𝑝(Ω, 𝒌⊥), as well as for 𝜓𝑎
𝑏 derivatives of Ψ𝑝 with respect to 𝜔, 𝑘𝑥, 𝑘𝑦 at the point Ω = 0, 𝑘𝑥 =

𝑘𝑦 = 0 also needed for the Taylor series, can be found in [34, 35]. Using them one can obtain the 

expression for 𝜏(𝒌⊥) in the form: 

𝜏(𝒌⊥) = 2𝜏𝑥
𝑘𝑥

𝑘0
+ 2𝜏𝑦

𝑘𝑦

𝑘0
+ 𝑡𝑥

𝑘𝑥
2

𝑘0
2 + 𝑡𝑦

𝑘𝑦
2

𝑘0
2 + 2𝑡𝑥𝑦

𝑘𝑥𝑘𝑦

𝑘0
2              (9) 

𝜏𝑥 =
1

2
𝑘0𝜓𝑥𝜔

′′ = ∓
𝐴𝐿

2с
                𝜏𝑦 =

1

2
𝑘0𝜓𝑦𝜔

′′ = ∓
𝐺𝐿

2с
                      (10) 

𝑡𝑥 =
1

2
𝑘0

2𝜓𝑥𝑥𝜔
′′′ =

𝐸𝐿+𝐿𝑓

2𝑐
       𝑡𝑦 =

1

2
𝑘0

2𝜓𝑦𝑦𝜔
′′′ =

𝐹𝐿+𝐿𝑓

2𝑐
      𝑡𝑥𝑦 =

1

2
𝑘0

2𝜓𝑥𝑦𝜔
′′′ = ±

𝐾𝐿

2𝑐
        (11) 

𝐴 =
𝑐𝑜𝑠𝛼

𝑐𝑜𝑠3𝛽
(𝑠𝑖𝑛𝛼 − 𝑠𝑖𝑛𝛽)  𝐹 =

1+cos(𝛼+𝛽)

𝑐𝑜𝑠𝛽
+

(𝑠𝑖𝑛𝛽−𝑠𝑖𝑛𝛼)2

𝑐𝑜𝑠3𝛽
     (12) 

𝐸 =
𝑐𝑜𝑠2𝛼

𝑐𝑜𝑠3𝛽
+

cos(𝛼+𝛽)

𝑐𝑜𝑠𝛽
+

𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽

𝑐𝑜𝑠3𝛽
(𝑠𝑖𝑛𝛼 − 3𝑠𝑖𝑛𝛽

𝑐𝑜𝑠2𝛼

𝑐𝑜𝑠2𝛽
)   (13) 

  𝐺 = 𝛾
(𝑠𝑖𝑛𝛽−𝑠𝑖𝑛𝛼)2

𝑐𝑜𝑠3𝛽
 𝐾 = 2𝐴𝛾 (1 −

3

2
𝑠𝑖𝑛𝛽

𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽

𝑐𝑜𝑠3𝛽
)   (14) 

As 𝛾 ≪ 1 in a general case, terms of order 𝛾2 are omitted here. From here on we will restrict 

ourselves to the paraxial approximation, i.e., we will consider 𝑘𝑥,𝑦 of powers not higher than 2. 

Thus, we take into account diffraction in the paraxial approximation and all orders of dispersion, 

including the dispersion of the spatial chirp, since the term Φ(Ω, 𝒌⊥) includes terms with Ω2, Ω3, 

etc. Further we assume that the grating pairs in the compressor are identical. This is not the case 

for an asymmetric compressor [34, 36-42], but we restrict consideration to a symmetric one. The 
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sign ∓ in Eqs. (10, 11) corresponds to the first and second pairs of gratings; therefore, for two pairs 

of gratings, the total values of 𝑡𝑥𝑥, 𝑡𝑦𝑦 are doubled, and 𝜏𝑥 = 𝜏𝑦 = 𝑡𝑥𝑦 = 0. Note that, if α is equal 

to the Littrow angle, then 𝐹 = 𝐸. This is not the case for the Treacy compressor, but usually α is 

chosen as close to the Littrow angle as the decoupling condition allows (the beam incident on 

grating G1 should not overlap with the second grating). Hence, for the compressor, the values of 

F and E are close, for example, in the XCELS project [43] 𝐹 = 1.025𝐸 and we can assume that 

𝜏𝑦 ≈ 𝜏𝑥. This condition is fulfilled exactly for the Littrow compressor [31, 32]. 

The quantity 𝜏(𝒌⊥) has a simple physical meaning – it is the time delay of the noise 

component with wave vector 𝒌⊥ relative to the wave with 𝒌⊥ = 0. Since 𝐸 > 0 and 𝐸𝐹 > 𝐾2, the 

last three terms in (9) are a positively defined quadratic form, i.e., the only negative terms in Eq. 

(9) are the terms with 𝜏𝑥 and 𝜏𝑦. If 𝜏𝑥 = 𝜏𝑦 = 0, then all noise components lag behind the main 

wave, which means that at 𝑡 < 0 the contrast is zero (a perfect case). This is true for all optical 

elements in Fig. 1, except for gratings G2 and G3. 

The power 𝑃𝑜𝑢𝑡(𝑡) required for calculating ℂ(𝑡) by the definition Eq. (1) is 

𝑃𝑜𝑢𝑡(𝑡) = ∫|𝐸𝑜𝑢𝑡(𝑡, 𝒌⊥)|2𝑑𝒌⊥.        (15) 

By substituting Eq. (8) into Eq. (7) and performing the inverse time Fourier transform we obtain 

𝐸𝑜𝑢𝑡(𝑡, 𝒌⊥). By substituting it into Eq. (15) and the result into Eq. (1) we find ℂ(𝑡). The 

transformations absolutely analogous to [22] yield  

ℂ(𝑡) =
𝑡𝑝

𝑊02𝜋
∫ 𝑑𝒌⊥ 𝑃𝑆𝐷2(𝒌⊥) ∫ ∫ 𝑑Ω𝑑Ω′𝑒𝑖Ф(Ω,𝑘𝑥,𝑘𝑦)−𝑖Ф(Ω′,𝑘𝑥,𝑘𝑦)𝑒𝑖(Ω′−Ω)(𝑡−𝜏) ∫ 𝐸0(Ω, 𝒓)𝐸0

∗(Ω′, 𝒓) 𝒅𝒓, 

(16) 

where 𝑡𝑝 = 𝑊0/𝑃0,𝑜𝑢𝑡(0) is the duration of the output pulse and   

𝑃𝑆𝐷2(𝒌⊥) = 𝑃𝑆𝐷2Θ(𝒌⊥) + 𝑃𝑆𝐷2𝑎(𝒌⊥) + 𝑃𝑆𝐷2𝜑(𝒌⊥),     (17) 

where 𝑃𝑆𝐷2𝑋(𝒌⊥) is the two-dimensional power spectral density of the function 𝑋 (𝑋 = Θ, 𝒜, 𝜑) 

defined by  

𝑃𝑆𝐷2𝑋(𝒌⊥) = (2𝜋)2 ∫ 𝐴𝐶𝐹𝑋(𝝆)𝑒𝑖𝒌⊥𝝆𝒅𝝆 ,    (18) 

where 𝐴𝐶𝐹𝑋(𝝆) =< 𝑋(𝒓 − 𝝆)𝑋(𝒓) >. Here we took into account that Θ(𝒓), 𝒜(𝒓), and 𝜑(𝒓) are 

uncorrelated with each other. Note that the noise energy is, evidently, 𝑊𝑛 = 𝑃0,𝑜𝑢𝑡(0) ∫ ℂ(𝑡)𝑑𝑡 =
𝑊Θ + 𝑊𝑎 + 𝑊𝜑. The integration of Eq. (16) with respect to 𝑡 gives 2𝜋𝛿(Ω′ − Ω), where 𝛿 is the 

Dirac delta function. Next, taking into account Eq. (3) we obtain an obvious relation 

σX
2 = ∫ 𝑃𝑆𝐷2𝑋(𝒌⊥)𝒅𝒌⊥.   (19) 

The 𝑃𝑆𝐷2 definition Eq. (18) is known in the literature, but it is not the only one. It differs from 

the definition used, for example, in [21, 22, 44], where there is no (2𝜋)2 multiplier. We chose the 

Eq. (18), since in this case Eq. (19) for σX
2  has a simpler form. In the special case of purely phase 

distortions (𝒜 = Θ = 0), Eq. (16) coincides with formula (14) from [22].  

