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Abstract

This study investigates unintended information flow in large language models (LLMs) by proposing a computational
linguistic framework for detecting and analyzing domain anchorage. Domain anchorage is a phenomenon potentially
caused by in-context learning or latent “cache” retention of prior inputs, which enables language models to infer and
reinforce shared latent concepts across interactions, leading to uniformity in responses that can persist across distinct users
or prompts. Using GPT-4 as a case study, our framework systematically quantifies the lexical, syntactic, semantic, and
positional similarities between inputs and outputs to detect these domain anchorage effects. We introduce a structured
methodology to evaluate the associated risks and highlight the need for robust mitigation strategies. By leveraging
domain-aware analysis, this work provides a scalable framework for monitoring information persistence in LLMs, which
can inform enterprise guardrails to ensure response consistency, privacy, and safety in real-world deployments.

Policy Significance Statement

As large language models (LLMs) like GPT-4 are increasingly deployed in enterprise and public-sector settings,
concerns about unintended information flow and privacy leakage are becoming more urgent. This study
introduces a generalizable framework to detect and manage these risks, offering organizations and policymakers
a practical tool for monitoring information persistence across interactions. By implementing domain-aware
guardrails informed by this framework, businesses can enhance response consistency, protect user privacy, and
reduce the likelihood of biased or inappropriate outputs. These safeguards also support compliance with data
protection regulations such as the General Data Protection Regulation (GDPR), contributing to more transparent,
accountable, and secure Al governance across industries.

1. Introduction

As large language models (LLMs), such as GPT-4, become increasingly integrated into enterprise and
institutional workflows, concerns about unregulated usage and unintended information flow have grown
more pressing. A recent survey revealed that 68% of employees using ChatGPT at work do not disclose
their usage to employers', a trend that is mirrored across other LLM platforms in professional settings.

! https://www.businessinsider.com/70-of-people-using-chatgpt-at-work-havent-told-bosses-2023-3
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This integration in domains such as healthcare introduces substantial ethical and privacy concerns. For
instance, in healthcare, Al’s ability to process and analyze vast datasets with precision raises significant
issues regarding patient privacy and data security (Williamson and Prybutok, 2024). The application of Al
in corporate settings further necessitates a thorough examination of how sensitive information is managed
and protected (Sargiotis, 2024).

This surge in informal, unmonitored adoption highlights a critical governance challenge: these models
may be exposed to sensitive corporate, financial, or healthcare data without appropriate oversight or
safeguards. This trend raises a pressing question: could LLMs, when repeatedly exposed to domain-
specific input, inadvertently carry information from one interaction to another, resulting in information
leakage or cross-user bias? Real-world incidents, including documented cases of Al models unintention-
ally revealing snippets of sensitive user data, reinforce the urgency of this inquiry and the need for robust
detection methods.

To investigate this risk, we simulate multiuser interactions with an LLM in a controlled setting, analyzing
how domain-specific prompting may influence subsequent outputs. We design two lexicon profiles, Profile
A and Profile B, that represent semantically equivalent queries phrased using different vocabulary,
mimicking distinct users operating within the same domain. By comparing responses generated for these
divergent input styles, we aim to measure the degree to which the model’s answers remain consistent,
regardless of prompt variation, once it is anchored to a particular domain. While GPT-4 is used as the
empirical testbed, our simulation approach is generalizable to other LLMs with similar architecture and
in-context learning (ICL) capabilities. The focus of our framework is to quantify similarities between
prompts and model responses across multiple linguistic dimensions, such as lexical, syntactic, semantic, and
positional, to detect when outputs become disproportionately influenced by a prior domain context.

Our theoretical grounding builds on recent work interpreting ICL as a form of implicit Bayesian
inference, where the model learns to infer shared latent concepts from prompt examples without explicit
parameter updates. We extend this view by proposing that domain-specific prompts create a latent “cache”
of concepts that persistently influence output generation. This effect, which we term domain anchorage, is
not limited to GPT-4, but is likely a general characteristic of modern LLMs capable of rapid adaptation.
While such behavior may improve answer consistency, it also carries risk, as domain anchorage can lead
to unintended reinforcement of user-specific information, introduce bias or echo-chamber effects, and
increase the likelihood of inadvertent cross-user information transfer.

The potential for domain anchorage to undermine fairness, safety, and data privacy underscores the
importance of explainability and transparency in Al systems. In response, we propose a computational
linguistic framework to detect and quantify domain anchorage as a proxy for information persistence in
LLMs. This framework offers a generalizable method for auditing model behavior and assessing
unintended information flow. Our contribution is threefold: first, we introduce a structured, model-
agnostic approach to analyze domain-specific consistency in LLM responses; second, we demonstrate
how this framework can serve as the foundation for implementing domain-aware guardrails that enhance
privacy and reduce information leakage.

