To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that for every locally stable and tempered pair potential $\phi$ with bounded range, there exists a unique infinite-volume Gibbs point process on $\mathbb{R}^{d}$ for every activity $\lambda < ({e}^{L} \hat{C}_{\phi})^{-1}$, where L is the local stability constant and $\hat{C}_{\phi} \,:\!=\, \sup_{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}} 1 - {e}^{-\left\lvert \phi(x, y) \right\rvert} \mathrm{d} y$ is the (weak) temperedness constant. Our result extends the uniqueness regime that is given by the classical Ruelle–Penrose bound by a factor of at least ${e}$, where the improvements become larger as the negative parts of the potential become more prominent (i.e. for attractive interactions at low temperature). Our technique is based on the approach of Dyer et al. (2004 Random Structures & Algorithms24, 461–479): We show that for any bounded region and any boundary condition, we can construct a Markov process (in our case spatial birth–death dynamics) that converges rapidly to the finite-volume Gibbs point process while the effects of the boundary condition propagate sufficiently slowly. As a result, we obtain a spatial mixing property that implies uniqueness of the infinite-volume Gibbs measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.