To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Harmonic drives, commonly utilised in space manipulators for high transmission ratios and efficient energy transfer, introduce joint flexibility that leads to issues such as hysteresis, vibration and nonlinear coupling. An adaptive control approach with friction compensation is proposed for flexible joint space manipulators to mitigate joint flexibility and address nonlinear friction issues. According to singular perturbation decoupling, the dynamic system of space manipulators is decomposed into two second-order subsystems with distinct time scales. By introducing the concept of an integral manifold, the two subsystems of fast and slow are refactored into two distinct tracking systems. For the slow subsystem, an adaptive control scheme with friction compensator is designed, employing an enhanced linear parameterisation expression. The friction compensator is designed with a decomposition-based compensation control scheme. Meanwhile, a proportional-derivative (PD) controller is provided for the refactored fast subsystem, which avoids incorporating second-order derivative terms of elastic torques into the proposed controller, thereby enhancing computational efficiency and engineering practicability. Approximate differential filters are utilised to estimate the joint velocities of the links and the differential terms of joint elastic torques, which reduces noise disturbances and improves the robustness of the control system. Notably, a modified compensation scheme is proposed to solve the problem that the conventional singular perturbation method is limited to be utilised in space manipulators with weak joint flexibility. Furthermore, the stability proof of the entire system is conducted according to the Lyapunov stability theorem. Ultimately, simulations and analyses demonstrate that the provided strategy is effective.
In the second part of this series of papers, we address the same evolution problem that was considered in part 1 (see [16]), namely the nonlocal Fisher-KPP equation in one spatial dimension,
\begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*}
where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac {1}{4}-y^2\right )$, except that now we modify this to an associated initial-boundary value problem on the finite spatial interval $[0,a]$ rather than the whole real line. Boundary conditions are required at the end points of the interval, and we address the situations when these are of either Dirichlet or Neumann type. This model is a natural extension of the classical Fisher-KPP model, with the introduction of the simplest possible nonlocal effect into the saturation term. Nonlocal reaction-diffusion models arise naturally in a variety of (frequently biological or ecological) contexts, and as such it is of fundamental interest to examine their properties in detail, and to compare and contrast these with the well known properties of the classical Fisher-KPP model.
We consider the following problem: the drift of the wealth process of two companies, modelled by a two-dimensional Brownian motion, is controllable such that the total drift adds up to a constant. The aim is to maximize the probability that both companies survive. We assume that the volatility of one company is small with respect to the other, and use methods from singular perturbation theory to construct a formal approximation of the value function. Moreover, we validate this formal result by explicitly constructing a strategy that provides a target functional, approximating the value function uniformly on the whole state space.
In this paper we consider the problem of averaging for a class of piecewise deterministic Markov processes (PDMPs) whose dynamic is constrained by the presence of a boundary. On reaching the boundary, the process is forced to jump away from it. We assume that this boundary is attractive for the process in question in the sense that its averaged flow is not tangent to it. Our averaging result relies strongly on the existence of densities for the process, allowing us to study the average number of crossings of a smooth hypersurface by an unconstrained PDMP and to deduce from this study averaging results for constrained PDMPs.
We show that all self-adjoint extensions of semibounded Sturm–Liouville operators with limit-circle endpoint(s) can be obtained via an additive singular form-bounded self-adjoint perturbation of rank equal to the deficiency indices, say $d\in \{1,2\}$. This characterization generalizes the well-known analog for semibounded Sturm–Liouville operators with regular endpoints. Explicitly, every self-adjoint extension of the minimal operator can be written as
where $\boldsymbol {A}_0$ is a distinguished self-adjoint extension and $\Theta $ is a self-adjoint linear relation in $\mathbb {C}^d$. The perturbation is singular in the sense that it does not belong to the underlying Hilbert space but is form-bounded with respect to $\boldsymbol {A}_0$, i.e., it belongs to $\mathcal {H}_{-1}(\boldsymbol {A}_0)$, with possible “infinite coupling.” A boundary triple and compatible boundary pair for the symmetric operator are constructed to ensure that the perturbation is well defined and self-adjoint extensions are in a one-to-one correspondence with self-adjoint relations $\Theta $.
The merging of boundary triples with perturbation theory provides a more holistic view of the operator’s matrix-valued spectral measures: identifying not just the location of the spectrum, but also certain directional information.
As an example, self-adjoint extensions of the classical Jacobi differential equation (which has two limit-circle endpoints) are obtained, and their spectra are analyzed with tools both from the theory of boundary triples and perturbation theory.
