Let   $X$  be a separated finite type scheme over a noetherian base ring
 $X$  be a separated finite type scheme over a noetherian base ring   $\mathbb{K}$ . There is a complex
 $\mathbb{K}$ . There is a complex   ${{\hat{C}}^{\cdot }}\left( X \right)$  of topological
 ${{\hat{C}}^{\cdot }}\left( X \right)$  of topological   ${{\mathcal{O}}_{X}}$ -modules, called the complete Hochschild chain complex of
 ${{\mathcal{O}}_{X}}$ -modules, called the complete Hochschild chain complex of   $X$ . To any
 $X$ . To any   ${{\mathcal{O}}_{X}}$ -module
 ${{\mathcal{O}}_{X}}$ -module   $\mathcal{M}$ —not necessarily quasi-coherent—we assign the complex
 $\mathcal{M}$ —not necessarily quasi-coherent—we assign the complex   $Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,\mathcal{M} \right)$  of continuous Hochschild cochains with values in
 $Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,\mathcal{M} \right)$  of continuous Hochschild cochains with values in   $\mathcal{M}$ . Our first main result is that when
 $\mathcal{M}$ . Our first main result is that when   $X$  is smooth over
 $X$  is smooth over   $\mathbb{K}$  there is a functorial isomorphism
 $\mathbb{K}$  there is a functorial isomorphism
   $$Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{C}^{\cdot }}\left( X \right),\,M \right)\,\cong \,\text{R}\,Hom_{{{\mathcal{O}}_{X}}^{2}}^{{}}\,\left( {{\mathcal{O}}_{X}},\,M \right)$$
 $$Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{C}^{\cdot }}\left( X \right),\,M \right)\,\cong \,\text{R}\,Hom_{{{\mathcal{O}}_{X}}^{2}}^{{}}\,\left( {{\mathcal{O}}_{X}},\,M \right)$$  
in the derived category   $\text{D}\left( \text{Mod}\,{{\mathcal{O}}_{{{X}^{2}}}} \right)$ , where
 $\text{D}\left( \text{Mod}\,{{\mathcal{O}}_{{{X}^{2}}}} \right)$ , where   ${{X}^{2}}\,:=\,X\,{{\times }_{\mathbb{K}}}\,X$ .
 ${{X}^{2}}\,:=\,X\,{{\times }_{\mathbb{K}}}\,X$ .
The second main result is that if   $X$  is smooth of relative dimension
 $X$  is smooth of relative dimension   $n$  and
 $n$  and   $n!$  is invertible in
 $n!$  is invertible in   $\mathbb{K}$ , then the standard maps
 $\mathbb{K}$ , then the standard maps   $\text{ }\!\!\pi\!\!\text{ }\,\text{:}\,{{\hat{C}}^{-q}}\left( X \right)\,\to \,\Omega _{X/\mathbb{K}}^{q}$  induce a quasi-isomorphism
 $\text{ }\!\!\pi\!\!\text{ }\,\text{:}\,{{\hat{C}}^{-q}}\left( X \right)\,\to \,\Omega _{X/\mathbb{K}}^{q}$  induce a quasi-isomorphism
   $$Hom_{{{\mathcal{O}}_{X}}}^{{}}\,\left( \underset{q}{\mathop \oplus }\,\,\Omega _{X/\mathbb{K}}^{q}\,\left[ q \right],\,M \right)\,\,\to \,Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,M \right).$$
 $$Hom_{{{\mathcal{O}}_{X}}}^{{}}\,\left( \underset{q}{\mathop \oplus }\,\,\Omega _{X/\mathbb{K}}^{q}\,\left[ q \right],\,M \right)\,\,\to \,Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,M \right).$$  
When   $M\,=\,{{\mathcal{O}}_{X}}$  this is the quasi-isomorphism underlying the Kontsevich Formality Theorem.
 $M\,=\,{{\mathcal{O}}_{X}}$  this is the quasi-isomorphism underlying the Kontsevich Formality Theorem.
Combining the two results above we deduce a decomposition of the global Hochschild cohomology
   $$\text{Ext}_{{{\mathcal{O}}_{{{X}^{2}}}}}^{i}\,\left( {{\mathcal{O}}_{X}}\,,\,M \right)\,\cong \,\underset{q}{\mathop \oplus }\,\,\,{{\text{H}}^{i-q}}\,\left( X,\,\left( \underset{{{\mathcal{O}}_{X}}}{\overset{q}{\mathop \Lambda }}\,\,{{T}_{X/\mathbb{K}}} \right)\,{{\otimes }_{{{\mathcal{O}}_{X}}}}\,M \right),$$
 $$\text{Ext}_{{{\mathcal{O}}_{{{X}^{2}}}}}^{i}\,\left( {{\mathcal{O}}_{X}}\,,\,M \right)\,\cong \,\underset{q}{\mathop \oplus }\,\,\,{{\text{H}}^{i-q}}\,\left( X,\,\left( \underset{{{\mathcal{O}}_{X}}}{\overset{q}{\mathop \Lambda }}\,\,{{T}_{X/\mathbb{K}}} \right)\,{{\otimes }_{{{\mathcal{O}}_{X}}}}\,M \right),$$  
where   ${{T}_{X/\mathbb{K}}}$  is the relative tangent sheaf.
 ${{T}_{X/\mathbb{K}}}$  is the relative tangent sheaf.