By substituting Eq. (11) into Eq. (16) we change the variables 

𝒖 = (
1 𝑡𝑥𝑦/𝑡𝑥

0 √𝑇𝑦/𝑡𝑥
) |√|𝑡𝑥||

𝒌⊥

𝑘0
+ 𝑠𝑖𝑔𝑛(𝑡𝑥) (

𝜏𝑥/√|𝑡𝑥|

(𝜏𝑦 −
𝑡𝑥𝑦

𝑡𝑥
𝜏𝑥) /√|𝑇𝑦|

) .       (20) 

Further, supposing that 𝑃𝑆𝐷2 is an isotropic function, i.e., 𝑃𝑆𝐷2(𝑘𝑥 , 𝑘𝑦) = 𝑃𝑆𝐷2(𝑘⊥) and 

passing from (𝑢𝑥 , 𝑢𝑦) to the polar coordinates (𝑢, 𝜃) we obtain  
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ℂ(𝑡) =
𝑘0

2

2

𝑡𝑝

√|𝑡𝑥𝑇𝑦|
∫ 𝑃𝑆𝐷2 (𝑘0√𝑔(𝜃))

2𝜋

0
𝑑𝜃  if 

𝑡

𝑡𝑐
> −1; otherwise ℂ = 0,          (21) 

where  

𝑡𝑐 =
1

𝑇𝑦𝑡𝑥
(𝑡𝑦𝜏𝑥

2 + 𝑡𝑥𝜏𝑦
2 − 2𝑡𝑥𝑦𝜏𝑦𝜏𝑥)    (22) 

𝑔(𝜃) = 𝜅𝜏
2𝑐𝑜𝑠2𝜃

|𝑡𝑐|

|𝑡𝑥|
+ 𝜅𝜏

2𝑠𝑖𝑛2𝜃
|𝑡𝑐|

|𝑡𝑥|
((

𝑡𝑥𝑦

𝑡𝑥
)

2

+
|𝑡𝑥|

|𝑇𝑦|
) − 2𝑞𝑥𝜅𝜏𝑐𝑜𝑠𝜃

√|𝑡𝑐|

√|𝑡𝑥|
+ 𝑞𝑥

2 + 𝑞𝑦
2 −

𝜅𝜏
2 |𝑡𝑐|

√|𝑡𝑥|

𝑡𝑥𝑦

𝑡𝑥
𝑠𝑖𝑛2𝜃

1

√|𝑇𝑦|
− 2𝜅𝜏𝑠𝑖𝑛𝜃

√|𝑡𝑐|

√|𝑇𝑦|

1

𝑇𝑦𝑡𝑥
2 (𝜏𝑦(𝑡𝑥

2 + 𝑡𝑥𝑦
2 ) − 𝑡𝑥𝑦𝜏𝑥(𝑡𝑥 + 𝑡𝑦))   (23) 

𝑇𝑦 =
𝑡𝑥𝑡𝑦−𝑡𝑥𝑦

2

𝑡𝑥
        𝑞𝑥 =

𝑡𝑦𝜏𝑥−𝑡𝑥𝑦𝜏𝑦

𝑇𝑦𝑡𝑥
       𝑞𝑦 =

𝑡𝑥𝜏𝑦−𝑡𝑥𝑦𝜏𝑥

𝑇𝑦𝑡𝑥
       𝜅𝜏 = √1 +

𝑡

𝑡𝑐
  (24) 

Here we restrict consideration to the case 𝑡𝑥𝑡𝑦 > 0 (the diffraction has the same sign along х and 

у), which is always fulfilled for the compressor, but not always for the stretcher [22], and take into 

account that 𝑡𝑥𝑡𝑦 − 𝑡𝑥𝑦
2 > 0 (i.e., 𝑇𝑦 has the same sign as 𝑡𝑥). Note that only 𝜅𝜏 is time dependent.  

 Next, we take into account that 𝛾 ≪ 1 and, consequently, 
𝑡𝑥𝑦

𝑡𝑥
~𝛾 ≪ 1 and 

𝜏𝑦

𝑡𝑥
~𝛾 ≪ 1. By 

expanding ℂ(𝑡, 𝛾) in a Taylor series near the point 𝛾 = 0 it is easy to show that the term 

proportional to 𝛾 vanishes. Consequently, the difference in the contrast ℂ(𝑡, 𝛾) for an out-of-plane 

compressor from the contrast ℂ(𝑡, 𝛾 = 0) for a plane compressor reduces to corrections of the 

order of 𝛾2. For typical values of 𝛾 = 10 … 15  degrees, the correction will be about 5%, which is 

negligibly small for contrast. Thus, the PCR ℂ(𝑡) does not depend on γ and we can use the 

expressions for a plane compressor. In other words, the contrast of an out-of-plane compressor 

practically does not differ from the contrast of a plane one. At 𝛾 = 0, Eq. (21) strictly passes into 

(19) from [22] (taking into consideration that the definition of 𝑃𝑆𝐷2 in [22] differs from Eq. (18) 

by the multiplier (2𝜋)2). Therefore, the results obtained in [22] for phase noise are valid in a 

general case if 𝑃𝑆𝐷2𝜑(𝒌⊥) is replaced by 𝑃𝑆𝐷2(𝒌⊥) Eq. (17). In particular, if we take into account 

that 𝑡𝑥 ≈ 𝑡𝑦 = 𝑡𝑑, then Eq. (21) takes the form 

ℂ(𝑡) =
𝑘0

2

2

𝑡𝑝

|𝑡𝑑|
∫ 𝑃𝑆𝐷2 (𝑘0 |

𝜏𝑥

𝑡𝑑
| √𝜅𝜏

2 + 1 − 2𝜅𝜏𝑐𝑜𝑠𝜃)
2𝜋

0
𝑑𝜃, if 

𝑡

𝑡𝑐
> −1; otherwise ℂ = 0.  (25) 

This expression is significantly simplified in two important particular cases. First, for G2 

and G3 gratings, the allowance for diffraction (𝑡𝑑 ≠ 0) leads to the emergence of the cut-off time 

𝑡𝑐 and to a slight contrast asymmetry which can be neglected, then  

ℂ𝑠(𝑡) =
𝑘0

2

𝑡𝑝

𝜏𝑥
𝑃𝑆𝐷1 (

𝑡𝑘0

2𝜏𝑥
)   if 

𝑡

𝑡𝑐
> −1;  otherwise ℂ𝑠 = 0 , (26) 

where 𝑃𝑆𝐷1(𝑘𝑥) is a one-dimensional PSD function related to 𝑃𝑆𝐷2(𝑘⊥) as [45]:  

𝑃𝑆𝐷1(𝑘𝑥) = 2 ∫
𝑃𝑆𝐷2(𝑘⊥)