We study the pricing of timer options in a class of stochastic volatility models, where the volatility is driven by two diffusions—one fast mean-reverting and the other slowly varying. Employing singular and regular perturbation techniques, full second-order asymptotics of the option price are established. In addition, we investigate an implied volatility in terms of effective maturity for the timer options, and derive its second-order expansion based on our pricing asymptotics. A numerical experiment shows that the price approximation formula has a high level of accuracy, and the implied volatility in terms of its effective maturity is illustrated.
The flexibility of the free-floating flexible space manipulator system’s link and joint may affect the control accuracy and cause vibrations. We studied the dynamics modeling, joint trajectory tracking control, and vibration suppressing problem of free-floating flexible-link and flexible-joints space manipulator system with external interference and uncertain parameter. The system’s dynamic equations are established using linear momentum conservation, angular momentum conservation, assumed mode method, and Lagrange equation. Then, the system’s singular perturbation model is established, and a hybrid control is presented. For the slow subsystem, a robust fuzzy sliding mode control is proposed to realize the joint desired trajectory tracking. For the fast subsystem, a speed difference feedback control and a linear-quadratic optimal control are designed to suppress the vibration caused by the flexible joints and the flexible link separately. The simulation comparison experiments under different conditions are taken. The simulate results demonstrate the proposed hybrid control’s validity.
This paper presents a robust adaptive output feedback tracking controller for the flexible-joint robot manipulators to deal with the unknown upper bounds of parameter uncertainties and external disturbances. With applying the singular perturbation theory and integral manifold concept, the complex nonlinear coupled system of the flexible-joint robot manipulators is divided into a slow subsystem and a fast subsystem. A robust adaptive control scheme based on an improved linear parameterization expression is designed for the slow subsystem, and a saturation function is applied in the robust control term to make the torque output smooth. In the meantime, different from the previous approaches, the second-order derivative term of elastic torque is avoided by using the proposed computed torque method, which simplifies the implementation of the fast control law. Moreover, to carry out the whole control system with only position measurements, an approximate differential filter is involved to generate pseudo velocity signals for links and joint motors. In addition, an explicit but strict stability proof of the control system based on the theory of singularly perturbed systems is presented. Finally, simulation results verify the superior dynamic performance of the proposed controller.
This paper deals with a more general class of singularly perturbed boundary valueproblem for a differential-difference equations with small shifts. Inparticular, the numerical study for the problems where second order derivativeis multiplied by a small parameter ε and the shifts depend on thesmall parameter ε has been considered. The fitted-mesh technique isemployed to generate a piecewise-uniform mesh, condensed in the neighborhood ofthe boundary layer. The cubic B-spline basis functions with fitted-mesh areconsidered in the procedure which yield a tridiagonal system which can besolved efficiently by using any well-known algorithm. The stability andparameter-uniform convergence analysis of the proposed method have beendiscussed. The method has been shown to have almost second-orderparameter-uniform convergence. The effect of small parameters on the boundarylayer has also been discussed. To demonstrate the performance of the proposedscheme, several numerical experiments have been carried out.
We consider the Halfin–Whitt diffusion process Xd(t), which is used, for example, as an approximation to the m-server M/M/m queue. We use recently obtained integral representations for the transient density p(x,t) of this diffusion process, and obtain various asymptotic results for the density. The asymptotic limit assumes that a drift parameter β in the model is large, and the state variable x and the initial condition x0 (with Xd(0) = x0 > 0) are also large. We obtain some alternate representations for the density, which involve sums and/or contour integrals, and expand these using a combination of the saddle point method, Laplace method and singularity analysis. The results give some insight into how steady state is achieved, and how if x0 > 0 the probability mass migrates from Xd(t) > 0 to the range Xd(t) < 0, which is where it concentrates as t → ∞, in the limit we consider. We also discuss an alternate approach to the asymptotics, based on geometrical optics and singular perturbation techniques.
We apply the multiscale basis functions for the singularly perturbed reaction-diffusion problem on adaptively graded meshes, which can provide a good balance between the numerical accuracy and computational cost. The multiscale space is built through standard finite element basis functions enriched with multiscale basis functions. The multiscale basis functions have abilities to capture originally perturbed information in the local problem, as a result our method is capable of reducing the boundary layer errors remarkably on graded meshes, where the layer-adapted meshes are generated by a given parameter. Through numerical experiments we demonstrate that the multiscale method can acquire second order convergence in the L2 norm and first order convergence in the energy norm on graded meshes, which is independent of ɛ. In contrast with the conventional methods, our method is much more accurate and effective.
