To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we solve an open problem posed by Li [J. Math. Anal. Appl. 310 (2005) 412-423] in connection with the problem of sharing a set by entire functions f and their linear differential polynomials $ L_k[f] $. Furthermore, we study the Fermat-type functional equations of the form $ f^n+g^n=1 $ to find the meromorphic solutions (f, g) which enable us to answer the question of Li completely. This settles the long-standing open problem of Li.
Let ℱ be a family of meromorphic functions defined in D, all of whose zeros have multiplicity at least k+1. Let a and b be distinct finite complex numbers, and let k be a positive integer. If, for each pair of functions f and g in ℱ, f(k) and g(k) share the set S={a,b}, then ℱ is normal in D. The condition that the zeros of functions in ℱ have multiplicity at least k+1 cannot be weakened.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.