To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The hypersonic vehicle surfaces are subjected to intense thermal loads during atmospheric re-entry. Such conditions induce material ablation and structural deformation, potentially causing changes to aerodynamic configuration that critically endanger mission integrity. In this paper, a mathematical model of thermochemical non-equilibrium magnetohydrodynamics (MHD) at low magnetic Reynolds number is introduced to investigate the effects of MHD on the flow field. Variation of the magnetic pole angle (θ), the flow field profiles are quantitatively analysed, including gas component distributions and aerodynamic heating characteristics. Results indicate that the heat flux at the stagnation point initially decreases and then increases with θ increasing, reaching a minimum at θ = 60°. A portion of the heat flux from the blunt position is transferred to the shoulder (α between 30° and 60°). Notably, the shock standoff distance also shows a non-monotonic trend with θ increasing, peaking at θ = 30°, mirroring the effect of θ on the stagnation point heat flux. As θ increases, the component of the Lorentz force along the X-direction gradually increases, with its peak position corresponding to the shock standoff distance. The electrons and nitrogen atoms are primarily concentrated at the blunt nose, while nitric oxide and oxygen atoms are predominantly distributed along the vehicle wall. The dissociation region of the gas is influenced by the shock standoff distance, which increases as the shock standoff distance increases. At θ = 30°, the concentration of oxygen atoms, nitrogen atoms, nitric oxide molecules and electrons on the stagnation point line reaches its maximum. The present study provides a theoretical foundation for the application of MHD thermal protection methods on hypersonic vehicles.
Augmented reality (AR) is a technology designed to display three-dimensional virtual elements in a real environment. This technology could reduce the cognitive load of marine operators by simplifying information interpretation. However, field tests often reveal qualitative reports of inaccurately projected virtual elements. To address this issue, we present a theoretical model to quantify the error between virtual projections and their observed positions. Numerical simulations, using normal random variables, indicate agreement between the predicted model variance and the error’s standard deviation. Furthermore, a real navigation experiment is conducted where observed errors are inferior to corresponding estimates for error bounds, further indicating the model’s adequacy. The proposed model enables real-time error estimation, system performance prediction and the specification of accuracy requirements. Overall, this study aims to contribute to the systematic definition of accuracy standards for AR-based maritime navigational assistance.
Due to the effects of tolerance, design, and manufacturing deviations, there are clearances in the revolute joints of mechanical arms. These clearances can easily lead to system impacts and vibrations, resulting in a decrease in dynamic performance and affecting the trajectory tracking accuracy of the end effector. The existing dynamic models of mechanisms with clearance in revolute joints lack comprehensiveness, universality, and systematicity, and have not addressed the impact of joint reaction forces within clearance revolute joints on the system. The impact collision problem of the revolute joints with clearance was systematically, accurately, and comprehensively modeled and simulated in this study based on multibody dynamics theory. Based on Hertz’s elastic theory, the LuGre friction model, and joint reaction forces, this paper constructs constraint and mechanical models of revolute joints with clearance based on the theory of multibody dynamics. To facilitate multibody dynamics analysis, the collision impact direction matrix is proposed and used for the first time to transform the mechanical model of revolute joints with clearance into external forces. The dynamic models of mobile parallel and double serial manipulators are then constructed. Through numerical simulations on different clearance amounts, tracking trajectories, and load parameters, the impact of revolute joint clearances on system dynamic performance is analyzed. The engineering significance of this research in dynamic analysis of mobile parallel manipulators under imperfect revolute joint conditions is also discussed.
Recent developments of non-traditional machining techniques, like cavitating waterjet machining (CWJM), have gained attention for their simple operation and environment friendliness with zero carbon footprints. Cavitating waterjet machining leverages the erosive power of cavity bubbles combined with a waterjet to machine or modify a workpiece. For effective CWJM, proper positioning of the workpiece is crucial. The implosion of cavity bubbles generates microjets and shock waves, creating high temperatures and pressures for a few microseconds, impacting the workpiece. This study numerically and analytically investigates the cavitation phenomenon and their effects. Numerical simulation employs an implicit finite volume scheme with the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm solving Reynolds-averaged Navier–Stokes equations. It also incorporates a discrete phase model (DPM) to analyse bubble distribution and size. An analytical model calculates the hydrodynamic impact load on the workpiece. The study measures hydrodynamic stress and microjet velocities from bubble implosions, using reverse engineering to assess cavitation impact on ductile materials (aluminium and chromium steel). The result reveals a linear relationship between pit deformation and hydrodynamic impact, with impacts ranging from 200 to 1000 MPa, and microjet velocities between 100 and 800 m s−1. Finally, this work accurately predicts the standoff distance and cavitation intensity in the downstream of flow domain.
