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Abstract
QuickSelect (also known as Find), introduced by Hoare ((1961) Commun. ACM 4 321–322.), is a ran-
domized algorithm for selecting a specified order statistic from an input sequence of n objects, or rather
their identifying labels usually known as keys. The keys can be numeric or symbol strings, or indeed any
labels drawn from a given linearly ordered set. We discuss various ways in which the cost of comparing
two keys can be measured, and we can measure the efficiency of the algorithm by the total cost of such
comparisons.
We define and discuss a closely related algorithm known as QuickVal and a natural probabilistic model for
the input to this algorithm; QuickVal searches (almost surely unsuccessfully) for a specified population
quantile α ∈ [0, 1] in an input sample of size n. Call the total cost of comparisons for this algorithm Sn.
We discuss a natural way to define the random variables S1, S2, . . . on a common probability space. For a
general class of cost functions, Fill andNakama ((2013)Adv. Appl. Probab. 45 425–450.) proved undermild
assumptions that the scaled cost Sn/n of QuickVal converges in Lp and almost surely to a limit random
variable S. For a general cost function, we consider what we term the QuickVal residual:

ρn := Sn
n

− S.

The residual is of natural interest, especially in light of the previous analogous work on the sorting algo-
rithm QuickSort (Bindjeme and Fill (2012) 23rd International Meeting on Probabilistic, Combinatorial,
and Asymptotic Methods for the Analysis of Algorithms (AofA’12), Discrete Mathematics, and Theoretical
Computer Science Proceedings, AQ, Association: Discrete Mathematics and Theoretical Computer Science,
Nancy, pp. 339–348; Neininger (2015) Random Struct. Algorithms 46 346–361; Fuchs (2015) Random
Struct. Algorithms 46 677–687; Grübel and Kabluchko (2016) Ann. Appl. Probab. 26 3659–3698; Sulzbach
(2017) Random Struct. Algorithms 50 493–508). In the case α = 0 of QuickMin with unit cost per
key-comparison, we are able to calculate–àla Bindjeme and Fill for QuickSort (Bindjeme and Fill
(2012) 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods for the
Analysis of Algorithms (AofA’12), Discrete Mathematics and Theoretical Computer Science Proceedings, AQ,
Association: Discrete Mathematics and Theoretical Computer Science, Nancy, pp. 339–348.)–the exact
(and asymptotic) L2-norm of the residual. We take the result as motivation for the scaling factor

√
n for

the QuickVal residual for general population quantiles and for general cost. We then prove in general
(under mild conditions on the cost function) that

√
n ρn converges in law to a scale mixture of centered

Gaussians, and we also prove convergence of moments.

Keywords: QuickSelect; Find; QuickQuant; QuickVal residual; natural coupling; symbol comparisons; key comparisons;
probabilistic source; tameness
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2 J. A. Fill and J. Matterer

1. Introduction
Parts of Sections 1–2 are repeated nearly verbatim, for the convenience of the reader and with
permission of the publisher, from [11]. Note, however, that we have updated the literature review,
perhaps most notably including an excellent sequel to this paper, namely, [20]; see especially
Remark 1.2.

In this section, we describe QuickSelect and QuickQuant and give historical background.
The main result of this paper, Theorem 5.1, concerns an algorithm very closely related to
QuickQuant known as QuickVal, which is described in Section 4. In Section 3 we will define
and consider the algorithm QuickMin, which can be viewed a special case of either QuickQuant
or QuickVal.

QuickSelect (also known as FIND), introduced by Hoare [17], is a randomized algorithm (a
close cousin of the randomized sorting algorithm QuickSort, also introduced by Hoare [18]) for
selecting a specified order statistic from an input sequence of objects, or rather their identifying
labels usually known as keys. The keys can be numeric or symbol strings, or indeed any labels
drawn from a given linearly ordered set. Suppose we are given keys y1, . . . , yn and we want to
find the mth smallest among them. The algorithm first selects a key (called the pivot) uniformly
at random. It then compares every other key to the pivot, thereby determining the rank, call it r,
of the pivot among the n keys. If r =m, then the algorithm terminates, returning the pivot key
as output. If r >m, then the algorithm is applied recursively to the keys smaller than the pivot to
find themth smallest among those; while if r <m, then the algorithm is applied recursively to the
keys larger than the pivot to find the (m− r)th smallest among those. More formal descriptions
of QuickSelect can be found in [17] and [22], for example.

The cost of running QuickSelect can be measured (somewhat crudely) by assessing the cost
of comparing keys. We assume that every comparison of two (distinct) keys costs some amount
that is perhaps dependent on the values of the keys, and then the cost of the algorithm is the sum
of the comparison costs.

Historically, it was customary to assign unit cost to each comparison of two keys, irrespective
of their values. We denote the (random) key-comparisons-count cost for QuickSelect by Kn,m.
There have been many studies of the random variables Kn,m, including [3, 24, 15, 23, 14, 4, 19, 5,
9, 10]. But unit cost is not always a reasonable model for comparing two keys. For example, if each
key is a string of symbols, then a more realistic model for the cost of comparing two keys is the
value of the first index at which the two symbol strings differ. To date, only a few papers [29, 6, 7,
20] have considered QuickSelect from this more realistic symbol-comparisons perspective. As
in [7] and [11], in this paper we will treat a rather general class of cost functions that includes both
key-comparisons cost and symbol-comparisons cost.

In our set-up (to be described in detail in Section 2) for this paper, we will consider a variety of
probabilistic models (called probabilistic sources) for how a key is generated as an infinite-length
string of symbols, but we will always assume that the keys form an infinite sequence of inde-
pendent and identically distributed and almost surely distinct symbol strings. This gives us, on a
single probability space, all the randomness needed to run QuickSelect for every value of n and
every value of m ∈ {1, . . . , n} by always choosing the first key in the sequence as the pivot (and
maintaining initial relative order of keys when the algorithm is applied recursively); this is what is
meant by the natural coupling (cf. [8, Section 1]) of the runs of the algorithm for varying n andm
(and varying cost functions).

When considering asymptotics of the cost of QuickSelect as the number of keys tends to
∞, it becomes necessary to let the order statistic mn depend on the number of keys n. When
mn/n→ α ∈ [0, 1], we refer to QuickSelect for finding the mnth order statistic among n keys
as QuickQuant(n, α). As explained in [8, Section 1], the natural coupling allows us to consider
stronger forms of convergence for the cost of QuickQuant(n, α) than convergence in distribution,
such as almost sure convergence and convergence in Lp. Fill and Nakama [7] prove, under certain
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‘tameness’ conditions (to be reviewed later) on the probabilistic source and the cost function, that,
for each fixed α, the cost of QuickQuant(n, α), when scaled by n, converges both in Lp and almost
surely to a limiting random variable. Fill and Matterer [11] extend these univariate convergence
results to results about convergence of certain related stochastic processes.

Closely related to QuickQuant(n, α) is an algorithm called QuickVal(n, α), detailed in
Section 4. Employing the natural coupling, QuickVal(n, α) searches (almost surely unsuccess-
fully) for a specified population quantile α ∈ [0, 1] in an input sample of size n. Call the total
cost of comparisons for this algorithm Sn. For a general class of cost functions, Fill and Nakama
[7] proved under mild assumptions that the scaled cost Sn/n of QuickVal converges in Lp and
almost surely to a limit random variable S. For a general cost function, we consider what we term
the QuickVal residual:

ρn := Sn
n

− S. (1.1)

The residual is of natural interest, especially in light of the previous analogous work on
QuickSort [1, 26, 13, 16, 28].

