To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Finite Cartesian products of operators play a central role in monotone operator theory and its applications. Extending such products to arbitrary families of operators acting on different Hilbert spaces is an open problem, which we address by introducing the Hilbert direct integral of a family of monotone operators. The properties of this construct are studied, and conditions under which the direct integral inherits the properties of the factor operators are provided. The question of determining whether the Hilbert direct integral of a family of subdifferentials of convex functions is itself a subdifferential leads us to introducing the Hilbert direct integral of a family of functions. We establish explicit expressions for evaluating the Legendre conjugate, subdifferential, recession function, Moreau envelope, and proximity operator of such integrals. Next, we propose a duality framework for monotone inclusion problems involving integrals of linearly composed monotone operators and show its pertinence toward the development of numerical solution methods. Applications to inclusion and variational problems are discussed.
Calculation of loss scenarios is a fundamental requirement of simulation-based capital models and these are commonly approximated. Within a life insurance setting, a loss scenario may involve an asset-liability optimization. When cashflows and asset values are dependent on only a small number of risk factor components, low-dimensional approximations may be used as inputs into the optimization and resulting in loss approximation. By considering these loss approximations as perturbations of linear optimization problems, approximation errors in loss scenarios can be bounded to first order and attributed to specific proxies. This attribution creates a mechanism for approximation improvements and for the eventual elimination of approximation errors in capital estimates through targeted exact computation. The results are demonstrated through a stylized worked example and corresponding numerical study. Advances in error analysis of proxy models enhance confidence in capital estimates. Beyond error analysis, the presented methods can be applied to general sensitivity analysis and the calculation of risk.
Metric regularity theory lies at the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and set-valued mappings naturally appear. The roots of the theory go back to such fundamental results of the classical analysis as the implicit function theorem, Sard theorem and some others. This paper offers a survey of the state of the art of some principal parts of the theory along with a variety of its applications in analysis and optimization.
We apply conjugate duality to establish the existence of optimal portfolios in an asset-allocation problem, with the goal of minimizing the variance of the final wealth which results from trading over a fixed, finite horizon in a continuous-time, complete market, subject to the constraints that the expected final wealth equal a specified target value and the portfolio of the investor (defined by the dollar amount invested in each stock) take values in a given closed, convex set. The asset prices are modelled by Itô processes, for which the market parameters are random processes adapted to the information filtration available to the investor. We synthesize a dual optimization problem and establish a set of optimality relations, similar to the Euler-Lagrange and transversality relations of calculus of variations, giving necessary and sufficient conditions for the given optimization problem and its dual to each have a solution, with zero duality gap. We then solve these relations, to establish the existence of an optimal portfolio.
This paper concerns constrained dynamic optimization problemsgoverned by delay control systems whose dynamic constraints are described by bothdelay-differential inclusions and linear algebraic equations. This is a new class ofoptimal control systems that, on one hand, may be treated as a specific type ofvariational problems for neutral functional-differential inclusions while, on the otherhand, is related to a special class of differential-algebraic systems with a generaldelay-differential inclusion and a linear constraint link between “slow” and “fast”variables. We pursue a twofold goal: to study variational stability for this class ofcontrol systems with respect to discrete approximations and to derive necessaryoptimality conditions for both delayed differential-algebraic systems under considerationand their finite-difference counterparts using modern tools of variational analysis andgeneralized differentiation. The authors are not familiar with any results in thesedirections for such systems even in the delay-free case. In the first part of the paperwe establish the value convergence of discrete approximations as well as the strongconvergence of optimal arcs in the classical Sobolev space W-1,2. Then using discreteapproximations as a vehicle, we derive necessary optimality conditions for the initialcontinuous-time systems in both Euler-Lagrange and Hamiltonian forms via basicgeneralized differential constructions of variational analysis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.