Fuel pre-injection in the inlet of a hypersonic engine has been proven to be advantageous in the range of the very high flight Mach numbers. In this paper, a rapid inlet performance analysis model with fuel pre-injection is proposed. The modelling process is divided into two stages. Firstly, the baseline inlet model is provided based on the working principle of the inlet. Then, the newly proposed fuel injection and heat release model is added to the baseline inlet model. Among them, the fuel injection and heat release model is equivalent to increasing the compression angle in the cold state. And in the hot state the effect of the fuel heat release will be considered in addition to the effect of cold state. The research results show as the equivalence ratio increases, the equivalent compression angle also increases, but the two are not in a linear relationship. Based on this pattern of effect, fuel injection can be used to regulate the shock wave position and accurately control the flow rate of the inlet. In addition, by comparing to numerical simulation, it is found that the analysis model can almost reasonably predict the performance of the pre-injection inlet. However, the calculation of drag coefficient has some deviation compared to numerical simulation, which is probably due to the lack of consideration of friction drag and the interaction between the shock wave and boundary layer in the model analysis. Overall, the modelling method proposed in this paper can reflect the effect of fuel injection on inlet performance, which can be used to optimise injection strategy in the future.
Albeit laboratory experiments and numerical simulations have proven themselves successful in enhancing our understanding of long-living large-scale flow structures in horizontally extended Rayleigh–Bénard convection, some discrepancies with respect to their size and induced heat transfer remain. This study traces these discrepancies back to their origins. We start by generating a digital twin of one standard experimental set-up. This twin is subsequently simplified in steps to understand the effect of non-ideal thermal boundary conditions, and the experimental measurement procedure is mimicked using numerical data. Although this allows for explaining the increased observed size of the flow structures in the experiment relative to past numerical simulations, our data suggests that the vertical velocity magnitude has been underestimated in the experiments. A subsequent reassessment of the latter's original data reveals an incorrect calibration model. The reprocessed data show a relative increase in $u_{z}$ of roughly $24\,\%$, resolving the previously observed discrepancies. This digital twin of a laboratory experiment for thermal convection at Rayleigh numbers $Ra = \{ 2, 4, 7 \} \times 10^{5}$, a Prandtl number $Pr = 7.1$ and an aspect ratio $\varGamma = 25$ highlights the role of different thermal boundary conditions as well as a reliable calibration and measurement procedure.
To meet the development needs of aeroengines for high thrust-to-weight ratios and fuel-air ratios, a high temperature rise triple-swirler main combustor was designed with a total fuel-air ratio of 0.037, utilising advanced technologies including staged combustion, multi-point injection and multi-inclined hole cooling. Fluent software was used to conduct numerical simulations under both takeoff and idle conditions, thereby obtaining the distribution characteristics of the velocity and temperature fields within the combustor, as well as the generation of pollutants. The simulation results indicate that under takeoff conditions, the high temperature rise triple-swirler combustor achieves a total pressure loss coefficient of less than 6% and a combustion efficiency exceeding 99%. Under takeoff conditions, the OTDF and RTDF values are 0.144 and 0.0738, respectively. The mole fraction of NOx emissions is 3,700ppm, while the mole fraction of soot emissions is 2.55×10−5ppm. Under idle conditions, the triple-swirler combustor maintains a total pressure loss coefficient of less than 6% and a combustion efficiency greater than 99.9%. The OTDF and RTDF values are 0.131 and 0.0624, respectively. The mole fractions of CO and UHC emissions are both 0×10−32ppm at the calculation limit of Fluent software.
Coffee berry diseases (CBD) pose significant threats to coffee production worldwide, affecting the livelihoods of millions of farmers and the global coffee market. Fractional calculus provides a powerful framework for describing non-local and memory-dependent phenomena, making it suitable for modelling the long-range interactions inherent in CBD spread. This study aims to formulate and analyse fractional order model for CBD transmission dynamics in the sense of Atangana–Baleanu–Caputo. Fixed point theorems were utilised to test the existence and uniqueness of the model’s solutions using fractional order. The basic reproduction number was calculated utilising the next-generation matrix. The model has locally asymptotically stable equilibrium positions (disease-free and endemic). Furthermore, the Lyapunov function was used to conduct a global stability analysis of the equilibrium locations. A numerical simulation of the CBD model was created using the fractional Adam–Bashforth–Moulton approach to validate the analytical findings. Our findings contribute to the development of more accurate predictive models and inform the design of targeted interventions to mitigate the impact of CBD on coffee production systems.
