Let
$T$ be a quadratic operator on a complex Hilbert space
$H$ . We show that
$T$ can be written as a product of two positive contractions if and only if
$T$ is of the form
$$aI\,\oplus \,bI\,\oplus \left( \begin{matrix}aI & P\\0 & bI\\ \end{matrix} \right)\,\text{on}\,{{H}_{1}}\,\oplus \,{{H}_{2}}\,\oplus \,\left( {{H}_{3\,}}\,\oplus \,{{H}_{3}} \right)$$
for some
$a,\,b\,\in \,\left[ 0,\,1 \right]$ and strictly positive operator
$P$ with
$\left\| P \right\|\,\le \,\left| \sqrt{a}-\sqrt{b} \right|\sqrt{\left( 1-a \right)\left( 1-b \right)}$ . Also, we give a necessary condition for a bounded linear operator
$T$ with operator matrix
$\left( \begin{matrix} {{T}_{1}} & {{T}_{3}}\\ 0 & {{T}_{2}}\\\end{matrix} \right)$ on
$H\,\oplus \,K$ that can be written as a product of two positive contractions.