In this paper we present a first supercloseness analysis for higher-order Galerkin FEM applied to a singularly perturbed convection-diffusion problem. Using a solution decomposition and a special representation of our finite element space, we are able to prove a supercloseness property of p + 1/4 in the energy norm where the polynomial order p ≥ 3 is odd.
We propose two variants of tailored finite point (TFP) methods for discretizing two dimensional singular perturbed eigenvalue (SPE) problems. A continuation method and an iterative method are exploited for solving discretized systems of equations to obtain the eigen-pairs of the SPE. We study the analytical solutions of two special cases of the SPE, and provide an asymptotic analysis for the solutions. The theoretical results are verified in the numerical experiments. The numerical results demonstrate that the proposed schemes effectively resolve the delta function like of the eigenfunctions on relatively coarse grid.
This work is devoted to analyze a numerical scheme for the approximation of the linear heat equation’s controls. It is known that, due to the regularizing effect, the efficient computation of the null controls for parabolic type equations is a difficult problem. A possible cure for the bad numerical behavior of the approximating controls consists of adding a singular perturbation depending on a small parameter ε which transforms the heat equation into a wave equation. A space discretization of step h leads us to a system of ordinary differential equations. The aim of this paper is to show that there exists a sequence of exact controls of the corresponding perturbed semi-discrete systems which converges to a control of the original heat equation when both h (the mesh size) and ε (the perturbation parameter) tend to zero.
In this paper, we study singularly perturbed Filippov systems. More specifically, our main question is to know how the dynamics of Filippov systems is affected by singular perturbations. We extend the Fenichel theory developed in Fenichel (J. Differ. Equ., 1979, Vol. 31, pp. 53–98) to these systems. In addition, the study of non-smooth constrained systems is considered.
We establish some new results about the Γ-limit, with respect to the L1-topology, of two different (but related) phase-field approximations \hbox{$\{\mathcal E_\eps\}_\eps,\,\{\widetilde{\mathcalE}_\eps\}_\eps$} of the so-called Euler’s Elastica Bending Energy for curves in the plane. In particular we characterize the Γ-limit as ε → 0 of ℰε, and show that in general the Γ-limits of ℰε and \hbox{$\widetilde{\mathcal E}_\eps$} do not coincide on indicator functions of sets with non-smooth boundary. More precisely we show that the domain of the Γ-limit of \hbox{$\widetilde{\mathcal E}_\eps$} strictly contains the domain of the Γ-limit of ℰε.
The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation with singular non-linearity is analysed. The partial differential equation is a recently derived variant of a canonical model used in the modelling of micro-electromechanical systems. It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed, revealing that this dead-end point corresponds to a blow-up in the solution's gradient at a point internal to the domain. By employing a novel asymptotic analysis in terms of two small parameters, an accurate characterization of this dead-end point is obtained. An arc length parameterization of the solution curve can be employed to continue solutions beyond the dead-end point; however, all extra solutions are found to be multi-valued. This analysis therefore suggests that the dead-end is a bifurcation point associated with the onset of multi-valued solutions for the system.
We consider quasilinear optimal control problems involving a thick two-level junctionΩε which consists of the junction bodyΩ0 and a large number of thin cylinders with thecross-section of order 𝒪(ε2). The thin cylindersare divided into two levels depending on the geometrical characteristics, the quasilinearboundary conditions and controls given on their lateral surfaces and bases respectively.In addition, the quasilinear boundary conditions depend on parameters ε, α,β and the thin cylinders from each level are ε-periodicallyalternated. Using the Buttazzo–Dal Maso abstract scheme for variational convergence ofconstrained minimization problems, the asymptotic analysis (as ε → 0) ofthese problems are made for different values of α and βand different kinds of controls. We have showed that there are three qualitativelydifferent cases. Application for an optimal control problem involving a thick one-leveljunction with cascade controls is presented as well.
This paper investigates American puts on a dividend-paying underlying whose volatility is a function of both time and underlying asset price. The asymptotic behaviour of the critical price near expiry is deduced by means of singular perturbation methods. It turns out that if the underlying dividend is greater than the risk-free interest rate, the behaviour of the critical price is parabolic, otherwise an extra logarithmic factor appears, which is similar to the constant volatility case. The results of this paper complement numerical approaches used to calculate the option values and the optimal exercise price at times that are not close to expiry.
In this note, we consider a nonlinear diffusion equation with a bistable reaction termarising in population dynamics. Given a rather general initial data, we investigate itsbehavior for small times as the reaction coefficient tends to infinity: we prove ageneration of interface property.