An outline for this paper is as follows. First, in Section 2 we carefully describe our set-up and,
in some detail, discuss probabilistic sources, cost functions, and tameness; we also discuss the
idea of seeds, which allow us a unified treatment of all sources. Section 3 concerns QuickMin
(the case α = 0 of QuickVal) with unit cost per key-comparison, for which we are able to cal-
culate – à la Bindjeme and Fill for QuickSort [1] – the exact (and asymptotic) L2-norm of the
residual; the result is Theorem 3.1, which we take as motivation for the scaling factor

√
n for the

QuickVal residual for general population quantiles and for general cost. The remainder of the
paper is devoted to establishing convergence of the QuickVal residual. Section 4 introduces nota-
tion needed to state the main theorem and establishes an important preliminary result (Lemma
4.2). We state and prove the main theorem (Theorem 5.1), which asserts that the scaled cost of the
QuickVal residual converges in law to a scale mixture of centered Gaussians, in Section 5; and in
Section 6 we prove the corresponding convergence of moments.

Remark 1.1. As recalled from [7] at the end of our Section 2.1, many common sources, including
memoryless and Markov sources, have the property that the source-specific cost function β corre-
sponding to the symbol-comparisons cost for comparing keys is ε-tame for every ε > 0. Thus our
main result, Theorem 5.1, applies to all such sources.

Remark 1.2. In very recent work, Ischebeck and Neininger [20] extend our main Theorem 5.1
from univariate normal convergence for each α to Gaussian-process convergence, treating α as a
parameter, in the metric space of càdlàg functions endowed with the Skorokhod metric.

To motivate the reader, here is a fairly easily understood instance of our main Theorem 5.1.
Suppose that keys arrive as i.i.d. uniform(0, 1) random variables, and suppose that cost is mea-
sured classically as the number of key comparisons. Using QuickVal to search for population
quantile α ∈ [0, 1], suppose for each k≥ 0 that the search has been narrowed to the (random)
interval (Lk, Rk) after k steps of the algorithm have been carried out; in particular, L0 = 0 and
R0 = 1. Let Ik := Rk − Lk. Then, as shown in the proof of Theorem 5.1, the random series (of
positive terms) in the expressions

σ 2∞ =
∞∑
k=1

(Ik−1 − I2k−1)+ 2
∞∑

�=1

�−1∑
k=1

(I�−1 − Ik−1I�−1)

=
∞∑
k=1

Ik(1− Ik)+ 2
∞∑

�=2
I�

�−1∑
k=1

(1− Ik)
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4 J. A. Fill and J. Matterer

converge with probability one, and the residual ρn given by (1.1) converges in distribution to σ∞Z,
where Z has a standard normal distribution and is independent of σ∞.

2. Set-up
2.1 Probabilistic sources
Let us define the fundamental probabilistic structure underlying the analysis of QuickSelect.
We assume that keys arrive independently and with the same distribution and that each key is
composed of a sequence of symbols from some finite or countably infinite alphabet. Let � be this
alphabet (which we assume is totally ordered by ≤). Then a key is an element of �∞ [ordered by
the lexicographic order, call it	, corresponding to (�,≤ )] and a probabilistic source is a stochastic
process W = (W1,W2,W3, . . . ) such that for each i the random variable Wi takes values in �.
We will impose restrictions on the distribution of W that will have as a consequence that (with
probability one) all keys are distinct.

We denote the cost (assumed to be non-negative) of comparing two keys w,w′ by cost(w,w′).
As two examples, the choice cost(w,w′)≡ 1 gives rise to a key-comparisons analysis, whereas if
words are symbol strings then a symbol-comparisons analysis is obtained by letting cost(w,w′)
be the first index at which w and w′ disagree.

Since �∞ is totally ordered, a probabilistic sourceW is governed by a distribution function F
defined for w ∈ �∞ by

F(w) := P(W 	w).

Then the corresponding inverse probability transformM, defined by

M(u) := inf
{
w ∈ �∞:u≤ F(w)

}
,

has the property that if U ∼ uniform(0, 1), then M(U) has the same distribution as W. We refer
to such uniform random variables U as seeds.

Using this technique, we can define a source-specific cost function

β :(0, 1)× (0, 1)→ [0,∞)

by β(u, v) := cost(M(u),M(v)).

Definition 2.1. Let 0< c< ∞ and 0< ε < ∞. A source-specific cost function β is said to be (c, ε)-
tame if for 0< u< t < 1, we have

β(u, t)≤ c (t − u)−ε ,

and is said to be ε-tame if it is (c, ε)-tame for some c.

For further important background on sources, cost functions, and tameness, we refer the reader
to Section 2.1 (see especially Definitions 2.3–2.4 and Remark 2.5) in Fill and Nakama [7]. Note
in particular that many common sources, including memoryless and Markov sources, have the
property that the source-specific cost function β corresponding to symbol-comparisons cost for
comparing keys is ε-tame for every ε > 0.

2.2 Tree of seeds and the QuickSelect tree processes
Let T be the collection of (finite or infinite) rooted ordered binary trees (whenever we refer to a
binary tree we will assume it is of this variety) and let T ∈ T be the complete infinite binary tree.
We will label each node θ in a given tree T ∈ T by a binary sequence representing the path from
the root to θ , where 0 corresponds to taking the left child and 1 to taking the right. We consider
the set of real-valued stochastic processes each with index set equal to some T ∈ T . For such a
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process, we extend the index set to T by defining Xθ = 0 for θ ∈ T \ T. We will have need for the
following definition of levels of a binary tree.

Definition 2.2. For 0≤ k< ∞,we define the k th level
k of a binary tree as the collection of vertices
that are at distance k from the root.

Let � =⋃0≤k<∞{0, 1}k be the set of all finite-length binary strings, where {0, 1}0 = {ε} with
ε denoting the empty string. Set Lε := 0, Rε := 1, and τε := 1. Then, for θ ∈ �, we define |θ | to
be the length of the string θ , and υθ (n) to be the size (through the arrival of the nth key) of the
subtree rooted at node θ . Given a sequence of independent and identically distributed (iid) seeds
U1,U2,U3, . . ., we recursively define

τθ := inf{i: Lθ <Ui < Rθ },
Lθ0 := Lθ , Lθ1 :=Uτθ ,
Rθ0 := Uτθ , Rθ1 := Rθ ,

where θ1θ2 denotes the concatenation of θ1, θ2 ∈ �. For a source-specific cost function β and
0≤ p< ∞, we define

Sn,θ :=
∑

τθ<i≤n
1(Lθ <Ui < Rθ )β(Ui,Uτθ ),

Ip(x, a, b) :=
∫ b

a
βp(u, x) du,

Ip,θ := Ip(Uτθ , Lθ , Rθ ),
Iθ := I1,θ ,
Cθ := (τθ ,Uτθ , Lθ , Rθ ).

In some later definitions we will make use of the positive part function defined as usual by
x+ := x 1(x> 0). Given a source-specific cost function β and the seeds U1,U2,U3, . . ., we define
the nth QuickSelect seed process as the n-nodes binary tree indexed stochastic process obtained
by successive insertions of U1, . . . ,Un into an initially empty binary search tree (BST).

