To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main ideas are introduced in a historical context. Beginning with phase retrieval and ending with neural networks, the reader will get a sense of the book’s broad scope.
The size of the intersection of A and B tells us if we should expect many solutions, or if we should be surprised to find even one. The latter case implies a conspiracy and is the most interesting.
Trapping of the RRR algorithm on nonsolutions can be avoided by modifying the constraint sets and also the metric. This chapter also covers general good practice on the use of RRR.
It is a curious fact that even notoriously difficult computational problems can be expressed in the form of a high-dimensional Venn diagram, where solutions lie in the overlap of a pair of remarkably simple sets, A and B. The simplicity of these sets enables operations called projections that locate the nearest point of A, or B, starting anywhere within the high-dimensional space. This book introduces a novel method for tackling complex problems that exploits projections and the two-set structure, offering an effective alternative to traditional, gradient-based approaches. Beginning with phase retrieval, where A and B address the properties of an image and its Fourier transform, it progresses to more diverse challenges, such as sphere packing, origami design, sudoku and tiling puzzles, data dimension reduction, and neural network training. The text presents a detailed description of this powerful and original approach and is essential reading for physicists and applied mathematicians.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.