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Abstract

Water resources from the Indus Basin sustain over 270 million people. However, water security in this region is
threatened by climate change. This is especially the case for the upper Indus Basin, where most frozen water reserves
are expected to decrease significantly by the end of the century, leaving rainfall as the main driver of river flow.
However, future precipitation estimates from global climate models differ greatly for this region. To address this
uncertainty, this paper explores the feasibility of using probabilistic machine learning to map large-scale circulation
fields, better represented by global climate models, to local precipitation over the upper Indus Basin. More
specifically, Gaussian processes are trained to predict monthly ERAS precipitation data over a 15-year horizon. This
paper also explores different Gaussian process model designs, including a non-stationary covariance function to learn
complex spatial relationships in the data. Going forward, this approach could be used to make more accurate
predictions from global climate model outputs and better assess the probability of future precipitation extremes.

Impact Statement

Future precipitation in the upper Indus Basin and, by extension, the water security of downstream communities
remains difficult to predict. New approaches quantifying the probabilities of extreme precipitation events, which
lead to floods or droughts, are needed to inform more sustainable policy and climate change adaptation. This
paper presents one such method.

1. Introduction

The Indus is one of the longest rivers in Asia. From the Tibetan Plateau, it meanders through northern India
and along the entire length of Pakistan before flowing into the Arabian Sea. Over its 3.000 km journey
shown in Figure 1, it sustains the livelihoods of more than 270 million people, including the world’s largest
contiguous irrigation system (Shrestha et al., 2019). Of all the rivers originating in the Hindu-Kush
Karakoram Himalaya (HKKH) region, the Indus depends the most on high-altitude water resources
(Immerzeel et al., 2010; Lutz et al., 2014). Over 60% of its total flow is attributed to glacier and snow
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Figure 1. Map of Indus Basin showing elevation (TROPOMI, 2019), the Indus River (Kelso and
Patterson, 2010, in blue) and the UIB (NASA JPL, 2013, watershed boundary shown with dashed line).
The inset shows the watershed s location with respect to the Asian continent.

melt in an area known as the Upper Indus Basin (UIB) (Immerzeel and Bierkens, 2012; Lutz et al., 2016).
The Indus River is therefore one of the most sensitive to climate change. However, there is considerable
uncertainty around the future amount, seasonality, and composition of the Indus’ flow (Krishnan etal., 2019;
Lutz et al., 2016; Orr et al., 2022; Sabin et al., 2020). This includes predictions of extremes such as floods
and droughts. Coupled with an increasing demand for freshwater, future water security in this area is at risk.
This security is predominantly undermined by the river’s largest source of current and future hydrological
uncertainty: precipitation (Immerzeel et al., 2020; Orr et al., 2022; Smolenaars et al., 2021).

In the UIB, precipitation largely originates from two major atmospheric events: the Indian summer
monsoon (ISM) and the western disturbances (WDs). The ISM brings precipitation from June to
September through the displacement of humid air from the Indian Ocean, and in particular the Bay of
Bengal (Bookhagen and Burbank, 2010). The strength of the ISM is primarily modulated by the El Nifio-
Southern Oscillation (Ding and Wang, 2005; Di Capua et al., 2020). WDs are extratropical storms that
originate over the Mediterranean region. They travel as frontal systems, collecting moisture from the
Mediterranean, Black, and Caspian seas until they intensify upon reaching South Asia (Midhuna et al.,
2020). They are primarily modulated by the North Atlantic Oscillation and El Nifio-Southern Oscillation
(Hunt and Zaz, 2023; Bharati et al., 2025) and are strongest in winter from December to April, peaking in
March over the UIB (Filippi et al., 2014; Dahri et al., 2016; Bharati et al., 2025). Consequently, the eastern
UIB receives up to 70% of its annual precipitation in the summer, whereas the western UIB receives 40—
60% of its precipitation during winter (Dahri et al., 2016; Immerzeel et al., 2015). The complex orography
of the UIB also strongly influences precipitation, resulting in large localized spatial-temporal variations,
including extremes (Bookhagen and Burbank, 2006; Lutz et al., 2016).

