Cells of magnetotactic bacteria are used as model systems for studying the magnetic properties of ferrimagnetic nanocrystals. Each individual bacterial strain produces magnetosomes (membrane-bounded magnetic crystals) that have distinct sizes, shapes, crystallographic orientations and spatial arrangements, thereby providing nanoparticle systems whose unique magnetic properties are unmatched by synthetic chemically-produced crystals. Here, we use off-axis electron holography in the transmission electron microscope to study the magnetic properties of isolated and closely-spaced bullet-shaped magnetite (Fe3O4) magnetosomes biomineralized by the following magnetotactic bacterial strains: the cultured Desulfovibrio magneticus RS-1 and the uncultured strains LO-1 and HSMV-1. These bacteria biomineralize magnetite crystals whose crystallographic axes of elongation are parallel to <100> (RS-1 and LO-1) or <110> (HSMV-1). We show that the individual magnetosome crystals are single magnetic domains and measure their projected in-plane magnetization distributions and magnetic dipole moments. We use analytical modelling to assess the interplay between shape anisotropy and the magnetically preferred <111> magneto-crystalline easy axis of magnetite.