Before we use these random variables, we supply some understanding of them for the reader.
The arrival time τθ is the index of the seed that is slotted into node θ in the construction of
the QuickSelect seed process. Note that for each θ ∈ � we have P(τθ < ∞)= 1. The interval
(Lθ , Rθ ) provides sharp bounds for all seeds arriving after time τθ that interact with Uτθ in the
sense of being placed in the subtree rooted at Uτθ . A crucial observation is that, conditioned on
Cθ , the sequence of seeds Uτθ+1,Uτθ+2, . . . are iid uniform(0, 1); thus, again conditioned on Cθ ,
the sum Sn,θ is the sum of (n− τθ )+ iid random variables. Note that when n≤ τθ the sum defining
Sn,θ is empty and so Sn,θ = 0; in this case, we shall conveniently interpret Sn,θ /(n− τθ )+ = 0/0 as
0. The random variable Sn,θ is the total cost of comparing the key with seed Uτθ with keys (among
the first n overall to arrive) whose seeds fall in the interval (Lθ , Rθ ), and Ip,θ is the conditional pth
moment of the cost of one such comparison: If we let U ∼ uniform(0, 1) independent of Cθ , then

Ip,θ =E
[
1(Lθ <U < Rθ )βp(U,Uτθ )

∣∣ Cθ

]
.

Conditioned on Cθ , the term Sn,θ is the sum of (n− τθ )+ iid random variables with pth moment
Ip,θ .

We define the n th QuickSelect tree process as the binary-tree-indexed stochastic process Sn =
(Sn,θ )θ∈� and the limit QuickSelect tree process (so called in light of [11, Master Theorem 4.1])
by I = (Iθ )θ∈�.
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6 J. A. Fill and J. Matterer

We recall from [11] an easily established lemma that will be invoked in Remark 4.4 and in the
proof of Lemma 6.3.

Lemma 2.3 (Lemma 3.1 of [11]). If β is (c, ε)-tame with 0≤ ε < 1/s, then for each fixed node
θ ∈ 
k and 0≤ r < ∞ we have

EIrs,θ ≤
(

2sεcs

1− sε

)r ( 1
r + 1− rsε

)k
.

3. Exact L2 asymptotics for QuickMin residual
Before deriving a limit law for QuickVal under general source-specific cost functions β , we
motivate the scaling factor of

√
n in Theorem 5.1. We consider the case of QuickMin (i.e.,

QuickSelect for the minimum key) with key-comparisons cost (β ≡ 1). Note that the opera-
tion of QuickMin and QuickVal with α = 0 are identical. Our goal in this section is to establish
Theorem 3.1, which gives exact and asymptotic expansions for the second moment of the residual
in this special case.

Let Kn denote the key-comparisons cost of QuickMin and define

Yn := Kn − μn
n+ 1

, (3.1)

where μn := EKn = 2(n−Hn) for each n [22]. A consequence of [19, Theorem 1] is that
Kn/n

L−→D, where D L= ∑∞
k=0
∏k

j=0 Uj has a Dickman distribution [19], with μ :=ED= 2 (here
U0 := 1). (Note that [19] refers to D− 1 as having a Dickman distribution; we ignore this distinc-
tion.) Applying [7, Theorems 3.1 and 3.2] to the special case of QuickMin using key-comparisons
costs yields the stronger result that Yn converges to a limit random variable Y in Lp for any p≥ 1
and almost surely. We can then set

D := Y + μ = Y + 2, (3.2)
and this D has a Dickman distribution as defined above.

The main result of this Section 3 is the exact calculation of of the second moment of Yn − Y :

Theorem 3.1. For Yn and Y defined previously, we have

a2n :=E(Yn − Y)2 = (n+ 1)−2
[
3
2
n+ 4Hn − 4H(2)

n + 1
2

]
= 3

2
n−1 +O

(
log n
n2

)
.

The remainder of this section builds to the proof of Theorem 3.1. Define
Nn := #{1< i≤ n:Ui <U1} (3.3)

(i.e., the number of keys that fall into the left subtree of the QuickSelect seed process). To begin
the derivation, note that Kn = n− 1+ K̃Nn , where K̃Nn is the key-comparisons cost for QuickMin
applied to the left subtree. Note also that the same equation holds as equality in law if the process
K̃ has the same distribution as the process K and is independent of Nn. We also have D= 1+UD̃
with U :=U1 and D̃ L=D independent.

Make the following definitions:

Yn,0 := KNn − μNn

Nn + 1
,

Y(0) := D̃− μ. (3.4)
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Then we can express the residual Yn − Y in terms of these "smaller versions" of Yn and Y :

Yn − Y = n− 1+KNn − μn
n+ 1

− (1+ UD̃− μ
)

=
(
Nn + 1
n+ 1

)
Yn,0 −UY(0) + n− 1

n+ 1
− 1+ μNn − μn

n+ 1
−Uμ + μ

=
(
Nn + 1
n+ 1

)
Yn,0 −UY(0) + Cn(Nn)

n
n+ 1

− C(U), (3.5)

where Cn(i) := n−1(n− 1+ μi − μn) and C(x) := μx− 1= 2x− 1. Observe that with these defi-
nitions, we can break up the previous equation as

Yn − Y =W1 +W2, (3.6)

where

W1 := Nn + 1
n+ 1

Yn,0 −UY(0), W2 := Cn(Nn)
n

n+ 1
− C(U).

Conditionally given Nn and U, the random variableW2 is constant andW1 has mean zero, so

a2n =E (Yn − Y)2 =EW2
1 +EW2

2 .

Consider the first term EW2
1 .

Lemma 3.2.

EW2
1 = 1

n

n−1∑
k=0

(k+ 1)2

(n+ 1)2
a2k + 1

12(n+ 1)
.

Proof. If we define

Z1 := Nn + 1
n+ 1

(
Yn,0 − Y(0)

)
, Z2 :=

(
Nn + 1
n+ 1

−U
)
Y(0),

thenW1 = Z1 + Z2 and so EW2
1 =EZ2

1 +EZ2
2 + 2E(Z1Z2).

For the cross term E(Z1Z2), conditionally given Nn the random variable U is distributed
Beta(Nn + 1, n−Nn). Therefore,

E(Z1Z2)=E

{
E

[
Z1
(
Nn + 1
n+ 1

−U
)
Y(0)

∣∣∣∣Nn, Yn,0, Y(0)
]}

= 0.

Next consider the term EZ2
1.

Remark 3.3. The conditional joint distribution of the process (Yn,0)n≥0 and the random variable
Y(0) given Nn is the conditional joint distribution of the process (Y∗

Nn
)n≥0 and the random variable

Y∗ given Nn, where the process (Y∗
n ) and the random variable Y∗ are independent of Nn and have

(unconditionally) the same joint distribution as the process (Yn) and the random variable Y .

In light of the preceding remark,

EZ2
1 =E

[(
Nn + 1
n+ 1

)2 (
Y∗
Nn − Y∗)2] .

Since Nn ∼ unif {0, 1, 2, . . . , n− 1}, conditioning on Nn gives

EZ2
1 = 1

n

n−1∑
k=0

(
k+ 1
n+ 1

)2
a2k.
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8 J. A. Fill and J. Matterer

Finally, consider the term EZ2
2. Since Y(0) is independent of Nn and U, we have

EZ2
2 =EY(0)2

E

(
Nn + 1
n+ 1

−U
)2

.