Global climate models (GCMs) often struggle to accurately simulate synoptic and local precipitation
patterns (Stephens et al., 2010; Rocheta et al., 2014). Their coarse spatial resolution and limited physics
cannot resolve complex hydro-meteorological dynamics, including over the HKKH region (Palazzi et al.,
2013; Panday et al., 2015). To overcome these issues, regional climate models (RCMs) are used to
dynamically downscale GCM outputs. These models better represent precipitation variability, including
extremes. However, RCMs assume that large-scale driving fields, such as temperature and geopotential,
are reliably simulated (Chokkavarapu and Mandla, 2019). RCMs are also computationally expensive,
lack error estimates, propagate considerable model-dependent uncertainty (Hawkins and Sutton, 2009),
and are generally not optimized for mountainous regions, especially the HKKH (Cannon et al., 2017,
Norris et al., 2017, 2019; Orr et al., 2017). For example, RCMs from the Coordinated Regional Climate
Downscaling Experiment (CORDEX) for South Asia regularly report seasonal errors of over 100% for
present-day precipitation when compared to gauge-based gridded precipitation (Sanjay et al., 2017).
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On the other hand, large-scale circulation variables, such as horizontal wind, temperature, and pressure
fields, are typically better simulated by GCMs (Tapiador et al., 2019; Arias et al., 2023). Furthermore,
these large-scale features have previously been used to statistically downscale monthly precipitation and
seasonal precipitation forecasts over the Tian Shan and Pamir mountains in Central Asia using support
vector regression (Umirbekov et al., 2022) and to downscale monthly cumulative and daily extreme
precipitation over High Mountain Asia using neural networks (Gerlitz et al., 2015).

This paper explores the feasibility of using variables better represented by GCMs to predict future
precipitation over the UIB. For this study, monthly fifth-generation ECMWF reanalysis (ERAS) precipi-
tation data (Hersbach et al., 2020) is used to train a machine learning model for temporal prediction over a
15-year horizon. The following experiments serve as a proof-of-concept for applying this approach to
predict future precipitation from GCMs. If ERAS precipitation is assumed to be close to reality, this
application can be considered a proof-of-concept for heterogeneous model output statistics downscaling
and bias-correction (Maraun and Widmann, 2017). If ERAS precipitation is assumed to be different from
reality, this application can simply be considered an emulation of ERAS.

A large variety of methods are applicable to this task. Traditional methods such as multiple linear
regression or distribution shift methods are more interpretable (Schoof and Pryor, 2001; Gudmundsson
et al.,, 2012; Maraun and Widmann, 2017). However, scalable machine learning methods, such as
convolutional neural networks, recurrent neural networks, or transformers (Wang et al., 2021; Zhong
et al., 2024), and in particular probabilistic machine learning methods, such as generative adversarial
networks (Harris et al., 2022; Kumar et al., 2023; Leinonen et al., 2021) or diffusion models (Ling et al.,
2024; Srivastava et al., 2024; Mardani et al., 2025), have become strong choices due to their accuracy in
modeling complex spatiotemporal distributions.

In this work, we choose to instead explore Gaussian processes (GP) (Rasmussen and Williams, 2005).
This Bayesian machine learning method retains a high level of interpretability while providing a
mechanism for incorporating domain knowledge into the model and returning uncertainty estimates
through predictive probability distributions of future precipitation. These distributions can then be used to
quantify the probability of extreme precipitation events. Different GP covariance functions are explored,
including a non-stationary Gibbs kernel, building on work from Lalchand et al. (2022). The paper is
structured as follows. The data are first presented in Section 2 and the methodology in Section 3. Model
performance is presented in Section 4. Finally, the study’s limitations and further work are discussed in
Section 5.

2. ERAS precipitation and predictive variables

Previous research has found that ERAS5 climate reanalysis, although generally exhibiting a wet bias for the
HKKH region (Baudouin etal., 2020; Chen etal., 202 1; Kumar et al., 202 1), offers precipitation estimates
close to observations, in terms of amounts, seasonality, and variability, from a daily to multi-annual scale,
compared to other reanalysis and RCM products over the UIB (Baudouin et al., 2020; Dahri et al., 2021;
Khanal et al., 2023). In this work, monthly averages are chosen to learn the UIB’s climatology rather than
using daily averages that capture its more stochastic weather patterns. Smoother monthly data also avoids
dealing with consecutive days of zero precipitation, which would require the more involved modeling ofa
Bernoulli-gamma distribution (Martinez-Villalobos and Neelin, 2019; Girona-Mata et al., 2024).
Figure 2 shows ERAS monthly precipitation data over the UIB from 1970 to 2004. The precipitation
has an approximately log-normal distribution with a mean of 1.83mmd~!, a standard deviation of
1.84mmd ™" and values ranging from 0.00 to 23.40mmd ™. Soft k-means clustering is applied to the
precipitation data using different time intervals and cluster numbers, excluding latitude and longitude.
Three distinct precipitation regimes, shown in Figure 3, are identified and subsequently referred to as the
Gilgit, Ngari, and Khyber regimes. Figure 2 shows that the Ngari regime is characterized by a clear
periodic pattern, while the Gilgit and Khyber regimes have more stochastic time series (Figure 2).
Potential variables for predicting future precipitation are compiled from existing literature. They are
summarized in Table 1. Large-scale geopotential fields are first considered. The strength and variability of
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Figure 2. ERA5 monthly precipitation over the UIB between 1970 and 2004. The average annual and
seasonal precipitation over the UIB (left) and time series for three locations in the UIB (right) are shown.
The time series shows the typical precipitation regimes in the basin (Figure 3) and are fit with a linear
regression model (dotted green lines) to identify trends over the studied time period.
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Figure 3. UIB precipitation regimes. Clusters are generated by applying sofi k-means to ERAS5 monthly
precipitation data from 1970 to 2004. The figure shows the clusters for a weighting threshold of 0.6,
following the approach of Lalchand et al. (2022).