Beyond risk detection and governance, a critical yet often overlooked dimension of LLM deployment
in enterprise settings is response consistency. Organizations increasingly rely on LLMs to support
workflows that demand reliable, repeatable, and verifiable outputs to draft regulatory documents,
generate customer responses, or assist with internal decision support. In these contexts, inconsistent
answers to semantically equivalent queries can erode trust in the system, introduce operational ineffi-
ciencies, and complicate compliance reporting. Our findings offer a mechanism to manage such
inconsistencies by identifying patterns of domain anchorage that influence how models generalize across
similar inputs. By leveraging the proposed framework, enterprises can establish domain-aware prompt
strategies or monitoring protocols that reinforce consistency without requiring full model retraining or
fine-tuning. This contribution is especially valuable for industries like finance, healthcare, and law, where
decision-making must be transparent and defensible. In this way, our framework not only identifies
potential risks, but also offers a practical path to strengthening the reliability and usability of LLMs within
closed enterprise environments.
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This research supports broader efforts to institutionalize transparency, fairness, and data protection
within Al governance. As highlighted in the UK Government’s Al White Paper?, explainability is central
to maintaining public trust in automated systems. However, recent findings from the Centre for Data
Ethics and Innovation (2021) reveal a significant public knowledge gap around how personal data is
processed. Our framework helps bridge that gap by making latent behaviors in language models
observable and measurable, thereby supporting compliance with principles outlined in data protection
regulations such as the GDPR and the UK Data Protection Act. Furthermore, this paper directly responds
to the call for rigorous, interdisciplinary methodologies that enable responsible and transparent Al
deployment in policy-relevant domains (Engin et al., 2024). By focusing on domain anchorage as a
mechanism of unintended information persistence in LLMs, we contribute to the broader Al policy
agenda aimed at operationalizing trust, safety, and oversight in algorithmically mediated decision
environments. By equipping organizations with tools to evaluate and control unintended information
flow in LLMs, we offer a research-backed pathway to align Al system design with evolving legal and
ethical standards for responsible data use.

To situate our work within the broader landscape, we next review literature on ICL, semantic
persistence, and information leakage in LLMs, identifying where current approaches fall short in
detecting domain anchorage.

2. Literature review

Recent advancements in language models such as GPT-4 have demonstrated significant capabilities,
including ICL. Xie et al. (2022) describe ICL as an implicit Bayesian inference process, wherein language
models, during pretraining, learn to infer shared latent concepts across varied contexts. This capability
enables models to generate accurate responses even when presented with novel prompts. For example, the
model may learn to associate named entities with attributes such as nationality or occupation, despite not
being explicitly trained on such pairings.

In addition to concerns surrounding ICL, Hermann et al. (2024) provide complementary evidence from
the protein domain, showing that models trained without pretraining-aware splits can exhibit substantial
leakage, leading to inflated performance due to overlap between training and evaluation data. These
findings reinforce our concern that transformer outputs may reflect latent patterns shaped by prior
exposure, even in the absence of explicit memory or fine-tuning.

The response-generation process involves the model implicitly learning a mapping between input and
output, regardless of the artificial concatenation of examples during prompting. By recognizing how
language models infer shared latent concepts from domain-specific prompts, we can better understand the
mechanisms contributing to response uniformity. Our study posits that domain-specific priming introduces a
form of meta-optimization, where the model’s transformer layers adapt to reflect domain context, producing
responses that exhibit significant uniformity regardless of lexical variation in the input. The relevance of Xie
et al. (2022)’s findings to our work lies in the potential for this anchoring to introduce systematic bias and
privacy risk. By comparing responses generated across distinct lexicon profiles within the same domain, we
evaluate the extent to which domain-specific prompts influence the model’s attention and embedding layers.
This assessment is central to understanding how proprietary or sensitive information might be inadvertently
shared through model outputs as a result of persistent domain anchorage.

2.1. Meta-optimization as a driver of domain anchorage

In the context of meta-optimization as a driver of domain anchorage, Dai et al. (2023) investigate the
mechanisms behind GPT models’ ICL abilities, proposing that these models implicitly perform gradient
descent as meta-optimizers. This process involves adjusting attention weights in response to input data,
akin to real-time gradient updates, allowing models to adapt to new tasks without explicit fine-tuning. The

https://www.gov.uk/government/publications/ai-regulation-a-pro-innovation-approach/white-paper
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authors highlight that transformers’ attention mechanisms can be viewed as critical components in this
optimization process. Their analysis reveals that attention-based adaptation enables the model to optimize
for the training loss within the prompt context, effectively treating each prompt as a mini-task to be solved
via implicit meta-learning. Notably, this process does not require parameter updates; instead, the model
simulates the effect of gradient descent through its internal structure. The authors demonstrate that this
meta-optimization behavior allows GPT models to generalize beyond the specific examples provided in
the prompt by leveraging the inductive bias learned during pretraining.