This paper presents the concept of a lifting-wing quadcopter unmanned aerial vehicle (UAV), a vertical take-off and landing vehicle (VTOL) with a rear wing, a canard at its front and four propellers. The aerodynamic surfaces are designed so that their mounting angle can be adjusted and fixed before flight, so its performance in transition flight can be studied for a combination of wing and canard mounting angles. A dynamic model using rigid-body equations of motion is presented, which is used to compute the transition flight trajectory from hover to cruise in horizontal flight. The trim conditions were computed for a range of fixed wing and canard mounting angles to study the effects of these variables on transition trajectory parameters such as required power, body pitch angle and propeller rotation speeds as a function of flight speed. Furthermore, a transition flight control algorithm is presented, which has a cascaded PID controller and a reference scheduler to switch between the proper reference states, controls and control allocation matrix. Finally, the transition control algorithm of the conceptual UAV is numerically simulated. Results show that this configuration can perform a fast and smooth transition from hover to cruise flight using the proposed flight control algorithm, substantially reducing required propulsive power in cruise of up to 64%. The application of the control algorithm made notable a transition manoeuver that consists of negatively inclining the aircraft at a negative pitch angle, initially at high intensity, and as the final cruising speed approaches, the inclination is attenuated until the equilibrium pitch angle is reached. Simultaneously with the negative inclination of the pitch angle, there is a slight drop in altitude, which is quickly resumed as the trajectory develops until the final cruising speed. Lastly, this aircraft configuration can be widely used in applications where performance gains in operations currently carried out by multicopters, which cover large distances and need long flight time, would bring great operational advantages.
In previous research, several computational methods have been proposed to analyse the navigation, transportation safety and collision risks of maritime vessels. The objective of this study is to use Automatic Identification System (AIS) data to assess the collision risk between two vessels before an actual collision occurs. We introduce the concept of an angle interval in the model to enable real-time response to vessel collision risks. When predicting collision risks, we consider factors such as relative distance, relative velocity and phase between the vessels. Lastly, the collision risk is divided into different regions and represented by different colours. The green region represents a low-risk area, the yellow region serves as a cautionary zone and the red region indicates a high-alert zone. If a signal enters the red region, the vessel's control system will automatically intervene and initiate evasive manoeuvres. This reactive mechanism enhances the safety of vessel operations, ensuring the implementation of effective collision avoidance measures.
This study investigates the effect of a transverse magnetic field on high-voltage pulsed discharge in helium at a pressure of 30 Torr. A simple two-dimensional fluid model that describes the high-voltage pulsed discharge in helium in a transverse weak magnetic field (B = 0.4 T) is presented, which uses an empirical relation to account for the magnetic field. The results of using the empirical relation for the effective field agree well with the experimental results. The dynamics of discharge development in the presence of the magnetic field is also investigated. The magnetic field does not significantly affect the gas-discharge development dynamics in helium at a pressure of 30 Torr.
In order to investigate the three-dimensional effects on the flow characteristics of the thin water film for the three-dimensional wings, the numerical simulation of the droplet impingement and film flow on the MS-0317 wing is implemented based on the open-source package OpenFOAM. The simulation focuses on the effects of the angle-of-attack and the angle of sweepback. The movement and impingement of the droplets are calculated using the Lagrangian method, and the film flow is simulated using the thin film assumption and the finite area method. The simulation of the water film flow of the three-dimensional MS-0317 wing shows that there is a spanwise flow of the water film due to the three-dimensional effects. This suggests that more research should be conducted on the warm glaze ice with surface water film of three-dimensional ice accretion on three-dimensional geometries.
Infrared analyses of clay mineral samples are usually performed by transmission techniques. While transmission measurements are easy and inexpensive, the sample preparation plays a critical role in the quality of the data. Alternatively, attenuated total reflection (ATR) provides a powerful and often simpler analysis method. However, the ATR spectra reveal significant differences when compared to transmission spectra sometimes leading to confusion in the interpretations. Indeed, optical effects play a prominent role in the ATR spectral profile and their identification is mandatory for obtaining quantitative information regarding molecular/particle orientation or film thickness. The objective of the present study was to perform exact spectral simulations of montmorillonite films by making use of optical theory, including the determination of the anisotropic optical constants from the experimental reflectance spectra by Kramers-Kronig (KK) transformation. This methodology was used: (1) to choose the appropriate optical conditions for advanced and reliable characterization of clay minerals; (2) to extract quantitative information such as the estimation of the film thickness; and (3) to discriminate optical phenomena (optical interferences) from chemical/structural features of the sample.