the ISM and WDs over the UIB have previously been linked to large-scale geopotential fields outside the
UIB via empirical orthogonal function (EOF) analysis (Filippi etal., 2014; Molg et al., 2014). EOF analysis,
also known as geographically weighted principal component analysis, is the decomposition of a signal or
dataset in terms of its orthogonal basis functions. EOFs reduce the dimensionality and noise of large-scale
fields and are therefore commonly used to determine atmospheric patterns (Weare and Nasstrom, 1982).
Here, monthly EOFs are generated from daily ERAS geopotentials at 200 hPa, 500 hPa, and 850 hPa over
the UIB. Spatially averaged EOFs over the Bay of Bengal (10-16°N, 83-93°E) and east of the Caspian Sea
(35-40°N, 60-70°E) are also calculated to capture large-scale pressure systems entering the basin.

In addition to geopotential fields, monthly historical climate indices from NOAA (2011) are investigated
to train the model. Climate indices are numerical measures used to describe specific patterns or anomalies in
the Earth’s atmosphere and oceans. These indices are typically derived from observational data. The NAO,
Nifio 3.4, and Niflo 4 indices, which provide a representation of the North Atlantic and El Nifio-Southern
oscillations, are considered. The NAO index is calculated by performing a rotated principal component
analysis (RPCA) to the geopotential anomaly at 500 hPa (National Weather Service Climate Prediction
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Table 1. Considered model features with dimensions and abbreviations. These monthly variables are
or are derived from ERAS5 (Hersbach et al., 2020), with the exception of the atmospheric indices, which
are calculated by NOAA (2011) using historical observations

Feature Unit Abbreviation

Time Years t

Latitude °N lat

Longitude °E lon

Altitude m z

Slope of sub-grid orography - slor

Angle of sub-grid orography deg anor

Total column water vapour kg/m? tewv

m dew-point temperature K d2m

UlB-averaged 2 m temperature K 2m

NAO index - NAO

El Nino 3.4 index K N34

El Nino 4 index K N4

EOFs of geopotential at 200 hPa over UIB - EOF200U1, EOF200U2
Averaged EOFs of geopotential at 200 hPa over Bay of Bengal — — EOF200B1, EOF200B2
Averaged EOFs of geopotential at 200 hPa east of Caspian Sea  — EOF200C1, EOF200C2
EOFs of geopotential at 500 hPa over UIB - EOF500U1, EOF500U2
Averaged EOFs of geopotential at 500 hPa over Bay of Bengal — — EOF500B1, EOF500B2
Averaged EOFs of geopotential at 500 hPa east of Caspian Sea  — EOF500C1, EOF500C2
EOFs of geopotential at 850 hPa over UIB - EOF850U1, EOF850U2
Averaged EOFs of geopotential at 850 hPa over Bay of Bengal - EOF850B1, EOF850B2
Averaged EOFs of geopotential at 850 hPa east of Caspian Sea  — EOF850C1, EOF850C2

Center, 2008). The Nifio 3.4 and 4 indices measure anomalous sea surface temperatures over overlapping
areas in the tropical Pacific Ocean. Finally, ERAS surface-level variables are studied. These include static
fields such as latitude, longitude, altitude, slope of sub-grid orography, and angle of sub-grid orography as
well as local meteorological variables such as 2 m dew point temperature and total column water vapour.
Although the latter two variables are not large-scale fields, they can be more faithfully modelled by GCMs.
This is a result of the variables being more directly related to the thermodynamic properties of the
atmosphere and less influenced by the complex microphysical processes that affect precipitation, especially
over mountains (Houze, 2012; Tapiador etal., 2019). The monthly 2 m temperature averaged over 20-40°N
65-85°E is also investigated as a proxy for seasonality with annual periodicity similar to precipitation.