This framework offers valuable insight into the underlying mechanisms that enable GPT-4 and similar
models to rapidly build contextual specificity. It directly informs our understanding of domain anchorage,
wherein repeated exposure to semantically consistent prompts leads the model to internalize a domain-
specific prior. As the model adapts to new contexts through in-context gradient-like mechanisms, it may
exhibit output behaviors that disproportionately reflect earlier domain prompts. This aligns with our
hypothesis that transformer-based LLMs can form latent caches of conceptual associations, influencing
future completions even across semantically distinct queries.

By connecting the phenomenon of domain anchorage to the internal meta-optimization processes (Dai
etal., 2023), we strengthen the theoretical grounding of our leakage detection framework. Understanding
the role of attention-weight adaptation in shaping model outputs over successive interactions also
highlights the importance of robust auditing tools to identify when such contextual adaptations begin
to compromise fairness, privacy, or output variability.

2.2. Extractable memorization

Recent empirical work demonstrates that LLMs are capable of extracting memorized content from their
training data under specific prompting conditions (Nasr et al., 2025). The study identifies cases in which
production-grade models, including ChatGPT, reproduced long sequences from pretraining data, includ-
ing copyrighted text and personally identifiable information. The authors were able to extract over 10,000
examples from ChatGPT’s training dataset, revealing the model’s susceptibility to emitting verbatim text
from its training corpus. These responses were often elicited by prompts that either repeated high-
frequency tokens or introduced subtle domain-specific patterns. The findings highlight the presence of
persistent internal representations that can be reactivated through contextual cues. This behavior supports
the hypothesis that repeated exposure to domain-specific prompts can influence the model’s internal state
in a manner consistent with what we define as domain anchorage.

The existence of extractable memorization underscores the importance of proactive safeguards in
enterprise and regulated environments, particularly when models are exposed to sensitive input streams.
The leakage-detection framework proposed in this study offers a structured method to monitor and flag
output similarity patterns indicative of such memorization, contributing to the mitigation of privacy risk
and model governance.

2.3. Bias and stability in language models

Dentella et al. (2023) systematically evaluated the performance of ChatGPT and other LLMs on
grammaticality judgment tasks. The findings revealed that ChatGPT exhibited variable accuracy, per-
forming above chance on grammatical sentences but below chance on ungrammatical ones. Additionally,
the model demonstrated significant response instability and a pronounced “yes bias” toward affirming
that sentences were grammatically correct, regardless of their actual correctness. Complementing this
linguistic analysis, Schmidt et al. (2025) conducted a domain-specific evaluation comparing ChatGPT’s
diagnostic performance to that of 265 medical residents. The study found that ChatGPT’s diagnostic
decisions were susceptible to contextual bias, particularly when distractor symptoms or prior case patterns
were introduced. These findings indicate that LLMs may internalize and reinforce domain-specific priors
in ways that mirror human diagnostic bias. This behavior aligns with our broader claim that repeated
exposure to a specific domain can lead to persistent internal representations, a phenomenon that we define
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as domain anchorage. Taken together, these studies underscore the challenges of ensuring consistency and
reliability in LLM outputs, particularly in high-stakes domains such as healthcare, where contextual drift
or anchoring effects may compromise safety and trustworthiness.

Building on these foundations, we designed a controlled experimental framework to systematically
detect and quantify domain anchorage. The following section outlines our methodological design,
integrating computational linguistics with embedding-based similarity measures.

3. Methodology

Our methodological approach builds upon established theoretical innovations in transformer-based
LLMs, particularly decoder-only architectures exemplified by GPT-4. These models leverage multihead
self-attention mechanisms combined with positional embeddings to effectively encode complex linguistic
relationships and contextual nuances. Recent scholarship frames ICL within transformers as implicit
Bayesian inference, wherein models infer latent conceptual structures from contextual examples. Extend-
ing this theoretical perspective, we hypothesize the existence of domain anchorage, a latent alignment
phenomenon emerging when GPT-4 is primed with domain-specific prompts. Domain anchorage may
result in notably uniform model outputs across varied lexical inputs, suggesting potential biases or
unintended information reinforcement.

To rigorously investigate this phenomenon, our computational linguistic framework quantifies lin-
guistic features of prompts and model-generated responses. We design prompts following established
prompt-based learning principles, which emphasize controlled template structures to guide model
behavior (Liu et al., 2023). Specifically, we employ token-limited interrogative prompts to minimize
confounding variability while isolating domain anchorage effects. These prompts maintain consistent
syntactic framing across domains, varying only in the domain-specific prime, enabling systematic
measurement of lexical, semantic, syntactic, and positional similarities. Semantic proximity is repre-
sented using embedding-based techniques, including averaged embeddings, deep averaging networks
(DANSs), and LSTM-based embeddings. Lexical analysis assesses domain-specific vocabulary frequency
distributions; syntactic analysis uses hierarchical grammatical representations informed by Chomsky’s
generative grammar (X-bar theory); semantic analysis evaluates meaning-based relationships between
words; and positional analysis examines word order effects via transformer-based positional embeddings.
Together, these dimensions provide a comprehensive quantitative basis for evaluating how domain-
specific contexts influence GPT-4 linguistic behaviors and for assessing the implications of domain
anchorage in responsible LLM deployment.