√𝑘⊥
2 −𝑘𝑥

2
𝑘⊥𝑑𝑘⊥

∞

𝑘𝑥
     𝑃𝑆𝐷2(𝑘⊥) =

−1

𝜋
∫

1

√𝑘𝑥
2−𝑘⊥

2

𝑑𝑃𝑆𝐷1(𝑘𝑥)

𝑑𝑘𝑥
𝑑𝑘𝑥

∞

𝜅
       (27) 

with  

σ2 = ∫ 𝑃𝑆𝐷1(𝑘𝑥)𝑑𝑘𝑥.        (28) 

Second, there is no space chirp 𝜏𝑥 = 𝜏𝑦 = 0 for all optical elements in Fig. 1, except for 

gratings G2 and G3; for them the contrast ℂ𝑑(𝑡) is determined only by the diffraction:     

ℂ𝑑(𝑡) = 𝜋𝑘0
2 𝑡𝑝

|𝑡𝑑|
𝑃𝑆𝐷2 (𝑘0√

𝑡

𝑡𝑑
)   if 

𝑡

𝑡𝑑
> 0; otherwise ℂ𝑑 = 0    (29) 
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If 𝑡𝑑 > 0, then ℂ𝑑(𝑡 < 0) = 0, which explains the frequently observed [5, 15-18, 46, 47] 

experimental asymmetry of the contrast: at 𝑡 < 0 (pre-pulse) it is always weaker (better) than at 

𝑡 > 0 (post-pulse), since all optical elements contribute to the contrast at 𝑡 > 0, while only gratings 

G2 and G3 contribute to it at both 𝑡 < 0 and 𝑡 > 0. In [47] the authors experimentally proved that 

the contrast asymmetry cannot be explained by ASE, Raman effect, Kerr-lens mode-locking, and 

Kerr nonlinearity in Ti:sapphire amplifiers. The hypothesis [47], that phonons play a key role as 

Ti:sapphire lasers are vibronic, contradicts the recent experiments [5, 46] with a fully OPCPA laser 

where the contrast asymmetry was measured. The measured post-pulse in [47] did not depend on 

the stretching factor or on the dispersive elements (gratings or prisms), and the author concluded 

that scattering on the diffraction gratings also has no impact on asymmetry of the contrast. As seen 

from (26, 29), it is true only for the scattering on the second and third gratings, but not for the 

scattering on all other optics, including optics in the contrast measurement beamline. Thus, this 

scattering is the only way to explain the contrast asymmetry. Note that it cannot be explained by 

the earlier developed [19-21] diffraction-free approximation, in which ℂ(𝑡) is an even function. 

In the case of negative diffraction (𝑡𝑑 < 0), the time t changes its sign to the opposite one and the 

contrast ℂ𝑑(𝑡) is nonzero at negative times. This is possible if the scheme comprises a telescope 

transferring the image of the optical element beyond the focusing parabola. In addition, the contrast 

meter is usually located not directly in the powerful beam, but in its weakened replica. The meter 

also receives the radiation scattered throughout the optics located in the measuring path. Its 

contribution to the PCR is also described by Eq. (29), where 𝑡𝑑 = 𝐿𝑚/2𝑐 and 𝐿𝑚 is the distance 

from the optical element in the path to the meter. If 𝐿𝑚 > 0, then the measured contrast will be 

higher than the real one at 𝑡 > 0. However, if there is an image transfer in the path, then 𝐿𝑚 may 

be less than zero, and the contrast measured will be higher than the real one at < 0, see Eq. (29).  

 Eqs. (26, 29) clearly show the 𝑃𝑆𝐷1(𝑘𝑥) mapping on ℂ𝑠(𝑡) and 𝑃𝑆𝐷2(𝑘⊥) on ℂ𝑑(𝑡), with 

𝑘𝑥 =
𝑡𝑘0

2𝜏𝑥
 in the first case and 𝑘⊥ = 𝑘0√|

𝑡

𝑡𝑑
| in the second case. Correspondingly, the condition of 

paraxial approximation 𝑘𝑥,⊥ ≪ 𝑘0 constrains the obtained results to the conditions |𝑡| ≪ 2|𝜏𝑥| for 

ℂ𝑠(𝑡) and √|𝑡| ≪ √|𝑡𝑑| for ℂ𝑑(𝑡). Further investigation of ℂ(𝑡), including quantitative 

comparison with ℂ𝑑(𝑡) and ℂ𝑠(𝑡), is possible only for the functional forms 𝑃𝑆𝐷2Θ, 𝑃𝑆𝐷2𝑎 ,
and 𝑃𝑆𝐷2𝜑 .  

 

3. PSD functional form 𝑷𝑺𝑫𝚯 for obscurations on the grating/mirror surface  

To find  𝑃𝑆𝐷2Θ(𝑘⊥) for the field reflected from a surface with obscuration, we assume that the 

obscurations do not overlap each other and are shaped as a circle with coordinates of the center 

𝑹𝑚 and radius 𝑤𝑚: 

Θ(𝒓) = ∑ П (
𝒓−𝑹𝒎

𝑤𝑚
)𝑀

𝑚=1 ,     (30) 

where П(𝑥) = 1 𝑖𝑓 |𝑥| < 1 , otherwise П = 0 and 𝑀 ≫ 1 is the number of obscurations. 𝑹𝑚 and 

𝑤𝑚 are random quantities, with 𝑹𝑚 being uniformly distributed over the beam aperture and 𝑤𝑚 

having a probability density 𝑓(𝑤). It is obvious that 𝑆𝑜𝑏 = 𝜋 ∑ 𝑅𝑚
2𝑀

𝑚=1 . The squared modulus of 

the noise spectrum 𝑆Θ is an incoherent sum of the squared moduli of the spectra 𝑆𝑚 of flat-top 

beams having radius 𝑤𝑚 (Airy functions):   

𝑆Θ(𝑘⊥) = ∑ 𝑆𝑚
𝑀
𝑚=1 = 𝐼0 ∑ 𝑤𝑚

4𝑀
𝑚=1

𝐽1
2(𝑘⊥𝑤𝑚)

(𝑘⊥𝑤𝑚)2 ,       (31) 

where 𝐽1 is the Bessel function and 𝐼0 = |𝐸0|2 is the incident beam intensity assumed for simplicity 

to be equal for all obscurations. Here we sum the spectra incoherently, since the spectral phase of 

each obscuration is random and the sum of a large number of terms with random phase is zero. As 

a consequence, 𝑆Θ does not depend on 𝑹𝒎. From the definition of the PSD2 in Eq. (18) and of the 
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Fourier spectrum in Eq. (5), with allowance for ergodicity we obtain 𝑃𝑆𝐷2Θ(𝑘⊥) =
<𝑆Θ(𝑘⊥)>

𝐼0𝑆0
. By 

averaging Eq. (31) we find  

𝑃𝑆𝐷2Θ(𝑘⊥) =
σΘ

2

𝜋𝑘⊥
2

∫ 𝑤2𝐽1
2(𝑘⊥𝑤)

w𝑚𝑎𝑥
w𝑚𝑖𝑛

𝑓(𝑤)𝑑𝑤

∫ 𝑤2𝑓(𝑤)𝑑𝑤
𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

 ,     (32) 

from which, with Eq. (27) taken into account, follows   

𝑃𝑆𝐷1Θ(𝑘𝑥) =
σΘ

2

𝜋𝑘𝑥
2

∫ 𝑤
w𝑚𝑎𝑥

w𝑚𝑖𝑛
𝑓(𝑤)𝐇𝟏(2𝑤𝑘𝑥)𝑑𝑤

∫ 𝑤2𝑓(𝑤)𝑑𝑤
𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛

,        (33) 

where 𝐇𝟏 is the Struve function and 𝑤𝑚𝑖𝑛,𝑚𝑎𝑥 are the minimum and maximum radii of the 

obscurations. Obviously, 2𝑤𝑚𝑖𝑛 ≫ 𝜆0, since the paraxial approximation does not hold otherwise. 