3. Method

This section first introduces GPs and methods to address non-stationary and non-Gaussian data. We then
present the experimental setup, including the validation protocol and the specific models used.

3.1. Gaussian processes
Consider the data set {yi}?’: | representing N monthly ERAS precipitation values where y; € R. The values

are given at inputs {x,»}fy:l €RP, where D is the number of input dimensions (e.g., time, latitude,
longitude, or elevation). We assume y; can be generated by a function f at x;:

yi=f(x) +e, (1
where ¢; is a noise term and is assumed to be normally distributed with zero mean and standard deviation
on, €1~ N (0;02).
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The function f can be modeled with a GP. We refer the reader to Rasmussen and Williams (2005) for an
introduction to GPs and follow their notation. A GP is a stochastic process for which any finite collection
of its random variables is distributed according to a multivariate normal distribution. Similarly to a
multivariate normal distribution, a GP is defined by a mean function x(x) and a covariance function or
kernel k(x,x'):

fx) ~ GP(u(x). k(x.x')), ()

where x and x’ are two arbitrary inputs. Practically, the mean function x(x) is used to model behaviour
common to all data, such as linear trends. The covariance function k(x,x’) captures the correlation
between the outputs and encodes properties such as smoothness and periodicity. The mean and covariance
function can therefore be used to sample representative functions from the GP. The spread of these
functions is interpreted as the uncertainty of the model.

The covariance function makes GPs well-suited for highly correlated geophysical datasets. If the
covariance function is stationary, the correlation of the outputs depends only on the distance between the
inputs x and x’. The Gibbs kernel (1998) introduces non-stationarity through input-dependent covariance
lengthscales in each dimension. This flexibility should allow the function samples to adapt to the varying
precipitation patterns across the UIB. Instead of a single point estimate of the lengthscale £, per dimension
d, we can consider £,(x), a lengthscale function. The Gibbs kernel for multi-dimensional inputs is given by,

Zfd x') _ > (xd_ix&)z
kGibbs xx’ H +Lﬂ2(x,)eXp{ ;fi(x)-i-fﬁ(XI) . 3)

We model these lengthscale functions non-parametrically with latent GPs, building on work from
Lalchand et al. (2022). In this paper, our aim is to design a covariance function using knowledge of
precipitation and large-scale circulation patterns and enhance it by learning non-stationary spatial
relationships between the data.

The distribution of GP is, by definition, Gaussian. Making the distribution of the target variable
(i.e., precipitation) more normal can therefore help with inference. Warped GPs (Snelson et al., 2003)
allow us to handle non-Gaussian distributions by transforming the GP inputs and outputs. For precipi-
tation in the UIB, a Box—Cox function is used as the warping function:

Vo1
w)={ 7 11470 @)

logy;,, if 1=0

where y; is the ith observation and is assumed to be positive and 4 is the scaling factor found through
maximum likelihood estimation. We note that the inverse transformation of the predicted mean yields the
median of the resulting distribution.

3.2. Experimental setup

The design and validation of the following models adhere to the guidelines proposed by Tazi et al. (2023).
To train and evaluate the GPs, ERAS monthly precipitation data are divided chronologically. The training
set represents 35 years between 1970 and 2004. The model is evaluated on the next 15 years of
precipitation data between 2005 and 2019. Ideally, the model would be trained on all the data in the
UIB. However, to overcome the high computational complexity of GPs for large datasets, the data are
sampled. Unless otherwise stated, the training set contains 10,000 samples from the training period, while
the validation and test sets are each comprised of 3500 samples from the validation period. The sampling
for each set is random, stratified by location, and without replacement. The training set represents 6% of
the total available data over the training period. Performance is evaluated by computing the root mean
square error (RMSE), the coefficient of determination R?, and the mean log loss (MLL) as defined in
Appendix A.
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For the first model investigated, the temporal distribution of the precipitation is captured by fitting a GP
to the time series of each grid point within the UIB. This collection of GPs is spatially independent and is
subsequently referred to as the single-location model. A constant mean function is used here and in the
following models, as no obvious trends are shared between the data, as shown in Figure 2. For
precipitation in the UIB, an approximately annual periodicity is expected. We therefore use an additive
kernel structure with local periodicity defined as

D

esim = Kper () - ka2 (%) + Y tara (Xother) ®)
a=1

where kpe, is the periodic kernel and ka3 is the Matérn 3/2 kernel. We use a Matérn kernel rather than a
smooth squared exponential kernel to better model discontinuities in time and space. The periodic and
Matérn kernels follow their standard definitions as presented by Duvenaud (2014). The other variables,
excluding time and spatial information such as elevation, are represented by Xomer. The Xomer inputs are
determined through greedy feature selection as detailed in Appendix B and could include local or large-
scale features from Table 1. To establish a baseline, we first train the single-location model with all data at
each location for the full training period (full model). A data-limited model is then trained using the
previously described training set, approximately 34 points per location.

