To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study presents a series of new radiocarbon dates and the first stable carbon and nitrogen isotope measurements of C3 cereal grains from Roman Iron Age (1–400 AD) archaeobotanical assemblages in Lithuania, southeastern Baltic region. These data are complemented by stable isotope measurements of faunal remains to assess local environmental conditions and evaluate human impact on the landscape through agricultural practices. The δ15N and δ13C values indicate that agriculture during this period relied heavily on intensive manuring and cultivation in open, well-irrigated landscapes. The results also reveal diverse cultivation strategies across sites, with isotopic differences between rye and barley suggesting the possible use of an infield–outfield cultivation system. Radiocarbon dates indicate that these agricultural innovations may have started as early as the 1st to mid-2nd century AD with the introduction of rye, however the evidence points to a gradual and uneven adoption rather than a rapid uniform shift.
Distinguishing early domesticates from their wild progenitors presents a significant obstacle for understanding human-mediated effects in the past. The origin of dogs is particularly controversial because potential early dog remains often lack corroborating evidence that can provide secure links between proposed dog remains and human activity. The Tumat Puppies, two permafrost-preserved Late Pleistocene canids, have been hypothesized to have been littermates and early domesticates due to a physical association with putatively butchered mammoth bones. Through a combination of osteometry, stable isotope analysis, plant macrofossil analysis, and genomic and metagenomic analyses, this study exploits the unique properties of the naturally mummified Tumat Puppies to examine their familial relationship and to determine whether dietary information links them to human activities. The multifaceted analysis reveals that the 14,965–14,046 cal yr BP Tumat Puppies were littermates who inhabited a dry and relatively mild environment with heterogeneous vegetation and consumed a diverse diet, including woolly rhinoceros in their final days. However, because there is no evidence of mammoth consumption, these data do not establish a link between the canids and ancient humans.
Bear baiting was a popular form of entertainment in Shakespearean England that was staged across the country but formalised in the Early Modern entertainment hub on Bankside, London. Here, the authors bring together zooarchaeological, stable isotope and archival evidence in the examination of faunal assemblages from nine archaeological sites on Bankside to elucidate characteristics indicative of bear baiting. In doing so, they present criteria for identifying bear-baiting assemblages in the archaeological record of England and beyond, even in the absence of associated documentary evidence.
Small, disc-shaped shell beads are recorded as mortuary offerings in many Neolithic and Bronze Age burials in Southeast Asia. Yet the provenance of these artefacts is often obscure, as production processes involve the removal of diagnostic morphological features, negating taxonomic classification. Here, the authors report on the combined isotopic and morphological analysis of a subset of shell beads from the site of Ban Non Wat in north-east Thailand. In addition to identifying freshwater sources for nearly all the beads, the results suggest the presence of multiple shell production centres—each with access to distinct aqueous environments—and widespread exchange in the Bronze Age.
Individual trophic specialization (ITS) refers to the trophic diversification amongst individuals within a population. The gentoo penguin (Pygoscelis papua) is considered a trophic generalist at the population level, but little is known about its individual trophic differentiation. We assessed the degree of ITS at one of its main breeding colonies: Ardley Island, South Shetland Islands. We used skin from 19 dead individuals to determine species and sex by molecular methods and a nail for stable isotope analysis of δ15N and δ13C. Isotopic niche metrics and ITS were estimated for the population and for each sex. We found a moderately high degree of ITS associated with the trophic position of the resources consumed (δ15N) for the population and both sexes, as well as a moderate degree of ITS in the foraging habitat (δ13C) for the population and females. Females showed a higher exclusive niche area, suggesting that they use resources and foraging areas that males do not, probably related to reproductive energy demands. Given the high population density of this species, ITS could function as a mechanism to decrease intraspecific competition. This combination of genetic and isotopic tools allowed us to provide relevant information on the trophic ecology of the gentoo penguin without manipulating animals or using invasive methods.