Our empirical approach (Figure 1) involves constructing pairs of lexicon profiles, denoted as Profiles
A and B, that express identical semantic intent through varied vocabulary and linguistic structures,
simulating realistic user variation. The computational linguistic transformations applied convert quali-
tative textual data into quantitative metrics, allowing us to systematically measure input—output similarity.
Inputs (x) and outputs (y) are modeled mathematically as transformations y=j(x), where the function f
represents the transformer architecture with multi-head attention (MHA) and ICL of the LLM. By
analyzing the similarity between input profiles and generated responses across linguistic dimensions,
we identify cases where output generation is disproportionately anchored to previously introduced
domain contexts.

Our theoretical foundation integrates insights from computational linguistics, particularly semantic
similarity and linguistic profiling. Following extant literature (Chandrasekaran and Mago, 2021), we
quantify lexical similarity through term frequency metrics, syntactic similarity using hierarchical gram-
matical representations based on Chomsky’s X-bar theory (Chomsky, 1972), semantic similarity via
cosine distances of sentence embeddings (Mihalcea et al., 2006; Cer et al., 2017), and positional similarity
using transformer positional encodings (Vaswani et al., 2017). Thus, our computational linguistic
framework assesses how transformer-based LLMs like GPT-4 exhibit domain anchorage—where prior
exposure to domain-specific prompts influences subsequent model responses. We quantify linguistic
variations by focusing on four distinct dimensions: lexical, semantic, syntactic, and positional similarity.
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Figure 1. Flow of lexicon profiles A and B through LLM.

Lexical similarity measures the overlap between sets of vocabulary terms used in prompts, providing
insights into how specific domain terminology influences model behavior. Formally, it is computed as the
intersection over the union of two distinct vocabulary sets (W and W5):

[WinW,|
LWL W) = oWl

Semantic similarity evaluates the contextual meanings and associations between words or sentences.
Using embedding-based representations (¢, and ¢,), we calculate the cosine similarity between prompts
or responses, quantifying how closely their meanings align:

$(d0d:) =~
g llllg-l

Syntactic similarity analyzes grammatical structures, drawing on Chomsky’s generative grammar
framework to construct hierarchical syntactic representations. These representations, where S (g) repre-
sents the syntactic structure vector of query ¢, can help assess the structural alignment between different
linguistic inputs:

Simiyui (1.4 ) = exp (= 11S(1) = S (@)1

Positional similarity examines how the order of words within sequences impacts model responses.
Utilizing positional encodings, we quantify how variations in word placement affect GPT-4’s attention
mechanisms and output generation:

=

. L\ I Piqy)-P;
Slmpositional (QI» Q2> =- -y 1(511) I(QZ)
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where ﬁ[(q) represents the positional encoding vector of the i-th token in query ¢, and n is the number of
tokens.

By integrating these four dimensions, our framework provides a comprehensive quantitative measure
of linguistic similarity. Specifically, we model prompts (human inputs) and model-generated outputs
mathematically to evaluate their alignment across these dimensions. The resulting composite similarity
metric enables us to systematically detect, quantify, and analyze domain anchorage and potential
information leakage within LLM responses. Formally, the total similarity between two textual represen-
tations is expressed as (Figure 2):

Sim (61 s ij) = 0tSsemantic (319 Z1>2) +ﬂSsyntactic (‘71 s az) + VSpositional (Zjl’ 32) 3.1

where a, 8, and y are weighting parameters to balance linguistic contributions. This composite metric
robustly captures nuanced linguistic variations influencing LLM response behaviors.

Our experimental design evaluates the GPT-4 model across five representative corporate domains
(information technology, finance, software, healthcare, and entertainment) selected due to their high
usage of LLMs. For each domain, distinct domain-specific primes (e.g., “Act as a Healthcare specialist™)
were introduced to half of the simulated clients, establishing a comparative baseline with unprimed
controls. Each client engaged in a standardized sequence of interrogative prompts with controlled lexical,
semantic, and syntactic variations. Queries were strategically constructed to ensure consistent positional
and syntactic structures while systematically varying semantic and lexical content, targeting a similarity
range reflective of typical linguistic variations in professional contexts (0.4 <similarity <0.5). Simula-
tions utilized OpenAl’s GPT-4 API with uniform parameters (e.g., max tokens: 100, temperature: 1.5, top-
p: 0.5) to ensure reproducibility and comparability across interactions.

Our methodology, while robust, has several acknowledged limitations. First, the specificity of intent in
token-limited prompts restricts generalization; future research should incorporate broader prompt diver-
sity and intent coverage. Second, while our computational linguistic metrics provide insightful quanti-
fication, they may overlook nuanced linguistic subtleties, suggesting complementary human qualitative
analyses in subsequent studies. Third, despite leveraging detailed insights from transformer architectures,
the exact internal computational mechanisms remain proprietary and opaque, limiting definitive causal
claims about the internal states of GPT-4. Finally, our approach measures semantic similarity as a measure
of response consistency and leakage rather than direct information dissemination, indicating a need for
further empirical validation to directly establish cross-user information leakage.