For the second model, we apply a GP to each cluster shown in Figure 3. The cluster model uses a
similar kernel design:

D
kSTAT = kPer (xt) : kMatSZ (xt) + kMat327ARD (xlat,lon) + Z kMat32 (xother spatial) 5 (6)
d=1
where the subscript ‘STAT’ refers to the stationarity of the kernel, kygai32-ArDp is the Matérn 3/2 kernel with
automatic relevance determination (MacKay, 1996), Xy 1on are the latitude and longitude inputs, and
Xother spatial are the other inputs, excluding time, latitude, and longitude, but including other spatial
variables such as elevation or slope. These inputs are again chosen through greedy feature selection
(Appendix B).
Finally, GPs are fit to the entire UIB. Two whole-basin models are applied. One model is defined using
the stationary kernel from Equation 6. The other model uses a non-stationary kernel with the Gibbs
function described in Equation 3 for the spatial inputs Xi,(jon. The non-stationary kernel is defined as

D

kNONSTAT = kper (X1) - Kntatz2 (41) + Kibbs (¥lation) + Y _ KMat2-ARD (Xother spatal ) - 7
=1

4. Results

4.1. Single-location model

The single-location model is created by training a GP at each gridpoint. Following the results shown in
Figure B1, the inputs from Table 1 for this model are time, total column water vapour, 2 m dew point
temperature, UIB-averaged 2 m temperature, and the first EOF components of the geopotential at 200 and
500 hPa over the UIB. The outcome of the selection is consistent with features that have a high linear
correlation with precipitation. Although large-scale circulation is known to influence precipitation, this
link is not established for many of the single-location models during the feature selection process.

For the full single-location model, the GPs have an average predictive skill of R*> = 0.50,
RMSE=0.71mmd ! and MLL = 0.87 for the test set as shown in Table 2. The performance of the full
model with respect to location, evaluated on all data between 2005 and 2019 is plotted in Figure 4. The
southeast UIB presents the best R* scores. In these cases, the GPs faithfully predict most precipitation
values but sometimes struggle to match the monsoon highs. Several GPs in the centre and west of the basin
capture precipitation patterns with less accuracy. These regions roughly correspond to the boundaries
between the clusters shown in Figure 3. In these more difficult cases, the GPs increase their uncertainty
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Table 2. Performance of the single-location(SLM), cluster (Khyber, Gilgit, Ngari), and whole-basin
models (WBM). The RMSE is given in mmd ™"

Training Validation Test

R?> RMSE MLL R? RMSE MLL R? RMSE MLL

SLM (full) 0.88 035 —0.75 0.50  0.70 0.86 0.50  0.71 0.87
SLM (data lim.) 099  0.03 —4.69 —-033 1.20 453 —-0.29 1.15 2.46
Khyber 0.91 0.84 0.26 0.49 1.82 1.03 049  2.05 1.05
Gilgit 0.82  0.61 0.51 0.36 1.14 1.16 0.33 1.13 1.16
Ngari 0.76 045 0.56 0.58  0.66 0.95 0.58  0.64 0.93
Area weighted avg.  0.80  0.55 0.51 049  0.96 1.03 048 097 1.02
WBM stat. 0.74  0.92 0.63 0.51 1.21 0.91 0.49 1.25 0.92
WBM non-stat. 0.75 0.91 1.94 0.29 1.46 1.80 0.27 1.50 1.67
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Figure 4. Test R* (lefi), RMSE (centre), and MLL (right) for the full single-location model across the UIB
evaluated on all precipitation data between 2005 and 2019.

bounds accordingly, indicated by a higher MLL. The RMSE values scale with the average annual
precipitation (Figure 2). Spatial differences in R> scores could suggest that one or more important
variables are missing. The differences could also point to an inappropriate kernel design, such as
constraining the precipitation to follow a periodic pattern. The data-limited model yields predictive skill
of R?= — 0.29, RMSE=1.15mmd "' and MLL = 2.46 over the 15-year horizon (Table 2). However,
including information from neighbouring locations and tailoring the input features improves perform-
ance, as shown with the cluster model in the next section.