Recall that Nn ∼ unif {0, 1, . . . , n− 1} and that conditionally given Nn, we have U ∼ Beta(Nn +
1, n−Nn); therefore,

E

(
Nn + 1
n+ 1

−U
)2

= 1
n

n−1∑
k=0

(k+ 1)(n− k)
(n+ 1)2(n+ 2)

= 1
6(n+ 1)

. (3.7)

Since EY(0)2 = 1/2 [21], we have that

EZ2
2 = 1

12(n+ 1)
.

Putting these calculations together, we get that

EW2
1 = 1

n

n−1∑
k=0

(k+ 1)2

(n+ 1)2
a2k + 1

12(n+ 1)
.

Now we consider the term EW2
2 .

Lemma 3.4.

EW2
2 = 2

3(n+ 1)
+
(

2
n+ 1

)2 (
1− Hn

n

)
.

Proof. We have

W2 = Cn(Nn)
n

n+ 1
− C(U)

= n
n+ 1

[
1
n
(
n− 1+ 2(Nn −HNn)− 2(n−Hn)

)]+ 1− 2U

= 1
n+ 1

[
2(Nn −HNn)− n+ 2Hn − 1

]+ 1− 2U

= 2
(
Nn + 1
n+ 1

−U
)

− 2
n+ 1

+ 1
n+ 1

(−n+ 2Hn − 2HNn − 1
)+ 1

= 2
(
Nn + 1
n+ 1

−U
)

+ 2
n+ 1

(
Hn −HNn − 1

)
. (3.8)

Squaring and then taking expectations, we find

EW2
2 =4E

(
Nn + 1
n+ 1

−U
)2

+E

[(
2

n+ 1

)2 (
Hn −HNn − 1

)2]

+ 4E
[(

Nn + 1
n+ 1

−U
)(

2
n+ 1

(
Hn −HNn − 1

))]
.

Recall that conditionally givenNn we haveU ∼ Beta(Nn + 1, n−Nn), which implies that the cross
term vanishes; therefore, it suffices to consider the two squared terms. From (3.7) we know that

4E
(
Nn + 1
n+ 1

−U
)2

= 2
3(n+ 1)

.
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We now proceed to treat the final term

Ln :=E

[(
2

n+ 1

)2 (
Hn −HNn − 1

)2]

=
(

2
n+ 1

)2 [
E(Hn −HNn)

2 − 2E(Hn −HNn)+ 1
]
. (3.9)

We can compute the first and second moments of Hn −HNn as follows. Fixing n, for 1≤ i≤ n
consider the events Bi := {Nn < i}, which satisfy P(Bi)= i

n and Bi ∩ Bj = Bi∧j (where ∧ denotes
minimum). Note that

Hn −HNn =
n∑

i=Nn+1

1
i

=
n∑

i=1

1(Bi)
i

Thus

E(Hn −HNn)=
n∑

i=1

P(Bi)
i

=
n∑
i=1

1
n

= 1

and

E(Hn −HNn)
2 =E

[ n∑
i=1

1(Bi)
i

]2
=

n∑
i=1

n∑
j=1

P(Bi ∩ Bj)
ij

= 1
n

n∑
i=1

n∑
j=1

i∧ j
ij

= 2
n

n∑
i=1

i∑
j=1

j
ij

− 1
n

n∑
i=1

i
i2

= 2− Hn
n
.

Therefore we get that

EW2
2 = 2

3(n+ 1)
+
(

2
n+ 1

)2 (
1− Hn

n

)
,

as desired. �
Wewill also need the following well-known (and very easy to derive) solution to a "divide-and-

conquer" recurrence in the proof of Theorem 3.1.

Lemma 3.5. Let (An)n≥0 and (Bn)n≥1 be sequences of real numbers that satisfy

An = 1
n

n−1∑
k=0

Ak + Bn,

for n≥ 1. Then for n≥ 0 we have

An =A0 + Bn +
n−1∑
k=1

1
k+ 1

Bk, (3.10)

with B0 := 0.

Proof of Theorem 3.1. Combining the expressions for EW2
1 and EW2

2 gives

(n+ 1)2a2n = 1
n

n−1∑
k=0

(k+ 1)2a2k + n+ 1
12

+ 2(n+ 1)
3

+ 4
(
1− 1

n
Hn

)
. (3.11)
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If we define

bn := n+ 1
12

+ 2(n+ 1)
3

+ 4
(
1− 1

n
Hn

)
= 3(n+ 1)

4
+ 4

(
1− 1

n
Hn

)
,

then Lemma 3.5 implies

(n+ 1)2a2n = a20 +
n−1∑
j=1

bj
j+ 1

+ bn.

Plugging in bn gives

(n+ 1)2a2n = a20 +
n−1∑
j=1

[
3(j+ 1)
4(j+ 1)

+ 4
j+ 1

(
1− 1

j
Hj

)]
+ 3(n+ 1)

4
+ 4

(
1− 1

n
Hn

)
.

Simplifying this expression gives

(n+ 1)2a2n = a20 + 3
4
(n− 1)+

n−1∑
j=1

4
j+ 1

−
n−1∑
j=1

4
j(j+ 1)

Hj + 19
4

+ 3n
4

− 4
n
Hn

= 1
2

+ 3
2
n+ 4Hn − 4

n
Hn −

n−1∑
j=1

4
j(j+ 1)

Hj

= 1
2

+ 3
2
n+ 4Hn − 4

n
Hn − 4

(
H(2)
n − Hn

n

)

= 3
2
n+ 4Hn − 4H(2)

n + 1
2
,

where a20 = 1/2 was substituted in the second equality. Therefore, we can conclude that

a2n =E(Yn − Y)2 = (n+ 1)−2
[
3
2
n+ 4Hn − 4H(2)

n + 1
2

]
= 3

2
n−1 +O

(
log n
n2

)
.

�

4. QuickVal andmixing distribution for residual limit distribution
Our main theorem, Theorem 5.1, asserts that the scaled QuickVal residual cost converges in law
to a scale mixture of centered Gaussians. In this section, we introduce needed notation and prove
Lemma 4.2, which gives an explicit representation of the mixing distribution.

Consider a BST constructed by the insertion (in order) of the n seeds. Then QuickQuant(n, α)
follows the path from the root to the node storing them th

n smallest key, wheremn/n→ α.
For QuickVal(n, α), consider the same BST of seeds with the additional value α inserted (last).

Then QuickVal(n, α) follows the path from the root to this α-node. Almost surely for n large
and k fixed, the difference between these two algorithms in costs associated with the k-th pivot is
negligible to lead order [7, (4.2)]. See [29] or [7] for a more complete description.

When considering QuickVal, we will simplify the notation since we will only need to reference
one path of nodes from the root to a leaf in the QuickSelect process tree. For this we define
similar notation indexed by the pivot index (i.e., by the level in the tree). Set L0 := 0, R0 := 1, and
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τ0 := 1. Then, for k≥ 1, we define

τk := inf{i: Lk−1 <Ui < Rk−1}, (4.1)

Lk := 1(Uτk < α)Uτk + 1(Uτk > α)Lk−1, (4.2)

Rk := 1(Uτk < α)Rk−1 + 1(Uτk > α)Uτk , (4.3)

Ck := (Lk−1, Rk−1, τk,Uτk) (4.4)

Xk,i := 1(Lk−1 <Ui < Rk−1)β(Ui,Uτk), (4.5)

Sk,n :=
∑

i: τk<i≤n
Xk,i. (4.6)

Remark 4.1. Note that [7] used the notation Sn,k for what we have called Sk,n.