Similarly, the obscurations with radius 𝑤 commensurate with the beam radius 𝑅0 cannot exist, 

since in this case the condition 𝑊Θ ≪ 𝑊0 is violated. This imposes the constraint 𝑤𝑚𝑎𝑥 ≪ 𝑅0. In 

practice, the quantities 𝑤𝑚𝑖𝑛,𝑚𝑎𝑥 may have even more stringent constraints. Note that Eqs. (32) 

and (33) satisfy Eqs. (19) and (28) regardless of the form of the function 𝑓(𝑤). 

Next, it is necessary to substitute into Eqs. (32, 33) 𝑓(𝑤) of specific form which may be 

quite complex. For example, for the optics of the standard indicated in [48], 𝑓(𝑤) has the form 

𝑙𝑜𝑔𝑓(𝑤)~(𝑙𝑜𝑔𝑤)2. We will restrict our consideration to the power form 

 𝑓(𝑤) = 𝐴1
1

𝑤𝜉    ,  (34) 

given in [23] for surface defects of optical elements after their use in a high-power laser facility. 

Under the almost always met condition 𝑤𝑚𝑎𝑥
𝜉−1

≫ 𝑤𝑚𝑖𝑛
𝜉−1

, from ∫ 𝑓(𝑤)𝑑𝑤 = 1
𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
 we obtain 𝐴1 =

(𝜉 − 1)𝑤𝑚𝑖𝑛
𝜉−1

, i.e., 𝑓(𝑤) does not depend on 𝑤𝑚𝑎𝑥. The data reported in [23] correspond to 𝜉 =
3.9 and 𝑤𝑚𝑖𝑛 ≈ 0.025 mm. Before using the optical elements in the high-power laser facility, the 

distribution function 𝑓(𝑤) is also defined by Eq. (34) with 𝜉 = 3.9, but the laser damage was 7.8 

times less [23, 49]. In what follows, we will assume 𝜉 and 𝑤𝑚𝑖𝑛 to be arbitrary constants and use 

the above values only for constructing specific plots in Section 6. The moments < 𝑤𝑛 > are 

readily calculated from Eq. (34): 

< 𝑤𝑛 >= ∫ 𝑤𝑛𝑓(𝑤)𝑑𝑤
𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
= 𝑤𝑚𝑖𝑛

𝑛 𝜉−1

𝜉−𝑛−1
(1 − 𝑍𝑛−𝜉+1),                     (35) 

where 𝑍 = 𝑤𝑚𝑎𝑥/𝑤𝑚𝑖𝑛. For 𝜉 = 𝑛 + 1, the Eq. (35) is valid within the limit 𝜉 → 𝑛 + 1. On 

substituting Eq. (34) into Eqs. (32, 33) an passing to dimensionless quantities 𝜅 = 𝑘⊥𝑤𝑚𝑖𝑛 and 
𝐾 = 𝑘𝑥𝑤𝑚𝑖𝑛, we obtain  

𝜋<𝑤2>

σΘ
2 𝑤𝑚𝑖𝑛

4 𝑃𝑆𝐷2Θ(𝜅) =
𝜉−1

𝜅5−𝜉 ∫
𝐽1

2(𝑢)

𝑢𝜉−2

𝑍𝜅

𝜅
𝑑𝑢       

𝜋<𝑤2>

σΘ
2 𝑤𝑚𝑖𝑛

3 𝑃𝑆𝐷1Θ(𝐾) =
𝜉−1

𝐾4−𝜉 ∫
𝐇𝟏(2𝑢)

𝑢𝜉−1 𝑑𝑢.
𝐾𝑍

𝐾
      (36) 

Both integrals in Eq. (36) are expressed only through the generalized hypergeometric 

function   2𝐹3, which complicates further analytical analysis. The expression Eq. (36) can be 

significantly simplified in three special cases: for 𝑘⊥𝑤𝑚𝑎𝑥 ≪ 1 and 𝑘⊥𝑤𝑚𝑖𝑛 ≫ 1, the functions 𝐽1 

and 𝐇𝟏 may be replaced by their asymptotic forms, and for 𝑤𝑚𝑎𝑥
−1 ≪ 𝑘⊥,𝑥 ≪ 𝑤𝑚𝑖𝑛

−1 , the integration 

limits may be replaced by 0 and ∞. In all special cases, a power-law dependence is obtained: in 

three sections of the spectrum 𝑘⊥,𝑥𝑤𝑚𝑎𝑥 ≪ 1, 𝑤𝑚𝑎𝑥
−1 ≪ 𝑘⊥,𝑥 ≪ 𝑤𝑚𝑖𝑛

−1  and 𝑘⊥,𝑥𝑤𝑚𝑖𝑛 ≫ 1, 𝑃𝑆𝐷2Θ 

decreases in a power-law manner with powers 0, (5 − 𝜉) and 3, and 𝑃𝑆𝐷1Θ with powers 

0, (4 − 𝜉) and 2. This is demonstrated in Fig. 3 where 𝑃𝑆𝐷2Θ(𝑘⊥) Eq. (36) is plotted. The 

𝑃𝑆𝐷1(𝑘𝑥) curves look similar. From Fig. 3 it can be seen that 𝑃𝑆𝐷2Θ(𝑘⊥) is well approximated 

by the expression  

𝜋<𝑤2>

σΘ
2 𝑤𝑚𝑖𝑛

4 𝑃𝑆𝐷2Θ(𝜅) ≈
1

4

𝜉−1

𝜉−5

1−𝑍5−𝜉

(1+𝜅2/𝜅𝐿
2)

5−𝜉
2

𝑒−𝜅2
+

1

𝜋

𝜉−1

𝜉−2

1−𝑍2−𝜉

𝜅3 (1 − 𝑒−𝜅4
),           (37) 
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where 

  𝜅𝐿 = 2 (
1

1−𝑍5−𝜉

𝜉−5

𝜉−1

 Г(𝜉−2)Г(
5−𝜉

2
)

Г3(
𝜉−1

2
)

)

1

5−𝜉

,    (38) 

compare the black and gray dotted curves with the red and pink dashed curves in the figure. If 

𝑍5−𝜉 ≫ 1, which is true for 𝜉 = 3.9, then 𝜅𝐿 is proportional to 𝑍−1, i.e., to 𝑤𝑚𝑎𝑥
−1  (see Eq. (38)). 

At the frequencies 𝑘⊥ ≫ 𝑤𝑚𝑎𝑥
−1 , the product (< 𝑤2 > 𝑃𝑆𝐷2Θ)  does not depend on Z – the gray 

and black dotted curves in Fig. 3 coincide. Since the low frequencies 𝑘⊥ ≼ 𝑤𝑚𝑎𝑥
−1  contribute only 

to contrast at small times (see Section 2), 𝑍 affects the contrast only slightly.  

a    b  

Fig. 3. 𝑃𝑆𝐷2Θ normalized to 
𝜎2𝑤𝑚𝑖𝑛

4

𝜋<𝑤2>
 as a function of 𝜅 = 𝑘⊥𝑤𝑚𝑖𝑛  for 𝜉 = 3.9 (a) and 𝜉 = 3.1 (b). Dotted curves – 

exact Eq. (36) for Z=100 (gray) and Z=10 (black); dashed curves – approximate Eq. (37) for Z=100 (pink) and Z=10 

(red). 