Despite these limitations, our computational linguistic methodology provides a valuable, scalable frame-
work to audit and mitigate domain anchorage effects in enterprise-grade LLM implementations. It offers
tangible guidelines for proactive domain-aware interventions, enhancing model transparency, reliability, and
consistency—critical prerequisites for trustworthy Al integration in high-stakes environments.
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Figure 2. Vector representation of response similarity.
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3.1. Experimental design

Our empirical simulation focuses on five corporate domains selected due to their widespread adoption of
LLMs in professional contexts: Information Technology (X;), Finance (X3), Software (X3), Healthcare
(X4), and Entertainment (X5s). To assess the impact of domain-specific contexts on GPT-4’s responses, we
established standardized domain-specific primes (Table 1) to simulate realistic professional scenarios.

To control variables in our priming procedure, we implemented measures to standardize and differ-
entiate our primes. Positional similarity was controlled by maintaining identical sentence structures and
word orders across all primes, ensuring a positional similarity score of 1. Intent similarity was also
controlled, as all primes aimed to direct the model to act as a specialist within a specific domain, thus
maintaining an intent similarity score of 1. Syntactic similarity was preserved by using nouns to represent
each domain, providing consistent syntactic structures. However, differentiation was introduced through
lexical and semantic variations, as the domain-specific terms (e.g., “Information Technology,” “Finance”)
were varied. This differentiation in terms and their associated meanings allowed us to build preliminary
contextual specificity and effectively assess domain anchorage.

To establish a benchmark for linguistic variance among employees working within the same domain,
we aimed to achieve a similarity score within the range of 0.4 <x<0.5. This benchmark reflects the
balance between maintaining domain-specific relevance and introducing sufficient linguistic variability.
By targeting this similarity range, we ensured that the lexical and semantic differences were representative
of natural linguistic variations, while preserving the contextual integrity required to assess domain
anchorage accurately.

To systematically evaluate the influence of domain-specific priming on GPT-4’s responses, simula-
tions were conducted using the OpenAl API client with uniform parameters (Table 2). This experimental
setup allowed independent handling of each query, ensuring unbiased evaluations of the model’s
behavior. Our design included a total of 200 simulated clients divided evenly into two groups: 100 primed

Table 1. Domain-specific primes for lexicon profiles A and B

Domain Prime

X Act as an Information Technology specialist
X» Act as a Finance specialist

X3 Act as a Software specialist

X4 Act as a Healthcare specialist

Xs Act as an Entertainment specialist

Table 2. GPT-4 client parameters

Parameter Value
Model gpt—4-turbo
Max Tokens 100
Post-processing Limit to 5 tokens
Temperature 1.5

Top P (Nucleus Sampling) 0.5
Frequency Penalty 0.1
Presence Penalty 0.1
Total No. of Prompts 10,000
Total No. of Responses 10,000
Total No. of Tokens (Regex) 101,360
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clients, which received domain-specific prompts, and 100 unprimed clients, which did not receive any
priming context.

Each group consisted of 20 clients for each domain, with 10 clients representing Lexicon Profile A and
10 clients representing Lexicon Profile B. This setup allowed us to compare primed and unprimed
responses across various domains. The chain of queries was repeated 10 times for each client to build a
substantial analytical case. The only difference between the primed and unprimed clients was the presence
of a domain-specific prime. The intent across client profiles and domains remained consistent: to learn
about the domain in question. By constraining the responses to 5 tokens and removing punctuation prior to
tokenization (i.e., counting only alphanumeric “word” tokens and excluding nonword characters), we
ensured a focused and manageable response data set, enabling thorough analysis of the impact of domain-
specific primes on the model’s responses.

After establishing the domain-specific prime for each client, we proceeded with five subsequent
interrogative prompts to assess the model’s response dynamics. Each client received a sequence of these
prompts, carefully designed to vary the positional, semantic, and syntactic similarity by approximately
0.417 across Lexicon Profiles A and B, after repeated attempts to achieve the predetermined similarity
benchmark. This variation ensured that while the prompts maintained a degree of consistency in their
intent and structure, they introduced sufficient linguistic variability to simulate realistic usage scenarios.

By operationalizing domain anchorage across lexical, syntactic, semantic, and positional dimensions,
this design enables empirical testing of our hypotheses, as presented in the following results

4. Results

At the end of the investigation, all 100 primed and 100 unprimed clients were successfully evaluated over a
period of two months. To ensure a consistent analytical procedure, clients within the same domain were
evaluated within the same period. The results are separated into two main subsections: (1) sequential
pairwise variability—the similarity of responses within a Lexicon Profile (A or B); and (2) prime-presence
variability—the response similarity differential between the 100 primed and 100 unprimed clients.