The random variable τk is the arrival time/index of the k th pivot. The interval (Lk, Rk) gives the
range of seeds to be compared to the k th pivot in the operation of the QuickVal algorithm. The
cost of comparing seed i to the k th pivot is given by Xk,i. The total comparison costs attributed to
the k th pivot is Sk,n.

The cost of QuickVal on n keys is then given by

Sn :=
∞∑
k=1

Sk,n. (4.7)

Define

ĈK := {Ck:k= 1, . . . ,K},
and

X̂K,i :=
K∑

k=1

Xk,i.

Then, conditionally given ĈK , the random variable

ŜK,n :=
∑

τK<i≤n
X̂K,i

is the sum of (n− τK)+ independent and identically distributed random variables, each with the
same conditional distribution as X̂K := ∑K

k=1 Xk, where

Xk := 1(Lk−1 <U < Rk−1)β(U,Uτk)

and U is uniformly distributed on (0, 1) and independent of all the Uj’s. Here, X̂K,i is the cost
incurred by comparing seed i to pivots 1, 2, . . .K and ŜK,n is the comparison cost of all seeds that
arrive after the K-th pivot to pivots 1, 2, . . .K.

It will be helpful to condition on ĈK later. In anticipation of this, we establish notation for the
conditional expectation of Xk given Ck (which equals the conditional expectation given Ĉk) and,
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for k≤ �, the conditional expected product of Xk and X� given Ĉ�, as follows:

Ik :=E[Xk|Ck]=
∫ Rk−1

Lk−1

β(u,Uτk) du, (4.8)

I2,k,� :=E[XkX� |̂C�]=
∫ R�−1

L�−1

β(u,Uτk)β(u,Uτ�
) du. (4.9)

We symmetrize the definition of I2,k,� in the indices k and � by setting I2,k,�:= I2,�,k for k> �.
Finally, we write I2,k as shorthand for I2,k,k.

We now calculate the mean and variance of X̂K with the intention of applying the classical
central limit theorem; everything is done conditionally given ĈK . Define μK and σ 2

K to be the
conditional mean and conditional variance of X̂K given ĈK , respectively. Then

μK =
K∑

k=1

Ik, σ 2
K =

∑
1≤k,�≤K

(
I2,k,� − IkI�

)
.

We next present a condition guaranteeing that σ 2
K behaves well asK → ∞. We note in passing that

this condition is also the sufficient condition of Theorem 3.1 in [7] ensuring that Sn/n converges
in L2 to

S :=
∑
k≥1

Ik. (4.10)

Lemma 4.2. If
∞∑
k=1

(
EI2,k

)1/2
< ∞, (4.11)

then both almost surely and in L1 we have that (i) the two series on the right in the equation

σ 2∞ :=
∞∑
k=1

(I2,k − I2k)+ 2
∞∑

�=1

�−1∑
k=1

(I2,k,� − IkI�) (4.12)

converge absolutely, (ii) the equation holds, and (iii) σK
L1−→ σ∞ as K → ∞.

Proof. Recall the notation Xk = 1(Lk−1 <U < Rk−1)β(U,Uτk) from above. Consider 1≤ k≤ �.
The term I2,k,� − IkI� equals the conditional covariance of Xk and X� given Ĉ�, and the absolute
value of this conditional covariance is bounded above by the product of the conditional L2-norms,

namely, I1/22,k I
1/2
2,� . Thus for the three desired conclusions it is sufficient that E

(∑∞
k=1 I

1/2
2,k

)2
< ∞.

But

E

( ∞∑
k=1

I1/22,k

)2

=
∥∥∥∥∥

∞∑
k=1

I1/22,k

∥∥∥∥∥
2

2

≤
( ∞∑
k=1

∥∥∥I1/22,k

∥∥∥
2

)2

=
( ∞∑
k=1

(
EI2,k

)1/2)2

.
�

Remark 4.3. In light of the absolute convergence noted in conclusion (i) of Lemma 4.2, we may
unambiguously write

σ 2∞ =
∑

1≤k,�<∞
(I2,k,� − IkI�), (4.13)

both in L1 and almost surely.
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Remark 4.4. Note that if the source-specific cost function β is ε-tame for some ε < 1/2, then, by
Lemma 2.3 with s= 2 and r = 1, condition (4.11) in Lemma 4.2 is satisfied, because the series there
enjoys geometric convergence.

5. Convergence
Our main result is that, for a suitably tame cost function, the QuickVal residual converges in
law to a scale-mixture of centered Gaussians. Furthermore, we have the explicit representation
of Lemma 4.2 for the random scale σ∞ as an infinite series of random variables that depend on
conditional variances and covariances related to the source-specific cost functions [see (4.13) and
(4.8)–(4.9)].

Theorem 5.1. Suppose that the cost function β is ε-tame with ε < 1/2. Then
√
n
(
Sn
n

− S
)

L−→ σ∞Z,

where Z has a standard normal distribution and is independent of σ∞.

We approach the proof of Theorem 5.1 in two parts. First, in Proposition 5.4 we apply the
central limit theorem to an approximation ŜK,n of the cost of QuickVal Sn. Second, we show that
the error due to the approximation ŜK,n is negligible in the limit, culminating in the results of
Propositions 5.9 and 5.11.

Before proving Theorem 5.1, we state a corollary to Theorem 5.1 for QuickMin. Recall that
QuickMin is QuickSelect applied to find the minimum of the keys. Using a general source-
specific cost function β , denote the cost of QuickMin on n keys by Vn. Since the operation of
QuickMin is the same as that of QuickVal with α = 0, Theorem 5.1 implies the following con-
vergence for the cost of QuickMin with the same mild tameness condition on the source-specific
cost function.

Corollary 5.2. Suppose that the source-specific cost function β is ε-tame with ε < 1/2. Then
√
n
(
Vn
n

− S
)

L−→ σ∞Z,

where Z has a standard normal distribution and is independent of σ∞.

Remark 5.3. In the key-comparisons case β = 1 (which is ε-tame for every ε ≥ 0) for k≥ 0 we have
Lk ≡ 0 and Rk ≡Uτk , with the convention Uτ0 := 1. Hence Ik =Uτk−1 for k≥ 1, and I2,k,� =Uτ�−1
for 1≤ k≤ �. Therefore S=∑k≥1 Uτk−1 = 1+∑k≥1 Uτk and

σ 2∞ =
∑

1≤k,�<∞
(1−Uτk)Uτ�

in Corollary 5.2. To further simplify the understanding of σ 2∞, and hence of the limit in Corollary
5.2 in this case, observe that Uτ1 ,Uτ2 , . . . have the same joint distribution as the cumulative products
U1,U1U2, . . .. Thus

σ 2∞
L=

∑
1≤k,�<∞

⎡⎣⎛⎝1−
k∏

i=1
Ui

⎞⎠ �∏
j=1

Uj

⎤⎦ .

Define

TK,n := ŜK,n − (n− τK)+μK√
n

.
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Proposition 5.4. Fix K ∈ {1, 2, . . .}. Suppose that
EI2,k < ∞

for k= 1, 2, . . . ,K. Then

TK,n
L−→ σKZ

as n→ ∞, where Z has a standard normal distribution independent of σK .