 

4. PSD functional form 𝑷𝑺𝑫𝒓 for roughness of the grating/mirror surface    

The surface profile ℎ(𝒓) is characterized by the function 𝑃𝑆𝐷2ℎ(𝑘⊥) related to the power spectral 

density of the introduced phase fluctuations 𝑃𝑆𝐷2𝑟(𝑘⊥) by  

𝑃𝑆𝐷2𝑟(𝑘⊥) = 𝐵0𝑘𝑜
2𝑃𝑆𝐷2ℎ(𝑘⊥)  ,       (39) 

where 𝐵0 = (𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛽)2 for the grating [50] and 𝐵0 = 4𝑐𝑜𝑠2𝛼 for the mirror. Much attention 

in the literature has been paid to measuring 𝑃𝑆𝐷1ℎ(𝑘𝑥) [5, 11, 14, 19, 23, 45, 51-55]. In general, 

it behaves differently in different spectral ranges for different optical elements. In such a case, it 

is necessary to substitute the experimental data into Eqs. (39, 27) and the result into Eq. (25). At 

medium and high spatial frequencies, 𝑃𝑆𝐷2ℎ often has a power-law form, and at low frequencies 

it is equal to a constant. Therefore, 𝑃𝑆𝐷2ℎ  is well approximated by a Lorentz-type spectrum [21, 

45, 56] with correlation length 1/𝑘ℎ, surface profile dispersion 𝜎ℎ
2, and exponent 𝑎 > 2. Then 

𝑃𝑆𝐷2𝑟(𝑘⊥) =
𝑎−2

2𝜋
𝜎ℎ

2𝐵0𝑘0
2 𝑘ℎ

𝑎−2

(𝑘ℎ
2+𝑘⊥

2 )
𝑎/2      𝑃𝑆𝐷1𝑟(𝑘𝒙) =

Г(
𝑎−1

2
)

√𝜋Г(
𝑎−2

2
)

𝜎ℎ
2𝐵0𝑘0

2 𝑘ℎ
𝑎−2

(𝑘ℎ
2+𝑘𝑥

2)
(𝑎−1)/2  (40) 

Usually, 2 < 𝑎 < 4. A frequently encountered value is 𝑎 ≈ 2.55, including in the work 

[54], where 𝑃𝑆𝐷1ℎ(𝑘⊥)  was measured for an off-axis parabola used for writing holographic 

gratings.  

 

5. PSD functional form for obscuration and roughness of the optics used for writing 

gratings 

When writing a holographic grating, even with a perfectly plane substrate surface, the grating is 

not ideal due to the non-equidistance and non-parallelism of the grooves, as well as due to groove 

profile fluctuations.  

 The non-equidistance and non-parallelism of the grooves are determined by spatial 

fluctuations in the phase difference of two writing beams and give rise to fluctuations in the phase 

of the beam reflected from the grating ∆𝜑(𝒓) ≠ 0 [25-28], without affecting the reflection 
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coefficient: 𝒜(𝒓) = 0. For a holographic grating this phase is equal to the phase of the writing 

field 𝜙𝑤𝑟 scaled along the x axis [27]: ∆𝜑(𝒓) = 𝜙𝑤𝑟(𝑥𝑐𝑜𝑠Ф, 𝑦). Here, Ф is the angle of incidence 

on the substrate (Fig. 4), 𝑠𝑖𝑛Ф = 𝑁𝜆𝑤𝑟/2. The phase ∆𝜑(𝒓) is added to the phase 𝜑(𝒓) associated 

with the non-flat surface of the grating that was discussed in Section 4. Since these phases are 

uncorrelated, their PSDs are summed. Considering that 𝑐𝑜𝑠Ф is usually close to unity, we will 

assume that the PSD functions for ∆𝜑 and 𝜙𝑤𝑟 are equal and designate them as 𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒.  

 The fluctuations in the groove shape are caused by spatial fluctuations in the intensity of 

the radiation used to write the grating and give rise to the fluctuations in the modulus of the grating 

reflectivity 𝒜(𝒓) ≠ 0 [24], without affecting its phase: ∆𝜑(𝒓) = 0. Rigorous calculation of the 

PSD of the grating reflectivity fluctuations 𝑃𝑆𝐷2𝑎 is a complex problem that requires knowledge 

of exact relationship between these fluctuations and the intensity fluctuations of the writing field 

|𝐸𝑤𝑟(𝒓)|2. However, taking into account the smallness of both fluctuations relative to their mean 

values, we will assume that they are proportional to each other. Then 𝑃𝑆𝐷2𝑎 = 𝑞𝑃𝑆𝐷2𝑑𝑜𝑠𝑒, where 

𝑞 > 0 is a dimensionless coefficient, and 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒 is 𝑃𝑆𝐷2 for the radiation intensity on the 

substrate normalized to the average value. Now we need to find 𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒 and 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒. 

 

Fig. 4. Scheme of writing holographic diffraction grating by two laser beams. BS – beamsplitter, M1-M5 – mirrors, 

and SF – spatial filters. 

Since all dynamic noises are averaged during grating exposure, only the “frozen” noises 

caused by the imperfection of the transport optics are significant. Obviously, the fewer optical 

elements are used, the better. A scheme for writing a holographic grating that is optimal from this 

point of view is presented in Fig. 4 [54]. Since the spatial filter ensures good filtering of high-

frequency noise, only the transport optics located after the filters is of fundamental importance. 

The scheme in Fig. 4 contains a minimum number of such elements – two off-axis parabolic 

mirrors (OAP). In the classical work [57] and other [24] papers, collimators are additionally used, 

which increases fluctuations. When reflecting the beam 𝐸𝑤𝑟(𝒓) these two OAPs introduce into it 

both the amplitude noise caused by scratches and defects (obscuration), and the phase noise caused 

by the imperfection/roughness of the surface. Let us denote by 𝑃𝑆𝐷2𝑚,Θ and 𝑃𝑆𝐷2𝑚,𝜑 the power 

spectral density of the amplitude and phase of the field reflected from the OAP. We assume that 

the statistical properties of the OAP surface are the same as the properties of the grating surface, 

i.e., they have equal 𝑃𝑆𝐷2ℎ(𝑘⊥). Then 𝑃𝑆𝐷2𝑚,𝜑 =
𝐵𝑤𝑟𝑘𝑤𝑟

2

𝐵0𝑘0
2 𝑃𝑆𝐷2𝑟, Eq. (40), where 𝑘𝑤𝑟 is the 

wave vector of the writing radiation and 𝐵𝑤𝑟 = 4𝑐𝑜𝑠2𝜃, where 𝜃 is the angle of incidence on the 

