To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the mechanisms of major depressive disorder (MDD) improvement is a key challenge to determining effective personalized treatments.
Methods
To identify a data-driven pattern of clinical improvement in MDD and to quantify neural-to-symptom relationships according to antidepressant treatment, we performed a secondary analysis of the publicly available dataset EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care). In EMBARC, participants with MDD were treated either by sertraline or placebo for 8 weeks (Stage 1), and then switched to bupropion according to clinical response (Stage 2). We computed a univariate measure of clinical improvement through a principal component (PC) analysis on the variations of individual items of four clinical scales measuring depression, anxiety, suicidal ideas, and manic-like symptoms. We then investigated how initial clinical and neural factors predicted this measure during Stage 1 by running a linear model for each brain parcel’s resting-state global brain connectivity (GBC) with individual improvement scores during Stage 1.
Results
The first PC (PC1) was similar across treatment groups at stages 1 and 2, suggesting a shared pattern of symptom improvement. PC1 patients’ scores significantly differed according to treatment, whereas no difference in response was evidenced between groups with the Clinical Global Impressions Scale. Baseline GBC correlated with Stage 1 PC1 scores in the sertraline but not in the placebo group.
Using data-driven reduction of symptom scales, we identified a common profile of symptom improvement with distinct intensity between sertraline and placebo.
Conclusions
Mapping from data-driven symptom improvement onto neural circuits revealed treatment-responsive neural profiles that may aid in optimal patient selection for future trials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.