4.2. Cluster model

Next, GPs are trained on the precipitation clusters. Input features are selected for each precipitation regime
in Figure B2. For the cluster models, 2 m dew point temperature is favoured over total column water
vapour for most of the basin in terms of local climatic variables. The cluster models are also able to better
leverage relationships between precipitation and large-scale features. The predictive skill of the models is
also minimally improved (and even occasionally worsened) when including orographic features such as
slope, elevation, or the angle of the sub-grid orography, despite their well-established influence on
precipitation (Houze, 2012; Dahri et al., 2016; Wolvin et al., 2024).

The features’ contributed variance is then compared in Table C1. The 2 m dew point temperature is a
strong predictor for all precipitation regimes, in particular for Ngari model. The total column water vapour
and the E1 Nino 3.4 index contribute strongly to the Khyber model, whereas orography is more important
for the Gilgit model. Large-scale features generally contribute more to the Gilgit and Khyber regimes.

https://doi.org/10.1017/eds.2025.10020 Published online by Cambridge University Press


https://doi.org/10.1017/eds.2025.10020

Environmental Data Science e46-9

These results are consistent with known precipitation drivers for the UIB. The Khyber cluster is located at
a lower altitude but is more exposed to frontal systems driven by large-scale circulation patterns. On the
other hand the Ngari cluster is more sheltered and mainly receives precipitation from the ISM. The Gilgit
cluster sits between the two and is characterized by the largest elevation gradients (Wolvin et al., 2024).

In this setting, the cluster model benefits from far less data than the full single-location model, but
is still able to infer information about the distribution of precipitation. Using an area weighted
average for this model, Table 2 shows R? = 0.49, RMSE=0.96mmd™! and MLL = 1.03 for the test
set. The uncertainty calibration for the cluster model therefore improves on the full single-location
model. However, the GP distribution medians generally underestimate high precipitation values at
both training and test time.

4.3. Whole-basin models

GPs with stationary and non-stationary kernels are then applied to the whole basin. Following the results
from Figure B3, the stationary model is trained with time, latitude, longitude, 2 m dew point temperature,
UlB-averaged 2 m temperature, the first EOF components of the geopotential at 500 and 850 hPa over the
UIB, the averaged first EOF component of the geopotential at 200 hPa over the Bay of Bengal and the
averaged first and second EOF components of the geopotential at 500 hPa east of the Caspian Sea. These
results are consistent with the trends observed in the previous section, with the stationary whole-basin
model selecting the most important features from the cluster models.

For the stationary model, the 2 m dew point temperature and the UIB-averaged 2 m temperature
contribute the most to the prediction of precipitation (Table C1). The same features are also used to train
the non-stationary GP. The learnt lengthscales for latitude and longitude are presented in Figure 5. The
optimized lengthscale values match the annual distribution of precipitation shown in Figure 2 with on
average longer lengthscales for longitude and shorter lengthscales for latitude.

The whole-basin model with a stationary kernel has a similar R? (0.49), a worse RMSE (1.25mmd ")
but a better MLL (0.91) compared to the cluster model (Table 2). On the other hand, the non-stationary
model struggles to generalize as well to new times. This more flexible model yields large predictive
variances and thus MLL scores, including at training time. This behaviour suggests that this kernel
design is not appropriate and may be more suitable for low-dimensional interpolation tasks such as
downscaling. More data or simpler lengthscale functions could also improve model accuracy and
uncertainty calibration.

5. Discussion

In this paper, we have shown that GPs can generate uncertainty-aware predictions of precipitation with
moderate skill. With further analysis, the stochastic nature of these models can help us better capture the
climate change signal in the means, extremes, and seasonal cycles. By producing interpretable outputs
similar to a perturbed-physics ensemble for a single RCM, GPs set themselves apart from other traditional
downscaling and bias-correction methods.

Longitude lengthscales Latitude lengthscales Lengthscale magnitudes
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Figure 5. Learnt non-stationary kernel lengthscales over the UIB for longitude, latitude and their
magnitude.
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However, this study suffers from three main limitations. First, the application of the cluster and whole-
basin models is restricted by the scalability of GPs. For these models, 6% of the training data is used for
training. This amount of data requires 60 GB of RAM to train the stationary whole-basin model, which is
generally not possible without a high-memory GPU (e.g., NVIDIA A100 or V100 with 80 GB HBM2
memory) to load and optimize the covariance matrix. On a single Intel Xeon Gold 5317 CPU, training the
model would take 62 hours. Therefore, methods to select representative data samples (Liu et al., 2004) and
scale GPs such as products of experts, low-rank approximations, and inducing points (Liu et al., 2020;
Tazi et al., 2023) will need to be implemented to keep future inference and hyperparameter learning
tractable. Moving to even larger sets (>10° data points) would require probabilistic deep learning, such as
neural processes (Vaughan et al., 2022; Andersson et al., 2023) or hybrid deep learning-GP approaches
(Putra et al., 2022; Sun et al., 2022).