Thin section, XRD, SEM, and isotopic techniques have been used to study authigenic kaolinite occurring in reservoir sandstones of the Lower Permian Aldebaran Sandstone. Where the unit is no longer an active aquifer, kaolinite is an intermediate-stage phase, and is highly depleted in deuterium (δDSMOW = −115 to −99‰) and 18O (δ18OSMOW = +7.8 to +8.9‰), indicating that precipitation must have been from meteoric water. Deep penetration of this water is linked to Late Triassic deformation and uplift of the Denison Trough sequence, an event which led to exposure of the Aldebaran Sandstone by the Early Jurassic prior to its re-burial beneath Jurassic and Cretaceous sedimentary rocks. The same water was probably involved in the creation of secondary porosity in the interval.
Where the Aldebaran Sandstone is presently undergoing meteoric flushing, kaolinite is relatively enriched in deuterium (δDSMOW = −104 to −93‰) and 18O (δ18OSMOW = +11.7 to +14.6‰), reflecting precipitation largely from post-Mesozoic meteoric water which was isotopically heavier than the Mesozoic water involved in intermediate-stage kaolinite precipitation. This temporal shift in meteoric water isotopic composition is related to the northward drift of the Australian continent to lower latitudes since the Mesozoic Era.
Exogamous marriage alliances involving royal women played a prominent role in the conversion of the Anglo-Saxon kingdoms to Christianity in the seventh century AD. Yet the large number of well-furnished female burials from this period suggests a broader change in the role of women. The authors present the results of isotopic analysis of seventh-century burials, comparing male and female mobility and the mobility of females from well-furnished versus poorly/unfurnished burials. Results suggest increased mobility during the Conversion Period that is, paradoxically, most noticeable among women buried in poorly furnished graves; their well-furnished contemporaries were more likely to have grown up near to their place of burial.
Archaeologists working in eastern North America typically refer to precontact and early postcontact Native American maize-based agriculture as shifting or swidden. Based on a comparison with European agriculture, it is generally posited that the lack of plows, draft animals, and animal manure fertilization resulted in the rapid depletion of soil nitrogen. This required Indigenous farmers to move their fields frequently. In Northern Iroquoia, depletion of soil fertility is frequently cited as one reason why villages were moved to new locations every 20 to 40 years. Recent analysis of δ15N ratios of maize macrobotanical remains from Northern Iroquoia, however, suggests that Iroquoian farmers were able to maintain soil nitrogen in their maize fields. An expanded analysis of maize kernel δ15N ratios from three ancestral Mohawk villages indicates that farmers from those villages maintained soil nitrogen throughout the occupational spans of their villages. It further suggests that precontact Iroquoian agronomy was consistent with contemporary conservation agriculture practices.
The Andes offers a particularly effective focus for an archaeology of mobility because their extreme topography compresses enormous vertical resource diversity across short horizontal distances. In this article, the authors combine findings from two large-scale archaeological studies of adjacent watersheds—the Nasca-Palpa Project and One River Project—to provide the necessary context in which to explore changing mobilities from the Archaic Period to the Inca Empire, and from the Pacific coast to the high Andes. Analyses of obsidian lithics and stable isotopes in human hair are used to argue that changing patterns of mobility offer a new way of defining the ‘Horizons’ that have long dominated concepts of periodisation here.
Studies of ‘food globalisation’ have traced the dispersal of cereals across prehistoric Eurasia. The degree to which these crops were accompanied by knowledge of soil and water preparation is less well known, however. The authors use stable isotope and archaeobotanical analyses to trace long-term trends in cultivation practices on the Loess Plateau (6000 BC–AD 1900). The results indicate that ancient farmers cultivated grains originating in South-west Asia and used distinct strategies for different species. Barley was integrated into pre-existing practices, while wheat was grown using novel soil and water management strategies. These distinct approaches suggest that the spread of prehistoric crops and knowledge about them varied by local context.