4.1. Sequential pairwise variability

Sequential pairwise variability measures the consistency of the model’s responses when presented with
prompts from the same domain and lexicon profile. High similarity scores in this analysis indicate that the
model is retaining and reapplying contextual cues across sequential interactions, a behavior relevant to our
domain anchorage hypothesis.

The results indicate a high degree of consistency in the model’s responses within each domain. The
average sequential pairwise similarity for Lexicon Profile A was 0.768. The average sequential pairwise
similarity for Lexicon Profile B was 0.814. The average similarity scores for Lexicon Profile B were
approximately 6% higher than Lexicon Profile A. Notably, the lowest similarity was exhibited by Domain
X3 for Lexicon Profile A (Figure 3).

4.2. Prime-presence variability

Prime-presence variability assesses how strongly domain primes stabilize model outputs beyond surface
form differences. The results (Table 3) collected by computing a weighted similarity between each
response to queries with the same client-side iteration indicated that all primed domains exhibited a
weighted similarity greater than 0.80 between responses generated by GPT-4 for Lexicon Profiles A and
B. Notably, each query maintained consistent intent, with variations only in the linguistic elements. This
consistency in intent allows us to test the relationship between domain primes and linguistic variants on the
responses generated by the transformational architecture. Across all five domains, cross-profile response
similarity remained high with low dispersion (SD = 0.026-0.038), indicating that once a domain context is
set, variation between Lexicon Profiles A and B contributes minimally to output variance. By contrast,
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Figure 3. Sequential pairwise response similarity results across primed prompts.

Table 3. Domain-specific response similarity between Lexicon profiles A and B

Primed response Unprimed response
Domain similarity similarity Paired t-test
Information Technology (X7) 0.901 (0.038) 0.516 (0.044) 1(9)=52.45,p<0.001
Finance (X3) 0.909 (0.036) 0.507 (0.040) 1(9)=54.15,p<0.001
Software Engineering (X3) 0.903 (0.034) 0.513 (0.033) 1(9)=46.99,p<0.001
Healthcare (X3) 0.812 (0.026) 0.516 (0.031) 1(9)=28.03,p<0.001
Entertainment (X5) 0.897 (0.033) 0.534 (0.033) 1(9)=40.56,p<0.001

cross-profile similarity in the unprimed condition was markedly lower within the same domains, indicating
that the observed uniformity stems from the domain prime rather than baseline lexical overlap.

The paired t-tests reveal that, for the same prompt iteration, adding a domain prime increases cross-
profile similarity significantly and consistently (p < 0.001 in all cases), substantially anchoring model
outputs to the domain context compared to the residual variability introduced by lexicon profile
differences. Within our controlled, token-limited setting, the presence of a prime is not only statistically
significant but also practically dominant relative to residual variability from profile wording.

These results are consistent with ICL as implicit Bayesian inference. LLMs operate over a large
parameter space that can generate diverse outputs, and domain-specific priming narrows this space toward
token patterns aligned with the primed domain, reducing variability. In multiuser settings, this narrowing
allows information introduced by one user to influence another’s outputs when similar anchoring cues are
present. This is analogous to two users issuing highly specific search queries and arriving at the same rare
web page, except that in an LLM, the “page” is generated dynamically from prior context, making leakage
less visible but potentially more consequential, which motivates guardrails against cross-user influence.

5. Discussion

The empirical results of this study provide preliminary evidence to support our hypothesis of domain
anchorage in GPT-4. The high degree of similarity observed in sequential responses within the same
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lexicon profile, exceeding a mean score of 0.76, suggests that the model’s outputs are influenced by the
domain-specific context established by the initial prompt. This effect is reinforced by cross-lexicon
response similarity, which remained above 0.80 across all tested domains, indicating that the model aligns
more closely with domain context than with individual lexical variations.

The most striking evidence of domain anchorage emerged from the prime-presence variability
analysis. The observed increase in response similarity between primed and unprimed clients, ranging
from 57.36% to 80.56%, suggests a significant effect of domain-specific priming on GPT-4’s responses.
This finding suggests that the model is not merely adapting to the general linguistic patterns of the input
but may be actively anchoring its responses to the specific domain knowledge provided in the prime,
potentially leading to intra-domain information dissemination. While these results are consistent with our
anchorage hypothesis, further quantitative analysis is required to address previously outlined limitations
to strengthen inferential claims.

These findings invite further consideration of how domain anchoring interacts with model behavior in
practical settings. From an interpretability standpoint, these patterns suggest that GPT-4 retains and reuses
domain-specific contextual cues in ways that systematically shape its outputs (Appendix A). This behavior
has implications for information dissemination: while domain anchoring can improve coherence and
relevance in specialized contexts, it also risks narrowing the diversity of responses and reinforcing
domain-specific biases. Potential mitigation strategies could include introducing cross-domain variation
during prompt design, interleaving neutral context, or deliberately varying lexical framing to reduce over-
anchoring effects. Additionally, adaptive prompting techniques—where the model is periodically reset with
balanced, multidomain context—could help maintain responsiveness to new inputs without losing domain
coherence. Exploring these approaches systematically would help establish practical safeguards against
information siloing, enabling more balanced and representative outputs across varied application domains.