OAP (Fig. 4). Analogously, we assume that the statistical properties of obscuration on these 

mirrors are the same as on the gratings, i.e., 𝑃𝑆𝐷2𝑚,Θ =
𝜎𝑤𝑟

2

σΘ
2 𝑃𝑆𝐷2𝑜𝑏, Eq. (37). For unused gratings 

it is reasonable to assume that σΘ
2 = 𝜎𝑤𝑟

2 , but with long-term use of gratings in high-power 

radiation the number of defects increases and σΘ
2 ≫ 𝜎𝑤𝑟

2 , see Section 3. 
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The field on the substrate differs from the field on the mirror, since when the light is 

propagating from the mirror to the substrate over distance 𝐿𝑤𝑟, the fluctuations of the amplitude 

and phase of the field transform into each other. An expression for 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒 when a beam 

propagates in free space was obtained in [44], from which, in the particular case of monochromatic 

radiation of interests to us, we find 

𝑃𝑆𝐷2𝑑𝑜𝑠𝑒 = 4𝑇(𝑃𝑆𝐷2𝑚,Θ + 𝑃𝑆𝐷2𝑚,𝜑) + 4𝑅𝑒(𝑇2𝑒𝑖𝐿𝑤𝑟𝑘⊥
2 /𝑘0)(𝑃𝑆𝐷2𝑚,Θ − 𝑃𝑆𝐷2𝑚,𝜑), (41) 

where 

𝑇(𝝆) =
∫|𝐸𝑤𝑟(𝒓)|2|𝐸𝑤𝑟(𝒓−𝝆)|2𝒅𝒓

∫|𝐸𝑤𝑟(𝒓)|4𝒅𝒓
      𝑇2(𝝆) =

∫ 𝐸𝑤𝑟
∗ (𝒓−𝝆)𝐸𝑤𝑟

∗ (𝒓+𝝆)𝐸𝑤𝑟
2 (𝒓)𝒅𝒓

∫|𝐸𝑤𝑟(𝒓)|4𝒅𝒓
      𝝆 = 𝐿𝑤𝑟𝒌⊥/𝑘0.  (42) 

Here, we took into account that two OAPs with uncorrelated noises contribute to 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒, i.e., 

the 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒 Eq. (41) is twice as large as that for one beam reported in [44]. It can be readily 

shown that the 𝑃𝑆𝐷 of field amplitude fluctuations |𝐸𝑤𝑟(𝒓)| is 4 times smaller than the 𝑃𝑆𝐷2𝑑𝑜𝑠𝑒 

and the sum of the 𝑃𝑆𝐷 of the field amplitude fluctuations |𝐸𝑤𝑟(𝒓)| and the 𝑃𝑆𝐷 of the field phase 

𝜙𝑤𝑟(𝒓) is 4𝑇(𝑃𝑆𝐷2𝑚,Θ + 𝑃𝑆𝐷2𝑚,𝑟). Thus, 𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒 =
1

4
𝑃𝑆𝐷2𝑑𝑜𝑠𝑒.  

The authors of [54] derived an expression similar to Eq. (41) with 𝑇 = 1, i.e., neglecting 

the finite beam aperture 𝐸𝑤𝑟(𝒓) (see below). The term with 𝑇2 corresponds to the Talbot effect. 

Considering that 𝐿𝑤𝑟 is on the order of 10 meters, at large 𝑘⊥ this term rapidly oscillates around 

zero. In addition, since the contribution to 𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒,𝑑𝑜𝑠𝑒 is made by two surfaces with close but 

not identical distances 𝐿𝑤𝑟, the total phase fluctuations at large 𝑘⊥ are averaged. Therefore, this 

term can be approximately replaced by its average value, which is obviously equal to zero, i.e., we 

can set 𝑇2 = 0. The function 𝑇(𝝆) corresponds to the spatial self-filtering of noise during 

propagation in free space [44, 58, 59], which is associated with the fact that part of the high-

frequency noise escapes from the beam aperture. The transmittance 𝑇(𝝆), that is the normalized 

ACF of the writing beam intensity, is close to unity at 𝜌 ≪ 𝑅0, i.e., for 
𝐿𝑤𝑟

𝑅0
≪

𝑘0

𝑘⊥
. Since 𝐿𝑤𝑟 ≈

10𝑅0, then 𝑇(𝝆) ≈ 1 for 𝑘⊥ ≪ 0.1𝑘0. This condition is more rigorous than the paraxial 

approximation condition 𝑘⊥ ≪ 𝑘0, so self-filtering cannot be completely neglected. At the same 

time, 𝑇(𝜌 = 𝑅0) ≈ 1/2, i.e., for 𝑘⊥ = 0.1𝑘0 (the paraxial approximation boundary), the error will 

be about two. Therefore, assuming 𝑇(𝝆) ≈ 1 we obtain a slightly overestimated noise value at 

high (𝑘⊥ ≈ 0.1𝑘0) frequencies and, consequently, a slightly overestimated contrast value at large 

times. From Eq. (41), with 𝑇 = 1 and 𝑇2 = 0 taken into account, we have 

𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒 =
𝜎𝑤𝑟

2

σΘ
2 𝑃𝑆𝐷2Θ +

𝐵𝑤𝑟𝑘𝑤𝑟
2

𝐵0𝑘0
2 𝑃𝑆𝐷2𝑟       𝑃𝑆𝐷2 𝑑𝑜𝑠𝑒 = 4𝑃𝑆𝐷2𝑝ℎ𝑎𝑠𝑒 ,          (43) 

where 𝑃𝑆𝐷2Θ is defined by Eqs. (37, 36), and 𝑃𝑆𝐷2𝑟 by Eq. (40). Taking into account the linear 

relationship of 𝑃𝑆𝐷1 and 𝑃𝑆𝐷2 Eq. (27), an expression for 𝑃𝑆𝐷1 is analogous to Eq. (43). The 

results presented in Sections 3–5 are summarized in Table 1, from which we obtain the final 

expression for the total 𝑃𝑆𝐷 for one grating: 

𝑃𝑆𝐷2 = (1 + {1 + 4𝑞}
𝜎𝑤𝑟

2

σΘ
2 ) 𝑃𝑆𝐷2Θ + (1 + {1 + 4𝑞}

𝐵𝑤𝑟𝑘𝑤𝑟
2

𝐵0𝑘0
2 ) 𝑃𝑆𝐷2𝑟                 (44) 

By substituting Eq. (44) into Eq. (26) we obtain an expression for the contrast ℂ𝑠(𝑡) for 

gratings G2 and G3, and the substitution of Eq. (44) into Eq. (29) gives an expression for the 

contrast ℂ𝑑(𝑡) for gratings G1 and G4, as well as for the mirrors on the input and output optics. 

Note that for the mirrors the expressions in parentheses in Eq. (44) should be replaced by 1, since 

in this work we neglect fluctuations in the mirror reflectivity.  
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Table 1. 𝑃𝑆𝐷 for one grating (for a mirror, the columns “writing” would contain zeros)  

 Obscurations Roughness  

 beamline  writing beamline writing 

Аmplitude fluctuations 

𝑃𝑆𝐷2Θ(𝒌⊥) + 𝑃𝑆𝐷2𝑎(𝒌⊥) 

𝑃𝑆𝐷Θ  Eq. (37) 

(exact Eq. (36)) 
4𝑞

𝜎𝑤𝑟
2

σΘ
2 𝑃𝑆𝐷Θ   --- 

4𝑞
𝐵𝑤𝑟𝑘𝑤𝑟

2

𝐵0𝑘0
2 𝑃𝑆𝐷𝑟 

Phase fluctuations 

𝑃𝑆𝐷2𝜑(𝒌⊥) 

--- 𝜎𝑤𝑟
2

σΘ
2

𝑃𝑆𝐷Θ 
𝑃𝑆𝐷𝑟 Eq. (40)   𝐵𝑤𝑟𝑘𝑤𝑟

2

𝐵0𝑘0
2 𝑃𝑆𝐷𝑟 

 

6. Example of contrast ℂ(𝒕) calculations  

Above we considered the contrast introduced by one of the optical elements shown in Fig. 1. In 

what follows we will assume that the total contrast is equal to the sum of the contrasts introduced 

by each element. This is obvious for obscurations and surface imperfections (both of the grating 

and of the mirror), since the obscurations are randomly located on different elements and the Θ(𝒓) 

functions of different elements are uncorrelated. The same applies to the roughness of beamline 

optics. For the contrast associated with writing the gratings, the issue is more complicated. It is 

reasonable to assume that all gratings are written under the same conditions; then their functions 

𝒜(𝒓) and ∆φ(𝒓) are correlated. A strong correlation for ∆φ(𝒓) was measured in [28]. However, 

since G2 and G3 (as well as G1 and G4) are mirror-like in the compressor, their identity is lost by 

virtue of the uncorrelated 𝒜(𝑥, 𝑦) and 𝒜(−𝑥, 𝑦). For definiteness, we will assume that both the 

input and output optics consist of four mirrors. We will use the geometric parameters of the 

compressor from the XCELS project [43], see Table 2. 

