To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the end extendibility of models of arithmetic with restricted elementarity. By utilizing the restricted ultrapower construction in the second-order context, for each $n\in \mathbb {N}$ and any countable model of $\mathrm {B}\Sigma _{n+2}$, we construct a proper $\Sigma _{n+2}$-elementary end extension satisfying $\mathrm {B}\Sigma _{n+1}$, which answers a question by Clote positively. We also give a characterization of the countable models of $\mathrm {I}\Sigma _{n+2}$ in terms of their end extendibility, similar to the case of $\mathrm {B}\Sigma _{n+2}$. Along the proof, we introduce a new type of regularity principle in arithmetic called the weak regularity principle, which serves as a bridge between the model’s end extendibility and the amount of induction or collection it satisfies.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.