5.1. Mitigating organizational risks and managerial implications

Our findings underscore the potential risks associated with domain anchorage in organizational settings,
particularly when sensitive data is involved. We propose a comprehensive deployment and mitigation
strategy grounded in our computational linguistic framework, with implications spanning enterprise-level
risk management, infrastructure design, and prompt engineering interventions.

For internal LLM deployments handling sensitive data, enterprises should prioritize robust protec-
tions, including private infrastructure and explicit disabling of caching and ICL to prevent inadvertent
information persistence or leakage (Figure 4). Conversely, in less sensitive settings, organizations may
tolerate reduced data security to optimize for response consistency and decision-making efficiency. In
public-facing deployments—especially those involving sensitive user inputs—Ilocalized Smaller Lan-
guage Models (SLMs) and strong guardrails, for input/output filtering, memory controls, and monitoring,
must be employed to prevent cross-user information transfer and semantic entrenchment. Even when data
is nonsensitive, public LLM platforms should still implement lightweight safeguards to ensure output
integrity and avoid unintended dissemination.

To operationalize these principles, we propose a three-step approach to organizational risk manage-
ment: First, organizations should construct lexicon profile databases for employees, capturing the lexical,
semantic, syntactic, and positional characteristics of user—model interactions. These profiles act as
linguistic feature maps and support periodic audits to identify anomalies or consistency breaches. Second,
enterprises should implement systematic assessments of prompt-response similarity metrics across users.
Persistently high similarity values could indicate excessive anchoring to domain-specific memory,
warranting contextual intervention or prompt restructuring. Third, de-anchoring strategies should be
developed through contextual prompt engineering. Techniques such as prompt randomization, controlled
lexical variation, and dynamic context switching can reduce the influence of semantically aligned
keywords and promote response diversity. Collectively, these recommendations offer a pathway to
safeguard LLM deployments across a variety of operational contexts while preserving transparency,
consistency, and security.
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External Public
LLM Application

Non-Sensitive Data

Deploy continuous monitoring for
emerging data security and privacy
risks, and apply targeted guardrails
to minimize the risk of unintended
information leakage without
constraining model performance.

Deploy private LLMs with relaxed
security, and implement guardrails
that prime prompts to maximize
response consistency and
reliability.

Lekha Challappa, Zijin Zhang and Rajiv Garg

Sensitive Data

Deploy localized, domain-specific
SLMs to prevent cross-user data
spillover, and enforce strong
guardrails to block leakage via
cloud-based caching or in-context
learning.

Deploy private LLMs with caching
and ICL disabled, and implement
guardrails to enforce strict data
protection protocols.

Internal Enterprise
LLM Application

Figure 4. LLM deployment strategy matrix by sensitivity level and access type.

5.2. Limitations and future direction

While our study provides valuable insights into GPT-4’s handling of domain-specific prompts, it is
important to acknowledge several limitations that could impact the findings and their generalizability.

5.2.1. Scope of analysis

Our initial analysis focused on interrogative, token-limited prompts aiming to achieve a singular intent.
Although this approach is valuable for establishing baseline results, it limits the scope of the study. To build
statistical significance, future research should include a variety of intent-specific prompts across different
domains. This would help in understanding how GPT-4 handles a broader range of tasks and interactions.

5.2.2. Evaluation metrics

Our study used specific computational linguistic parameters to evaluate response similarity, including
positional, semantic, and syntactic similarity. While these metrics provide valuable insights, they do not
capture all aspects of linguistic variation and may overlook subtleties in language use. Future research
should incorporate additional evaluation metrics and human judgment to ensure a more comprehensive
assessment of the model’s performance (Huang and Chang, 2023).

5.2.3. Architectural understanding
Without precise knowledge of the architecture and mathematics supporting transformer layers (e.g., MHA
and Feed-Forward Networks), we cannot fully ascertain how responses anchor to the domain. This
limitation indicates a need for further simulations and cross-sectional analysis across these simulations to
derive a comprehensive understanding of the transformational propensity for domain anchorage (Brown
et al., 2020; Vaswani et al., 2017).

5.2.4. Response similarity and information dissemination

While response similarity is a valuable measure, it cannot by itself prove information dissemination.
Similar responses could result from shared linguistic patterns rather than actual information transfer.
Further studies are needed to explore how information might be disseminated across different contexts
and users (Zhang et al., 2024).
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To understand how domain anchorage evolves within the model, we can analyze the attention scores
assigned to domain-specific terms and the hidden states at each layer of the transformer. This could
involve visualizing the hidden states using dimensionality reduction techniques like t-SNE or PCA to
identify clusters of domain-specific terms and track how these clusters evolve across layers. This analysis
can reveal which layers are primarily responsible for identifying and extracting domain-specific infor-
mation, and how the representation of these terms changes as they are processed through the network. By
isolating the effects of specific layers, we can develop highly granular interventions, beyond contextual
prompt engineering, to mitigate domain anchorage and domain-specific response bias.