 

Table 2. Compressor parameters  

𝜆0, nm 910  𝑡𝑝, fs 20 

A 0.97  𝜏𝑥 , ns  3.07 

E=F 3.55  𝑡𝑐  for 𝐺2, ps    249   

K=G 0  𝑡𝑐  for 𝐺2, ps  338 

𝐿, m 1.9  𝑡𝑥𝑦 = 𝜏𝑦  0 

𝐿𝑖𝑛 = 𝐿𝑜𝑢𝑡, m 5  𝑡𝑥 = 𝑡𝑦 = 𝑡𝑑  for G2, ns  37.9 

𝐿23, m 6  𝑡𝑥 = 𝑡𝑦 = 𝑡𝑑  for G3, ns  27.9 

𝐿𝑝, m 5    

 

We have neither theoretical nor experimental data on the value of q, but we can make the 

following estimate. For the dispersion of the power reflectivity of the grating 𝜎𝑅
2 = 2𝜎𝑎

2, we obtain 

𝜎𝑅
2 = 8𝑞𝜎ℎ

2𝐵𝑤𝑟𝑘𝑤𝑟
2 . We will take the minimum value of 𝜎ℎ available in the literature, which at 

𝑘ℎ = 0.1/mm is 𝜎ℎ = 0.38 nm [54]. Then at 𝜆𝑤𝑟 = 413 nm, 𝐵𝑤𝑟 = 3.7, and 𝑞 = 1 we obtain 

𝜎𝑅 = 0.03, which is an unreasonably large value for such high-quality optics. For the NIF standard 

optics, 𝜎ℎ = 3.8 nm and 𝜎𝑅 = 0.03 is obtained at 𝑞 = 0.01. Although these estimates are very 

rough, we can conclude from them that 𝑞 ≪ 0.1 and set 𝑞 = 0 in Eq. (44). In other words, the 

impact of the writing optics imperfections on the fluctuations of the grating reflectivity may be 

neglected and only the diffracted wave phase fluctuations will be taken into account. 

 The solid curves in Fig. 5 show the PCR introduced by gratings G2 and G3, and the dotted 

curves show the PCR introduced by all the other optical elements taken together: gratings G1 and 

G4, as well as the input Min and output Mout optics. As stated above, such a partitioning is made 

because only gratings G2 and G3 have a spatial chirp (𝜏𝑥 ≠ 0) and it is necessary to use either the 

exact Eq. (25) or the approximate Eq. (26), from which it follows that the cut-off time 𝑡𝑐 Eq. (22) 

is 249 ps for G3 and 338 ps for G2, i.e., there are both a pre-pulse and a post-pulse. There is no 
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spatial chirp (𝜏𝑥 = 0) on all the other elements, so one can use Eq. (29), from which it follows 

that the cut-off time is zero, i.e., there is no pre-pulse (if there is no negative diffraction, see Section 

2). 

 The red and blue curves in Fig. 5 correspond to the contrast ℂ𝑜𝑏(𝑡) caused by obscurations 

and the contrast ℂ𝑟(𝑡) caused by surface roughness. To obtain ℂ𝑜𝑏(𝑡), only the first term from Eq. 

(44) (i.e., the term with 𝑃𝑆𝐷2Θ from Eq. (37)) should be substituted into Eqs. (25, 29). The analysis 

shows that ℂ𝑜𝑏(𝑡) is almost independent of Z, it depends only on two dimensionless quantities – 

𝜉 and 𝑘0𝑤𝑚𝑖𝑛. Further, we will assume that 𝑤𝑚𝑖𝑛 = 0.25 mm, 𝜉 = 3.9 [23] and that the 

compressor has already been used in a large number of shots, as a result of which grating G4 and 

the output optics “accumulated” obscurations in the amount measured in [23], which corresponds 

to 𝜎Θ
2 = 6.1 ∙ 10−4. The input optics, gratings G1–G3 and writing optics are not exposed to 

powerful femtosecond radiation, so we will assume that for them 𝜎Θ
2 = 6.1 ∙ 10−6, i.e., it is 100 

times smaller. We remind the reader that 𝜎Θ
2 is equal to the fraction of the surface occupied by 

obscurations, as well as to the fraction of the noise energy 𝑊Θ/𝑊0, see Section 2. 

a)     b)   

Fig. 5. Contrast ℂ𝑜𝑏(𝑡) (red) and ℂ𝑟(𝑡) (blue) for gratings G2 and G3 (solid curves), for other optical elements 

(dashed curves), and total contrast for the entire compressor (green dotted curve). (а) and (b) differ only by the scale 

of the horizontal axis.   

To obtain ℂ𝑟(𝑡), it is necessary to substitute into Eqs. (25, 29) only the second term from Eq. (44) 

(the term with 𝑃𝑆𝐷2𝑟 from Eq. (40)). The analysis of these expressions shows that ℂ𝑟(𝑡) depends 

only on two dimensionless quantities – 𝑎 and 𝜎𝑟
2 = 𝐵0𝑘0

2𝜎ℎ
2(𝑘ℎ/𝑘0)𝑎−2, with the dependence on 

𝜎𝑟
2 being linear. In other words, for a fixed a, the shape of ℂ𝑟(𝑡) does not change. Further, we will 

assume that 𝑎 = 2.55, and 𝜎ℎ
2 of all optical elements, including mirrors used for writing the 

gratings (see Fig. 4), is 200 times less than the data in [55], 10 times less than the NIF standard 

[23], but 10 times more than the data reported in [54]. At 𝑘ℎ = 0.1/mm this corresponds to 𝜎ℎ ≈
1.2 nm. It is easy to show that the fraction of the noise energy 𝜎𝜑

2 = 𝑊φ/𝑊0 caused by scattering 

on a rough surface is equal to 𝜎ℎ
2𝐵0𝑘0

2 and at 𝐵0 = 2.8 we obtain 𝜎𝜑
2 ≈ 1.9 ∙ 10−4. This is 

approximately 30 times more than 𝜎Θ
2 = 6.1 ∙ 10−6 presented above. However, at large times ℂ𝑟 ≪

ℂ𝑜𝑏, since ℂ𝑜𝑏 decreases very slowly. As a result, at large times the total PCR is determined by 

ℂ𝑜𝑏 ,  and at small times by ℂ𝑟. This qualitative conclusion is valid for a wide range of 𝜎𝜑
2 and 𝜎Θ

2. 

Any quantitative comparison of ℂ𝑜𝑏 and ℂ𝑟 strongly depends on the quality of the optical elements, 

because ℂ𝑜𝑏,𝑟 are proportional to 𝜎Θ,𝜑
2  and the 𝜎𝜑

2/𝜎Θ
2  ratio can vary over a wide range in practice. 