How parasites alter host feeding ecology remains elusive in natural populations. A powerful approach to investigate the link between infection and feeding ecology is quantifying unique and shared responses to parasite infection in related host species within a common environment. Here, 9 pairs of sympatric populations of the three-spined and nine-spined stickleback fishes were sampled across a range of freshwater and brackish habitats to investigate how parasites alter host feeding ecology: (i) biotic and abiotic determinants of parasite community composition, and (ii) to what extent parasite infection correlates with trophic niche specialization of the 2 species, using stable isotope analyses (δ15N and δ13C). It was determined that parasite community composition and host parasite load varied among sites and species and were correlated with dissolved oxygen. It was also observed that the digenean Cyathocotyle sp.'s abundance, a common directly infecting parasite with a complex life cycle, correlated with host δ13C in a fish species-specific manner. In 6 sites, correlations were found between parasite abundance and their hosts' feeding ecology. These effects were location-specific and occasionally host species or host size-specific. Overall, the results suggest a relationship between parasite infection and host trophic niche which may be an important and largely overlooked ecological factor. The population specificity and variation in parasite communities also suggest this effect is multifarious and context-dependent.
In a recent issue of American Antiquity, two articles (Gill et al. 2021; Lyons et al. 2021) perpetuate the common misconception that dietary carbohydrates are an essential component of the human diet and that plants—the main source of dietary carbohydrates—must be consumed to promote health. In fact, carbohydrate is a nonessential macronutrient with adequate amounts of energy—the sole function of carbohydrates in the human diet—being produced via gluconeogenesis and ketogenesis in the absence of dietary carbohydrate. Additionally, both articles erroneously employ the term “dietary staple” in reference to geophyte consumption.
Stable isotope analyses demonstrate that C4 plants played an important dietary role in Eurasian prehistory. Uncertainty remains, however, about when and how crops were integrated into the diet of Central Asian populations. Here, the authors present δ13C and δ15N stable isotope analysis of human and animal bone collagen from Kyrgyzstan, revealing C4 plant—likely broomcorn millet—consumption in the third millennium BC. Combining this evidence with AMS radiocarbon dating and animal collagen peptide fingerprinting demonstrates that broomcorn millet was consumed by humans and animals during the earliest episodes of the westward spread of this crop plant. The results contribute to debates about the timing and means by which domesticated millets were dispersed across Eurasia.
People living in Mesoamerica and what is now the eastern and southwestern United States used turkeys (Meleagris gallopavo) as sources of meat, eggs, bones, and feathers. Turkey husbandry and domestication are confirmed in two of these regions (Mesoamerica and the American Southwest), but human-turkey interactions in Eastern North American (eastern United States and Canada) are not fully explored. We apply stable isotope (δ13C, δ15N) and ancient mitochondrial DNA analyses to archaeofaunal samples from seven sites in the southeastern United States to test whether turkeys were managed or captively reared. These combined data do not support prolonged or intensive captive rearing of turkeys, and evidence for less intensive management is ambiguous. More research is warranted to determine whether people managed turkeys in these areas, and whether this is generalizable. Determining whether turkeys were managed or reared in the southeastern United States helps define cultural and environmental factors related to turkey management or husbandry throughout North America. This inquiry contributes to discussion of the roles of intensified human-animal interactions in animal domestication.
Dietary studies can offer insight into the effects of imperial rule on colonised populations. Inka expansion was associated with change in agricultural production and diet, including greater emphasis on maize. This article presents stable isotope analyses of ten individuals from two locations in Antofagasta de la Sierra, Argentina. AMS dating assigns one site to the start of the Inka period and one to the end. Despite diachronic changes in material culture, isotope analyses indicate that maize remained relatively unimportant in local diet. Given the symbolic value of maize in the Inka world, this lack of dietary change suggests limited imperial influence over local agricultural production and diet.