Proof. The classical central limit theorem for independent and identically distributed random
variables applied conditionally given ĈK yields

L
(
ŜK,n − (n− τK)+μK√

(n− τK)+
∣∣∣ĈK

)
L−→N(0, σ 2

K). (5.1)

Since τK is finite almost surely, Slutsky’s theorem (applied conditionally given ĈK) implies that
we can replace

√
(n− τK)+ by

√
n in the denominator of (5.1). Finally, applying the dominated

convergence theorem to conditional distribution functions gives that the resulting conditional
convergence in distribution in (5.1) holds unconditionally. �

Define

WK,n := 1√
n

K∑
k=1

∑
τk<i≤n

(Xk,i − Ik), WK,n := 1√
n

∞∑
k=K+1

∑
τk<i≤n

(Xk,i − Ik),

and let

Wn :=WK,n +WK,n.

Note thatWn does not depend onK. We can writeWn in terms of the cost of QuickVal as follows:

Wn = 1√
n

(
Sn −

∞∑
k=1

(n− τk)+Ik

)
.

We prove thatWn
L−→ σ∞Z (which is Proposition 5.9) in three parts. First (Lemma 5.5) we show

that
∣∣TK,n −WK,n

∣∣→ 0 almost surely. Next (Lemma 5.7) we show that
∥∥WK,n

∥∥
2 is negligible as

first n→ ∞ and then K → ∞. Lastly (see the proof below of Proposition 5.9), an application of
Markov’s inequality gives the desired convergence.

Lemma 5.5. For K fixed, if EIk < ∞ for k= 1, 2, . . . ,K, then∣∣TK,n −WK,n
∣∣→ 0

almost surely as n→ ∞.

Remark 5.6. The condition EIk < ∞ in Lemma 5.5 is weaker than the condition EI2,k < ∞ in
Proposition 5.4.

Proof of Lemma 5.5. When n> τK we have

∣∣TK,n −WK,n
∣∣= 1√

n

∣∣∣∣∣∣
K∑

k=1

∑
τk<i≤τK

(Xk,i − Ik)

∣∣∣∣∣∣
≤ 1√

n

K∑
k=1

∑
τk<i≤τK

∣∣Xk,i − Ik
∣∣ .

https://doi.org/10.1017/S0963548325100102 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325100102


Combinatorics, Probability and Computing 15

For a fixed K with k≤K, the almost sure finiteness of τk and τK implies that the sum
K∑

k=1

∑
τk<i≤τK

∣∣Xk,i − Ik
∣∣ , (5.2)

consists of an almost surely finite number of terms. Since each term
∣∣Xk,i − Ik

∣∣ is finite almost
surely, the sum in (5.2) is finite almost surely. Therefore,

∣∣TK,n −WK,n
∣∣→ 0 almost surely as

n→ ∞. �
Lemma 5.7. Let

εK :=
∞∑

k=K+1

(
EI2,k

)1/2 .
Then ∥∥WK,n

∥∥
2 ≤ εK .

Remark 5.8. A necessary and sufficient condition for εK → 0 as K → ∞ is (4.11). Therefore, by
Remark 4.4, ε-tameness for some ε < 1/2 is sufficient.

Proof of Lemma 5.7. Minkowski’s inequality yields∥∥WK,n
∥∥
2 ≤ 1√

n

∞∑
k=K+1

∥∥∥ ∑
τk<i≤n

(Xk,i − Ik)
∥∥∥
2
. (5.3)

By conditioning on Ck, we can calculate the square of the L2-norm here:∥∥∥ ∑
τk<i≤n

(Xk,i − Ik)
∥∥∥2
2
=EE

[( ∑
τk<i≤n

(Xk,i − Ik)
)2∣∣∣Ck

]
=E

{
(n− τk)+(I2,k − I2k)

}
≤ nEI2,k, (5.4)

where we use the fact that, conditionally given Ck, the random variables Xk,i − Ik for i> τk are iid
with zero mean. Substituting (5.4) into (5.3) gives the result. �
Proposition 5.9. Suppose that

∞∑
k=1

(
EI2,k

)1/2
< ∞.

Then

Wn
L−→ σ∞Z,

where Z has a standard normal distribution independent of σ∞.

Proof. Let t ∈R and δ > 0. SinceWn ≤ t implies either
WK,n ≤ t + δ or

∣∣Wn −WK,n
∣∣> δ,

we have
P[Wn ≤ t]≤ P[WK,n ≤ t + δ]+ P[

∣∣Wn −WK,n
∣∣> δ]. (5.5)

Markov’s inequality and Lemma 5.7 imply

P[
∣∣Wn −WK,n

∣∣> δ]≤ ε2K
δ2

. (5.6)
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Taking limits superior as n→ ∞ gives

lim sup
n→∞

P[Wn ≤ t]≤ lim sup
n→∞

P[WK,n ≤ t + δ]+ ε2K
δ2

≤ lim sup
n→∞

P[TK,n ≤ t + 2δ]+ ε2K
δ2

= P[σKZ ≤ t + 2δ]+ ε2K
δ2

,

by (5.5)–(5.6), Lemma 5.5, and Proposition 5.4, respectively. Now taking limits as K → ∞ gives

lim sup
n→∞

P[Wn ≤ t]≤ P[σ∞Z ≤ t + 2δ]

by Lemma 4.2 and the assumption that εK → 0. Letting δ → 0 yields

lim sup
n→∞

P[Wn ≤ t]≤ P[σ∞Z ≤ t]. (5.7)

Applying the previous argument with limsup replaced by liminf to

P[Wn ≤ t]≥ P[WK,n ≤ t − δ]− P[
∣∣Wn −WK,n

∣∣≥ δ]

implies

lim inf
n→∞ P[Wn ≤ t]≥ P[σ∞Z < t]. (5.8)

Since σ∞Z has a continuous distribution, combining (5.7) and (5.8) gives the result. �
For completeness we include the following simple lemma, which will be needed in the sequel.

Lemma 5.10. Let 0< p< 1 and a1, . . . , an be non-negative real numbers. Then( n∑
k=1

ak

)p

≤
n∑

k=1

apk.

The final step in the proof of Theorem 5.1 is to show that the difference between the centering
random variable

∞∑
k=1

(n− τk)+Ik

inWn and the more natural

nS=
∞∑
k=1

nIk

is negligible (when scaled by 1/
√
n) in the limit as n→ ∞.

Proposition 5.11. If the source-specific cost function β is ε-tame with ε < 1/2, then

1√
n

∞∑
k=1

[
n− (n− τk)+

]
Ik → 0

almost surely as n→ ∞.
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Proof. Observe that for any 0< δ < 1/2, we have

[n− (n− τk)+]=min (n, τk)≤ τ
(1/2)+δ

k n(1/2)−δ .

Therefore, if we let 0< δ < (1/2)− ε, it suffices to show that
∞∑
k=1

τ
(1/2)+δ

k Ik < ∞ (5.9)

almost surely. We prove this by showing that the random variable in (5.9) has finite expectation.
Applying [7, Lemma 3.2] implies that for the ε-tameness constant c, we have

Ik ≤ 2εc
1− ε

(Rk−1 − Lk−1)1−ε .

