To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X be the sum of a diffusion process and a Lévy jump process, and for any integer $n\ge 1$ let $\phi_n$ be a function defined on $\mathbb{R}^2$ and taking values in $\mathbb{R}$, with adequate properties. We study the convergence of functionals of the type
where [x] is the integer part of the real number x and the sequences $(\Delta_n)$ and $(\alpha_n)$ tend to 0 as $n\to +\infty$. We then prove the law of large numbers and establish, in the case where $\frac{\alpha_n}{\sqrt{\Delta_n}}$ converges to a real number in $[0,+\infty)$], a new central limit theorem which generalizes that in the case where X is a continuous Itô’s semimartingale.
The objective of this chapter is to discuss the error propagation through computation from the error contained in the original data. We are not focusing on the measurement errors themselves, although the propagation of computational error is related to measurement errors. We also discuss the variability propagation with given mathematical relationships, or sensitivity of a system to a given parameter, which are all closely related to error propagation.
The reduced basis method is a model reduction technique yielding substantial savings ofcomputational time when a solution to a parametrized equation has to be computed for manyvalues of the parameter. Certification of the approximation is possible by means of ana posteriori error bound. Under appropriate assumptions, this errorbound is computed with an algorithm of complexity independent of the size of the fullproblem. In practice, the evaluation of the error bound can become very sensitive toround-off errors. We propose herein an explanation of this fact. A first remedy has beenproposed in [F. Casenave, Accurate a posteriori error evaluation in thereduced basis method. C. R. Math. Acad. Sci. Paris 350(2012) 539–542.]. Herein, we improve this remedy by proposing a new approximationof the error bound using the empirical interpolation method (EIM). This method achieveshigher levels of accuracy and requires potentially less precomputations than the usualformula. A version of the EIM stabilized with respect to round-off errors is also derived.The method is illustrated on a simple one-dimensional diffusion problem and athree-dimensional acoustic scattering problem solved by a boundary element method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.