Second, our knowledge of past precipitation in the UIB is incomplete. The limited in situ
observations make capturing the true underlying distribution of precipitation and evaluating models
challenging. Accessibility and harsh weather conditions mean that most precipitation gauges are
placed in relatively low-altitude locations (Dahri et al., 2016). Alternatives, such as remote sensing,
exist, but these tools alone cannot determine precipitation at a fine enough spatiotemporal scale to
resolve its distribution accurately (Yin et al., 2008; Andermann et al., 2011; Meng et al., 2014; Shukla
etal., 2019).

Third, most features, including large-scale circulation fields and indices, do not provide clear enough
signals to improve the GP predictions. This behaviour is due to the features being heavily cross-
correlated: only a few variables are needed for efficient inference. Principal component analysis could
be a useful tool to improve feature selection, model skill, and the GP’s numerical stability during
inference, but at the expense of losing model interpretability. There is also growing evidence that long-
distance atmospheric interactions, including those studied in this paper, are prone to analytical artefacts
and are not as strong or simple climate predictors as once thought (Runge et al., 2014; McGraw and
Barnes, 2018).

The studied temporal resolution and timescales could also limit the establishment of correlations
between precipitation and these large-scale variables, and thus model accuracy. Previous work has
shown that correlations with atmospheric oscillations are highly seasonal and sometimes predictive up
to a year in advance (Umirbekov et al., 2022). Building more seasonal structure into the covariance
function could therefore improve the viability of using large-scale features. Furthermore, weekly or
daily fluctuations in the ISM and WDs cannot be resolved on a monthly scale. Including these
fluctuations could allow the model to capture intra-seasonal variability crucial to predicting extreme
precipitation events in the UIB. Future work could also investigate meteorological conditions during
these extreme events in more depth and test more climate variables, such as large-scale humidity at
different pressure levels.

Going forward, the GP models could also be refined by explicitly incorporating physics linked to
precipitation over the UIB. Multiple GPs could be trained to learn the relationships between different
variables, e.g., temperature and elevation. The outputs of these models could then be used to predict
precipitation. For this purpose, a setup similar to the GP auto-regressive (GPAR) framework by Requeima
et al. (2019) could be considered. More faithful results could also be achieved by incorporating training
data from other sources, such as remote sensing or in situ precipitation gauges using multi-fidelity GPs
(Tazi et al., 2024).

Additionally, a better scoring function could be used for the feature selection experiments. The MLL is
calculated in the warped precipitation space and likely underestimates the loss for large precipitation
values. This score also does not penalize for model complexity, which could lead to overly complicated
models with too many features. Future model outputs could also be assessed with respect to long-term
variability to better reflect their sensitivity to climate change.

Finally, the eventual aim of this work is to generate local precipitation predictions from GCM outputs.
To achieve this goal, a GP model could be re-trained on coarsened ERAS input data and make predictions
from GCM projections. This procedure should be straightforward, as the ensemble members of the
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Coupled Model Intercomparison Project (CMIP) report all the variables needed to derive the input
features presented in this paper (Eyring et al., 2016; Hersbach et al., 2020). The results of this process
could enable more accurate predictions of local precipitation distributions over the UIB.

6. Conclusion

This paper has demonstrated that it is possible to predict certain aspects of precipitation over complex
orography using variables that are better represented by GCMs, including large-scale circulation
fields. With only 6% of the available data for the training period, the whole-basin model with a
stationary covariance function is able to predict monthly precipitation with an average R* of 0.49, an
RMSE of 1.25mmd ™" and an MLL 0f 0.92. The 2 m dew point temperature and the UIB-averaged 2 m
temperature were identified as the most predictive features for precipitation. Using a cluster basin
model with more tailored input features produces a smaller RMSE (0.97mmd™") but a higher MLL
(1.02). These results improve on the data-limited single-location model, but not the full single-location
model (RMSE = 0.50, RMSE=0.71mmd ™!, MLL = 0.87). The stationary whole-basin model also
improves on the non-stationary whole-basin model in this data-sparse setting. The non-stationary
model could therefore be more suitable for better-sampled or interpolative tasks. In summary, these
experiments highlight the trade-offs between learning spatial covariance, incorporating domain
knowledge, and increasing computational complexity with GPs. More importantly, this work paves
the way for more accurate precipitation predictions with uncertainty distributions and, in turn, more
sustainable climate adaptation at a local level.
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A. Metric definitions