Define, for k= 1, 2, . . ., the sigma-field Fk := σ 〈(L1, R1), . . . (Lk−1, Rk−1)〉. Conditionally given
Fk, the distribution of τk is the convolution over j= 0, . . . , k− 1 of geometric distributions with
success probabilities Rj − Lj. This distribution is stochastically smaller than the convolution of k
geometric distributions with success probability Rk−1 − Lk−1. LetGk,Gk,0, . . . ,Gk,k−1 be k+ 1 iid
geometric random variables with success probability Rk−1 − Lk−1. Then

E

[
τ
(1/2)+δ

k Ik
∣∣∣Fk

]
≤ C1E

⎡⎢⎣
⎛⎝k−1∑

i=0
Gk,i

⎞⎠(1/2)+δ

(Rk−1 − Lk−1)1−ε

∣∣∣∣∣∣∣ Lk−1, Rk−1

⎤⎥⎦
≤ C1(Rk−1 − Lk−1)1−ε

E

⎡⎣ k−1∑
i=0

G(1/2)+δ

k,i

∣∣∣∣∣∣ Lk−1, Rk−1

⎤⎦
≤ C1k(Rk−1 − Lk−1)1−ε

E

[
G(1/2)+δ

k

∣∣∣ Lk−1, Rk−1

]
, (5.10)

where

C1 := 2εc
1− ε

.

We can now compute

E

[
G(1/2)+δ

k

∣∣∣ Lk−1, Rk−1

]
=

∞∑
i=1

zi−1(1− z)ip, (5.11)

where z = 1− (Rk−1 − Lk−1) ∈ [0, 1) for k≥ 2 is the failure probability and p= (1/2)+ δ. Note
that the infinite series in (5.11) can be written in terms of a polylogarithm function, as follows:

∞∑
i=1

zi−1(1− z)ip = z−1(1− z)Li−p,0(z), Liα,r(z):=
∞∑
n=1

( log i)r
zi

iα
.

Therefore [12, Theorem 1] implies the existence of an η ∈ (0, 1) such that for 1− η < z < 1, we
have

∞∑
i=1

ziip ≤ �(1+ p)(1− z)−(1+p).

On 0≤ z ≤ 1− η, the polylogarithm Li−p,0(z) is increasing and therefore we have the bound

Li−p,0(z)≤
∞∑
i=1

(1− η)iip = :Cp,η
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Defining

C2 := max (�(1+ p), Cp,η),

for z ∈ [0, 1) we get

Li−p,0(z)≤ C2(1− z)−(1+p). (5.12)

Substituting the bound from (5.12) in (5.11) gives

E

[
Gp
k|Lk−1, Rk−1

]
≤ C2

Rk−1 − Lk−1
1− (Rk−1 − Lk−1)

(Rk−1 − Lk−1)−(1+p)

= C2

∞∑
j=0

(Rk−1 − Lk−1)j−p.

Therefore, after substituting p= (1/2)+ δ, an application of the monotone convergence theorem
yields

E(τ (1/2)+δ

k Ik)≤ C3k
∞∑
j=0

E(Rk−1 − Lk−1)j+(1/2)−ε−δ ,

where C3 := C1C2. Let q := (1/2)− ε − δ; then by the restriction placed on δ, we know q> 0. By
[7, Lemma 3.1], we have

E(τ (1/2)+δ

k Ik)≤ C3k
∞∑
j=0

(
2− 2−(j+q)

j+ q+ 1

)k−1

.

Therefore, after defining

γj := 2− 2−(j+q)

j+ q+ 1
,

we have
∞∑
k=3

E(τ (1/2)+δ

k Ik)≤ C3

∞∑
k=3

k
∞∑
j=0

γ k−1
j = C3

∞∑
j=0

∞∑
k=3

kγ k−1
j ≤ 3C3

∞∑
j=0

γ 2
j

(1− γj)2
.

Consequently, to check the convergence in (5.9), it suffices to check that
∑∞

j=0 γ 2
j < ∞; however,

this follows trivially from the observation that γ 2
j ≤ 4/j2. Therefore, it remains to show that the

k= 1 and k= 2 terms in (5.9) have finite expectation. The first arrival time τ1 equals 1 identically
and EI1 < ∞. Applying (5.10) when k= 2 gives

E

[
τ
(1/2)+δ
2 I2

∣∣∣F2
]
≤ 2C1(R1 − L1)1−ε

E

[
G(1/2)+δ
2

∣∣∣ L1, R1] .
Since (R1 − L1)1−ε < 1 a.s. , it suffices to show that

EGp
2 < ∞ (5.13)

for p= (1/2)+ δ. However, we can calculate the expectation in (5.13) exactly. Since R1 − L1
L= 1−

U, where U has a unif(0, 1) distribution,

EGp
2 =

∞∑
i=1

ipE[(1−U)Ui−1]=
∞∑
i=1

ip

i(i+ 1)
,

which is finite because p< 1. �
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6. Convergence of moments for QuickVal residual
The main result of this section is that, under suitable tameness assumptions for the cost function,
the moments of the normalized QuickVal residual converge to those of its limiting distribution.

Theorem 6.1. Let p ∈ [2,∞). Suppose that the cost function β is ε-tame with ε < 1/p. Then the
moments of orders ≤ p for the normalized QuickVal residual

√
n
(
Sn
n

− S
)

converge to the corresponding moments of the limit-law random variable σ∞Z.

Remark 6.2. We will prove Theorem 6.1 using the second assertion in [2, Theorem 4.5.2]. Use of
the first assertion in that theorem shows that, for all real r ∈ [1, p], we also have convergence of rth
absolute moments.

As mentioned in Remark 6.2, we prove Theorem 6.1 using [2, Theorem 4.5.2] by proving that,
for some q> p, the Lq-norms of the normalized QuickVal residuals are bounded in n. Choosing
q arbitrarily from the nonempty interval [2, 1/ε) and using the triangle inequality for Lq-norm,
we do this by showing (in Lemmas 6.3 and 6.4, respectively) that the same Lq-boundedness holds
for each of the following two sequences:

Wn = 1√
n

[
Sn −

∞∑
k=1

(n− τk)+Ik

]
= 1√

n

∞∑
k=1

[
Sk,n − (n− τk)+Ik

]
= 1√

n

∞∑
k=1

∑
τk<i≤n

(Xk,i − Ik),

and the sequence previously treated in Proposition 5.11:

Ŵn := 1√
n

∞∑
k=1

[
n− (n− τk)+

]
Ik.

Lemma 6.3. Let q ∈ [2,∞), and suppose that the cost function β is ε-tame with 0≤ ε < 1/q. Then,
the sequence (Wn) is Lq-bounded.

Proof. This is straightforward. We proceed as at (5.3), except that we use triangle inequality for
Lq-norm rather than for L2-norm:

‖Wn‖q ≤ 1√
n

∞∑
k=1

∥∥∥∥∥∥
∑

τk<i≤n
(Xk,i − Ik)

∥∥∥∥∥∥
q

.