Camelid pastoralism, agriculture, sedentism, surplus production, increasing cultural complexity, and interregional interaction during northern Chile's Late Formative period (AD 100–400) are seen in the flow of goods and people over expanses of desert. Consolidating evidence of material culture from these interactions with a bioarchaeological dimension allows us to provide details about individual lives and patterns in the Late Formative more generally. Here, we integrate a variety of skeletal, chemical, and archaeological data to explore the life and death of a small child (Calate-3N.7). By taking a multiscalar approach, we present a narrative that considers not only the varied materiality that accompanies this child but also what the child's life experience was and how this reflects and shapes our understanding of the Late Formative period in northern Chile. This evidence hints at the profound mobility of their youth. The complex mortuary context reflects numerous interactions and long-distance relationships. Ultimately, the evidence speaks to deep social relations between two coastal groups, the Atacameños and Tarapaqueños. Considering this suite of data, we can see a child whose life was spent moving through desert routes and perhaps also glimpse the construction of intercultural identity in the Formative period.
This article reconstructs the final diet of sacrificed domestic camelids from Huanchaquito-Las Llamas to understand whether feeding was part of the ritual practice. The site is situated on the northern coast of Peru and is dated to the fifteenth century AD (Late Intermediate period; LIP). It was used by the Chimús to kill and bury a large number of camelids, mostly juveniles. We reconstructed the final meal of 11 of the sacrificed individuals by analyzing starch grains derived from the associated gut contents and feces. The starch grains were well preserved and allowed for the determination of five plant taxa. The comparison with previously published and new stable isotope analyses, which provide insights into long-term diet, indicates that the Chimús managed their herds by providing maize as fodder and allowing them to graze on natural pasture; yet they reserved special treatment for sacrificial animals, probably bringing them together a few hours or days before the sacrificial act. We show for the first time the consumption of unusual food products, which included manioc, chili peppers, and beans, as well as cooked foods. Our study provides unique information on Chimú camelid ritual and herding practices.
We present stable isotope and osteological data from human remains at Paloma, Chilca I, La Yerba III, and Morro I that offer new evidence for diet, lifestyle, and habitual mobility in the first villages that proliferated along the arid Pacific coast of South America (ca. 6000 cal BP). The data not only reaffirm the dietary primacy of marine protein for this period but also show evidence at Paloma of direct access interactions between the coast and highlands, as well as habitual mobility in some parts of society. By locating themselves at the confluence of diverse coastal and terrestrial habitats, the inhabitants of these early villages were able to broaden their use of resources through rounds of seasonal mobility, while simultaneously increasing residential sedentism. Yet they paid little substantial health penalty for their settled lifestyles, as reflected in their osteological markers of stature and stress, compared with their agriculturalist successors even up to five millennia later. Contrasting data for the north coast of Chile indicate locally contingent differences. Considering these data in a wider chronological context contributes to understanding how increasing sedentism and population density laid the foundations here for the emergence of Late Preceramic social complexity.
This article discusses the composition of prehispanic diets based on the isotopic composition (δ13C, δ15N) of 10 human samples dated between 3600 and 1300 BP from the Cajón Valley in Northwest Argentina. The sample is the only one available for the time and region considered and covers a 2,300-year range. It shows long-term tendencies in the consumption of food resources during a time when people were experimenting with and eventually domesticating plants and animals in the high-altitude Southern Calchaquíes valleys. Results indicate that animals contributed more to the diet than was expected and plants correspondingly less than expected. This proportion was maintained even during the human occupations associated with the agropastoral villages of Cardonal and Bordo Marcial (ca. 2000 BP) when a greater contribution of plant resources—in particular maize—would be expected. This new evidence demonstrates the diversity of productive strategies used by the societies of Northwest Argentina at the beginning of the Formative period. A variety of resources contributed to daily food intake, minimizing the importance of maize in the diet.
Early Holocene populations in southern China and Southeast Asia are generally considered to have continued practising hunting and gathering, while millet and rice cultivation developed to the north and east. Dingsishan, the oldest Holocene open-air site in South-east Asia, however, had yet to provide direct evidence for human health and subsistence strategies. The authors present isotopic and demographic analyses of Dingsishan individuals from 9000–7000 BP, indicating that the inhabitants relied on freshwater resources, particularly in the third period (c. 7000 BP). Comparison with contemporaneous farming populations also reveals a seemingly higher average life expectancy for the fisher-hunter-gatherers at Dingsishan.