A.1. Root mean square error

The root mean square error (RMSE) represents the typical distance of the model from the data. For multiple input—output pairs
{X,Y}, the RMSE is given by:

RMSE=1/((¥ —f)*) ®)

where f is the set of predicted values at X. We use (-) here and in the following definitions as a shorthand for the average over the N
data points. The RMSE is more sensitive to outliers and systematic errors than the mean absolute error or bias.

A.2. Coefficient of determination
The coefficient of determination or R? represents the fraction of the data’s variance explained by the model. It is given by:

N 2
Rzzl_%zl_ 2 i =f) ©

S N (= (1))

where SS,, is the sum of the squared residuals and SSy the total sum of squares. An R? of 1 indicates a perfect fit, while a negative R
means the model performs worse than the mean.
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A.3. Mean log loss

The mean log loss (MLL) can be interpreted as measure of uncertainty calibration for probabilistic models. Using the predictive
distribution at the test inputs X, the probability of the target data ¥ given the model ., p(¥|.#), can be calculated. The log loss is
given by taking the negative logarithm of this probability (Rasmussen and Williams, 2005). Taking the mean over all inputs gives the
MLL:

(Y —p)’

1
MLL= — (logp(Y|4))= <§ log(27m'2) + 752

) 10)
where ¢ and g are the predicted means and variance at the inputs X using the model .Z. Smaller values imply more skill. The MLL is
applied to the warped GP predictions.

B. Feature selection experiments

The models input features are selected via the MLL on the validation set. Figures B1, B2, and B3 show the results of greedy feature
selection experiments for the single-location, cluster, and stationary whole-basin models trained on the first 5000 points from the
training set. Under the assumption that we would like the models to be consistent in time and space, the covariance function are
initialized with time for the single-location model and time, latitude and longitude for the cluster and whole-basin models.

Feature rank for the feature selection experiments is established through recursive feature elimination using a random forest
ensemble. The recursive feature elimination shows total column water vapour and 2 m dew point temperature to be most important
when predicting precipitation. Of the climate indices, the NAO index is most closely linked to precipitation. The first components of
the empirical orthogonal functions (EOFs) of the geopotentials over the UIB are the most predictive of the geopotential field
variables. The other atmospheric fields are found be to less connected to precipitation than local input features such as slope or
elevation. Time-lagged atmospheric indices and large-scale features were also investigated (not shown), but presented no additional
correlation with precipitation.
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Figure B1. Model MLL as a function of selected input features for the single-location GPs. The plot
illustrates the greedy feature selection process, where the best previous kernel design is used to test the
next most likely feature. Negative changes imply the feature improves model predictive skill. Features
associated with positive changes decrease model predictive skill and are not included in subsequent
covariance functions.
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Figure B2. As Figure Bl for the cluster GPs. Although EOF500C2 reduces the validation MLL of the
Ngari GP, we exclude this feature in the final model as it sets the variance of previously selected features to

be very low.
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Figure B3. As Figure Bl for the stationary whole-basin GP.
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C. Feature variance contribution

Table C1 details the contributed variance of the input features for the cluster and whole-basin models.

Table C1. Feature variance contribution for the cluster (Khyber, Gilgit, Ngari) and stationary whole-
basin (UIB) models. The variances are normalized with respect to the training set distribution, with
higher values representing larger contributions towards predicting precipitation. Empty entries
correspond to features that were not chosen during the feature selection experiments

Feature Khyber Gilgit Ngari UIB
time 0.52 0.60 0.39 0.35
lat, lon 2.00 0.12 0.19 0.31
tcwv 30.4 - - -
slor 0.01 - 0.04 -
d2m 15.4 22.6 4.23 5.99
z - 8.79 - -
EOF200U1 1.95 - 0.07 -
2m 0.01 17.8 2.14 1.90
EOF850U1 0.01 1073 0.04 0.21
EOF500U1 1.53 0.07 0.02 0.07
EOF500B2 - 1.84 - -
EOF200B1 - 0.04 1073 1073
anor - 5.49 - -
NAO - - 1073 -
N34 2.62 0.05 0.03 0.02
EOF850U2 - - 0.14 -
EOF500B1 0.32 0.01 - -
EOF500C1 0.15 0.01 0.12 0.14
EOF500C2 - - - 0.15
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