To bound the Lq-norm on the right, we employ Rosenthal’s inequality [27] conditionally given Ck
to find ∥∥∥∥∥∥

∑
τk<i≤n

(Xk,i − Ik)

∥∥∥∥∥∥
q

q

≤ cq
[
(n− τk)+‖Xk − Ik‖qq + ((n− τk)+

)q/2 ‖Xk − Ik‖22
]

≤ cq
[
n‖Xk − Ik‖qq + nq/2‖Xk − Ik‖22

]
,

and so, by Lemma 5.10,∥∥∥∥∥∥
∑

τk<i≤n
(Xk,i − Ik)

∥∥∥∥∥∥
q

≤ c1/qq
[
n1/q‖Xk − Ik‖q + n1/2‖Xk − Ik‖2/q2

]
.
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But by the argument at (5.4) we have

‖Xk − Ik‖22 ≤EI2,k,

and

‖Xk − Ik‖q ≤ ‖Xk‖q + ‖Ik‖q = (EIq,k)1/q + ‖Ik‖q
by again conditioning onCk to obtain the equality here. Consider a generalization of the definition
of I2,k = I2,k,k given in (4.9):

Iq,k :=E
[
Xq
k
∣∣ Ck
]= ∫ Rk−1

Lk−1

βq(u,Uτk) du.

Therefore ∥∥∥∥∥∥
∑

τk<i≤n
(Xk,i − Ik)

∥∥∥∥∥∥
q

≤ c1/qq
{
n1/q

[(
EIq,k

)1/q + ‖Ik‖q
]
+ n1/2

(
EI2,k

)1/q} .
Three applications of Lemma 2.3 (requiring ε < 1/q, ε < 1, and ε < 1/2 to handle EIq,k, ‖Ik‖q,
and EI2,k, respectively), do the rest. �
Lemma 6.4. Suppose that the cost function β is ε-tame with 0≤ ε < 1/2. Then, the sequence (Ŵn)
is Lq-bounded for every q< ∞.

Proof. We may and do suppose q≥ 2. We begin as in the proof of Proposition 5.11, except that
there is now no harm in choosing δ = 0. So, it is sufficient to prove that

∞∑
k=1

∥∥∥τ 1/2k Ik
∥∥∥
q
< ∞.

We follow the proof of Proposition 5.11 to a large extent; in particular, what we will show is that
all the terms in this sum are finite and that, for sufficiently large K, the series

∑∞
k=K converges. As

in the proof of Proposition 5.11, we utilise the bound

Ik ≤ 2εc
1− ε

(Rk−1 − Lk−1)1−ε ,

which requires only ε-tameness with ε < 1. Then, we proceed much the same way as at (5.10), but
now substituting convexity of qth power for use of Lemma 5.10:

E

[(
τ
1/2
k Ik

)q∣∣∣Fk
]
≤ Cq

1 E

⎡⎢⎣
⎛⎝k−1∑

i=0
Gk,i

⎞⎠q/2

(Rk−1 − Lk−1)q(1−ε)

∣∣∣∣∣∣∣ Lk−1, Rk−1

⎤⎥⎦
≤ Cq

1 (Rk−1 − Lk−1)q(1−ε)k(q/2)−1
E

⎡⎣ k−1∑
i=0

Gq/2
k,i

∣∣∣∣∣∣ Lk−1, Rk−1

⎤⎦
≤ Cq

1k
q/2(Rk−1 − Lk−1)q(1−ε)

E

[
Gq/2
k

∣∣∣Lk−1, Rk−1

]
, (6.1)

where, as before, C1 = 2εc/(1− ε).
Arguing from here just as in the proof of Proposition 5.11, we find

E

[
Gq/2
k

∣∣∣ Lk−1, Rk−1

]
≤ C2

∞∑
j=0

(Rk−1 − Lk−1)j−(q/2)
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where C2 := max (�(1+ (q/2)), Cq/2,η). (See the proof of Proposition 5.11 for the definition of
Cq/2,η.) Therefore, with C3 := Cq/2

1 C2, we have

E

[(
τ
1/2
k Ik

)q∣∣∣Fk
]
≤ C3 kq/2

∞∑
j=0

(Rk−1 − Lk−1)j+q(1−ε)−(q/2).

By [7, Lemma 3.1], we have (using our assumption ε < 1/2 for the j= 0 term)

E

(
τ
1/2
k Ik

)q ≤ C3 kq/2
∞∑
j=0

γ k−1
j,q,ε , (6.2)

where

γj,q,ε := 2− 2−[j+q(1−ε)−(q/2)]

j+ q(1− ε)− (q/2)+ 1
∈ (0, 1)

decreases in j and vanishes in the limit as j→ ∞. Therefore, taking qth roots and using
Lemma 5.10, ∥∥∥τ 1/2k Ik

∥∥∥
q
≤ Cq/2

3 k1/2
∞∑
j=0

γ
(k−1)/q
j,q,ε .

If we bound the factor k1/2 here by k and then sum the right side over k≥K, the result is

Cq/2
3

∞∑
j=0

[
(K − 1)

�K−1
j

1− �j
+ �K−1

j

(1− �j)2

]
≤ Cq/2

3 K
∞∑
j=0

�K−1
j

(1− �j)2
,

where

�j ≡ �j,q,ε := γ
1/q
j,q,ε ∈ (0, 1),

like γj,q,ε , decreases in j and vanishes in the limit as j→ ∞. Since �j < (2/j)1/q, it follows if we
take K ≥ 2q+ 1 that

∞∑
k=K

∥∥∥τ 1/2k Ik
∥∥∥
q
< ∞.

It remains to show that
∥∥∥τ 1/2k Ik

∥∥∥
q
< ∞ for every k. For this we use (6.2) to note, since 0<

γj,q,ε < 2/j, that it clearly suffices to consider the cases k= 1 and k= 2. When k= 1 we have τ1 =
1 and hence

∥∥∥τ 1/21 I1
∥∥∥
q
= ‖I1‖q ≤ C1 < ∞. Applying (6.1) when k= 2 gives

E

[(
τ
1/2
2 I2

)q∣∣∣F2
]
≤ Cq

12
q/2(R1 − L1)q(1−ε)

E

[
Gq/2
2

∣∣∣L1, R1],
and we can exactly compute

E

{
(R1 − L1)q(1−ε)

E

[
Gq/2
2

∣∣∣L1, R1]}
=E

{
(R1 − L1)q(1−ε)

∞∑
i=1

iq/2(R1 − L1)[1− (R1 − L1)]i−1

}

=
∞∑
i=1

iq/2E
[
Ui−1(1−U)q(1−ε)+1

]
=

∞∑
i=1

iq/2B(i, q(1−ε)+2)
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where U ∼ unif(0, 1). Each of the terms in this last sum is finite, and by Stirling’s formula
the ith term equals (1+ o(1))i−[2+((1/2)−ε)q] = o(i−2) as i→ ∞, so the sum converges. Hence
‖τ 1/22 I2‖q < ∞. �
Remark 6.5. Matterer [25 , Chapter 7] describes the approach, involving the contraction method for
inspiration and the method of moments for proof, we initially took in trying to establish a limiting
distribution for the QuickVal residual in the special case of QuickMin with key-comparisons cost.
It turns out that, for this approach, we must consider the QuickMin limit and the residual from it
bivariately. However, we discovered that, unfortunately, the limit residual QuickMin distribution
is not uniquely determined by its moments (we omit the proof here); so, the method of moments
approach is ultimately unsuccessful, unlike for QuickSort [13].We nevertheless find that approach
instructive, since it does yield a rather direct proof of convergence of moments for the residual in the
special case of QuickMin with key-comparisons cost; see [25 , Chapter 7] for details.
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