Successful deployments treat domain anchoring and priming not as one-off tweaks but as ongoing
disciplines, particularly in large public or private sector organizations. Furthermore, expanding the range
of prompts and intents across different domains would enhance the study’s generalizability and provide a
more comprehensive understanding of the dynamics of domain anchorage in diverse scenarios. Add-
itionally, incorporating additional quantifiable, unbiased metrics to assess information dissemination
could offer deeper insights into the extent and nature of the problem. For instance, constructing network
profiles or analyzing the centrality of employees’ linguistic fingerprints within the model’s internal
representations could reveal potential pathways for information leakage and enable the development of
targeted interventions.

A promising avenue for strategic exploration is the application of RolE Prompt Guided Multi-Domain
Adaptation (REGA) to enterprise-scale LLM deployment (Wang et al., 2024). REGA introduces a three-
part strategy: self-distillation, which preserves general capabilities without requiring access to proprietary
pretraining data; role prompting, which clearly defines domain boundaries through assigned expert and
generalist roles; and role integration, which consolidates domain-specific knowledge under a central
prompt to enable seamless cross-domain generalization.

While this study provides a controlled, white-box analysis of domain anchorage in GPT-4, several
limitations suggest directions for future work. The proprietary nature of GPT-4 restricts internal inspec-
tion, so future research may benefit from applying this framework to open-source models with accessible
internals. To enhance practical relevance, one can explore black-box evaluation using output-only metrics
such as entropy and divergence. Our prompt design prioritized experimental control, but expanding to
more diverse prompt types and domains would improve generalizability. Additionally, incorporating
broader linguistic features, such as discourse coherence and pragmatic cues, alongside human evaluation,
may offer a more comprehensive view of anchorage effects. Finally, future work should deepen the
discussions on interpretability, dissemination risks, and mitigation strategies.

Beyond enterprise applications, domain anchorage presents risks in personal-use scenarios such as
counseling, advising, or self-help. In these contexts, language models may unintentionally reinforce
harmful biases or unhealthy behavioral patterns if prior domain context shapes subsequent responses.
Such effects carry important implications for fairness, user autonomy, and psychological safety. Add-
itionally, persistent anchorage may complicate compliance with key GDPR principles, including data
minimization, transparency, and the right to explanation (Selbst and Powles, 2017; Wachter et al., 2017).
While LLMs do not retain input data explicitly, their latent alignment with earlier domain prompts can
result in behavior that resembles indirect profiling or personalization, raising critical legal and ethical
challenges for real-world deployment.

6. Conclusion

Our research investigated the impact of domain-specific priming on responses generated by GPT-4. We
hypothesized that domain-specific words receiving higher gradient updates during training could intro-
duce bias, create semantic echo chambers, and oversimplify relationships. To test this hypothesis, we
analyzed whether GPT-4, when primed with domain-specific prompts, exhibits domain anchorage, where
model responses become increasingly aligned with the primed context, regardless of prompt variation.
Using a computational linguistic framework, we quantified linguistic similarity across prompts and
outputs in semantic, syntactic, lexical, and positional dimensions. Our results provide empirical evidence
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of domain anchorage, suggesting that domain-specific priming can shape model behavior in ways that are
persistent and measurable. This research contributes to a broader understanding of unintended informa-
tion persistence in LLMs and introduces a generalizable framework for detecting such effects. The
findings support the development of guardrails for responsible LLM deployment and highlight practical
strategies for mitigating risk, improving consistency, and enhancing transparency in enterprise and
public-facing settings.
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A. Appendix. Theoretical Exploration of the Mechanisms Underlying Domain Anchorage

Building upon the foundational concepts of ICL as implicit Bayesian inference (Xie et al., 2022) and meta-optimization as implicit
gradient descent (Dai et al., 2023), we can mathematically formalize the relationship between these mechanisms and the observed
phenomenon of domain anchorage. In this framework, ICL allows the model to infer a shared latent concept ¢ from demonstration
examples D, as shown in the equation:

P(ylx,D) = /P(y|x,c)P(c|D)dc (A.D)

where P(y|x, ¢) is the probability of generating y given x and the latent concept ¢, and P(c|D) is the posterior probability of the latent
concept ¢ given the demonstration examples D.

Meta-optimization, through implicit gradient descent, updates the model’s attention weights W to better capture the domain-specific
context d. This adaptation of attention weights is represented as:

W'=W —yVL(X,W) (A2)
where 7 is the learning rate and VL(X, W) is the gradient of the loss function with respect to the attention weights.
The updated attention weights subsequently influence the posterior probability P(c|D,d), leading to the generation of responses y

that are more aligned with the domain-specific context d, thus exhibiting domain anchorage. This relationship is captured in the
modified probability equation:

P(y\x,D,d)=/P(y\x,c,d)P(dD,d)dc (A.3)

This mathematical formulation provides a theoretical basis for understanding how domain anchorage emerges in GPT-4.
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