For example, the boundary is the instant of time at which ℂ𝑟 = ℂ𝑜𝑏 is 𝑡∗ = −60𝑝𝑠 in Fig.5a. If 

the optics roughness 𝜎𝜑
2 increases by a factor of 10, ℂ𝑟 also increases by a factor of 10 and 𝑡∗ =

−12𝑝𝑠.   

The small deviation of the contrast from parity observed in Fig. 5 for curves G2 and G3 

constructed according to Eq. (25) may be neglected in practice and a simpler Eq. (26) can be used 

instead of Eq. (25), i.e., ℂ(𝑡) is proportional to 𝑃𝑆𝐷1(𝑘𝑥) and the mapping is linear: 𝑡 = 𝜏𝑥𝑘𝑥/𝑘0. 

Since in the focal plane the distance from the beam axis (along the x axis) is 𝑥 = 𝐹𝑘𝑥/𝑘0, then for 

the pre-pulse, 𝑥 is related to the time of its appearance on the target as 𝑥 = 𝐹𝑡/𝜏𝑥. Thus, the 

radiation reaches the target at the time 𝑡 = −𝑡с, illuminating a vertical strip at a distance 𝑥 =
𝐹𝑡с/𝜏𝑥, see Fig. 6а. Then this strip splits into two and its replicas move in opposite directions at 
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speed 𝐹/𝜏𝑥. At 𝑡 = 0, one of them reaches the axis and continues to move in the same direction at 

the same speed. The intensity, and hence, the fluence change proportionally to ℂ(𝑡). For any given 

fluence value (for example, at which the target is destroyed), this simple reasoning allows us to 

calculate for each point of the target the time at which this value will be reached. 

For all the other optical elements, except for G2 and G3, PCR ℂ(𝑡) is proportional to 

𝑃𝑆𝐷2(𝑘⊥) Eq. (29) and the mapping is quadratic: 𝑡 = 𝑡𝑑𝑘⊥
2/𝑘0

2. The radiation reaches the target 

at 𝑡 = 0, exactly at the beam axis. At all subsequent instants of time, the radiation illuminates a 

ring of radius 𝑟 = 𝐹𝑘⊥/𝑘0 = 𝐹√𝑡/𝑡𝑑, which increases in proportion to √𝑡 (Fig. 6b).  

The laws of ℂ(𝑡) degrease are different, see Fig. 5a. The ℂ𝑜𝑏(𝑡) curve for G2 and G3 

clearly features the boundary between the two ranges, in which the law of ℂ𝑜𝑏(𝑡) degrease changes 

from |𝑡|−0.1 to |𝑡|−2. Unfortunately, quantitative comparison with the experiments is impossible 

for lack of PSD functions for the gratings and optics used in the experiments.  There is a good 

qualitative agreement between ℂ𝑜𝑏(𝑡) and the results of measurements [11], where a plateau (an 

area where ℂ𝑜𝑏(𝑡)~|𝑡|−0.1) caused by scattering at stretcher mirrors, which is equivalent to 

scattering at gratings G2 and G3 [22], was also observed. The theory (in particular the dotted curve 

in Fig.5) explains the frequently observed experimental asymmetry of the contrast: the post-pulse 

is larger than the pre-pulse [5, 15-18, 46, 47]. Also, Figure 5a shows typical “triangular” ℂ(𝑡) 

shapes observed in many experiments [5, 8, 11, 14-19, 47]. 

Despite the larger number of elements (two gratings and 8 mirrors), the ℂ𝑟(𝑡) for G2 and 

G3 is close to ℂ𝑟(𝑡) for all the other elements. The point is that the contribution of ℂ𝑟(𝑡) for 

gratings is much larger than for mirrors, since in mirrors there is no dominant (due to 𝑘𝑤𝑟
2 ≫ 𝑘0

2) 

contribution from writing optics.   

For the PCR caused by the roughness of gratings and mirrors of the input and output optics, 

generalizations to advanced compressors and stretcher were proposed in [22]. Without repeating 

them here, we just note that they are valid for all the results obtained above, since they are based 

on the expression (19) in [22], which coincides with Eq. (17) if 𝑃𝑆𝐷2𝜑(𝒌⊥) is replaced by 

𝑃𝑆𝐷2(𝒌⊥).  

 
Fig. 6. Schematic representation of the target illumination dynamics in the focal plane. a) For gratings G2 

and G3, b) for all other optical elements depicted in Fig. 1. 

 

7. Conclusion 

In the paraxial approximation, with allowance for all orders of dispersion, the problem of the 

impact of imperfect compressor gratings and transport optics on the PCR ℂ(𝑡) Eq. (1) of a 

femtosecond laser pulse has been solved. All types of imperfections have been considered: non-

flat surface profile (roughness), dirt/damage/obscuration on the surface, as well as roughness and 

obscuration on the optics used to write holographic gratings. The analytically obtained Eq. (25) 
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for ℂ(𝑡) is valid for any optical element, for both the Treacy compressor and the out-of-plane 

compressor. For finding ℂ(𝑡) it is sufficient to know the PSD of the field reflected from an 

imperfect optical element. For the roughness, the field PSD is determined by the PSD of the surface 

profile and for the obscuration, by the obtained Eq. (36). 

Strictly speaking, the PCR caused by the imperfections of the second and third gratings is 

not an even function of time, since diffraction results in the cutoff time 𝑡𝑐: ℂ(𝑡 < −𝑡𝑐) = 0, as 

well as in a small deviation from parity at |𝑡| < 𝑡𝑐. However, this deviation is small and can be 

neglected in practice. Then ℂ(𝑡) is proportional to 𝑃𝑆𝐷1(𝑘𝑥) of the reflected field Eq. (26), with 

the arguments of these functions being related linearly as 𝑡 = 𝜏𝑥𝑘𝑥/𝑘0. The radiation scattered by 

the second and third gratings arrives at the target at the time 𝑡 = −𝑡с, illuminating a vertical stripe 

at the distance 𝑥 = 𝐹𝑡с/𝜏𝑥 (Fig. 6а). Then this stripe bifurcates and its replicas move in opposite 

directions at a speed 𝐹/𝜏𝑥. One of them, at the time of the main pulse arrival (𝑡 = 0), reaches the 

beam axis and continues to move in the same direction at the same speed. 

The PCR caused by imperfections of all the other optical elements, except for the second 

and third gratings, is nonzero only at 𝑡 > 0. This radiation reaches the target at 𝑡 = 0 exactly on 

the beam axis and further moves away from the axis like a circle on water from a thrown stone. 

ℂ(𝑡) is proportional to the 𝑃𝑆𝐷2(𝑘⊥) of the reflected field Eq. (29), with the arguments of these 

functions being related quadratically: 𝑡 = 𝑡𝑑𝑘⊥
2/𝑘0

2. It is the scattering on other optical elements 

that explains the contrast asymmetry observed in the experiment when the sign of the time is 

changed. 

With the same roughness and the same obscuration, the contribution to the PCR of the 

optics used to write holographic gratings is significantly greater than the contribution of the 

gratings themselves. This is due to the fact that shorter-wave radiation is used for writing, and the 

phase distortions are proportional to 𝜆−1.  

The comparison of ℂ𝑜𝑏(𝑡) caused by obscurations and ℂ𝑟(𝑡) caused by roughness shows 

that, at small 𝑡, ℂ𝑟(𝑡) prevails аnd at large 𝑡,  ℂ𝑜𝑏(𝑡), since its distinctive feature is a very slow 

decrease with increasing |𝑡| (Fig. 5а). The instant of time at which ℂ𝑜𝑏(𝑡) = ℂ𝑟(𝑡) strongly 

depends on the proportion of the radiation power scattered on obscuration and on roughness.  
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