A compressible large eddy simulation (LES) is performed to study a pulsed jet actuator that is used to control a turbulent axisymmetric bluff body wake. The actuator is driven at low-frequency ($f = 200$Hz, $S{t_\theta } = 0.029$) and high amplitude (${C_\mu } = 0.034$). The numerical scheme and a suitable boundary condition for the pulsed jet are validated, showing good agreement with experimental results. A comparison of the velocity boundary condition and the moving boundary condition shows that, in the vicinity of the orifice/slot and in the downstream region, the results from these two methods are identical, while the fluid behaviour inside the cavity shows difference. An analysis of the pulsed jet actuator shows that the phase lag of the cavity pressure is determined by the integration of the diaphragm motion and the pulsed jet. The mean total pressure distribution shows that the total pressure loss is concentrated in the vicinity of the slot. Dynamic mode decomposition (DMD) on the pressure field is used to extract coherent structures which oscillate with the same frequency as that of the diaphragm motion. Some small-scale high-frequency structures are also apparent.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: The continuously increasing quantity and quality of seismic waveform data carry the potential to provide images of the Earth’s internal structure with unprecedented detail. Harnessing this rapidly growing wealth of information, however, constitutes a formidable challenge. While the emergence of faster supercomputers helps to accelerate existing algorithms, the daunting scaling properties of seismic inverse problems still demand the development of more efficient solutions. The diversity of seismic inverse problems – in terms of scientific scope, spatial scale, nature of the data, and available resources – precludes the existence of a silver bullet. Instead, efficiency derives from problem adaptation. Within this context, this chapter describes a collection of methods that are smart in the sense of exploiting specific properties of seismic inverse problems, thereby increasing computational efficiency and usable data volumes, sometimes by orders of magnitude. These methods improve different aspects of a seismic inverse problem, for instance, by harnessing data redundancies, adapting numerical simulation meshes to prior knowledge of wavefield geometry, or permitting long-distance moves through model space for Monte Carlo sampling.
A high-load counter-rotating compressor is optimised based on the method of coupling aerodynamic optimisation technology and computational fluid dynamics, and the flow structures in the passage are analysed and evaluated by vorticity dynamics diagnosis. The results show that the aerodynamic performance of optimised compressor are obviously improved at both design point and off-design point. By comparing the distribution characteristics of vorticity dynamics parameters on the blade surface before and after the optimisation, it is found that BVF (boundary vorticity flux) and circumferential vorticity can effectively capture high flow loss regions such as shock waves and secondary flow in the passage. In addition, the BEF (Boundary enstrophy flux) diagnosis method based on the theory of boundary enstrophy flux is developed, which expands the application scenario of the boundary vorticity dynamics diagnosis method. The change of vorticity dynamics parameters shows blade geometric parameters’ influence on the passage’s viscous flow field, which provides a theoretical basis for the aerodynamic optimisation design.
This paper aims to present a vertical take-off and landing unmanned aerial vehicle (VTOL UAV) configuration and numerically simulate its flight transition from hover to cruise and from cruise to hover. It can tilt the canard and wing along with two attached propellers. Additionally, two fixed front propellers are pointing upwards. Multi-body equations of motion are derived for this concept of aircraft, which are used to compute the flight transition trajectory from hover to cruise configuration. Furthermore, a transition control algorithm based on gain scheduling is described, which stabilises the aircraft while it accelerates from hover to cruise, gradually tilting the wing along with its propellers, sequentially switching between equilibrium states, as the stability cost functions thresholds are reached. The transition control algorithm of the conceptual aircraft model is numerically simulated.
The unstart phenomenon of supersonic inlets caused by backpressure is dangerous for aircraft during flights because it severely reduces the air mass flow rate through the engine. We used unsteady numerical simulations to evaluate the unstart and restart characteristics of a two-dimensional supersonic inlet during rapid backpressure changes. The effects of the depressurisation time and depressurisation value on the inlet flow characteristics and restart features are discussed. The results show that the depressurisation time affects the restart procedure when the back pressure drops from the inlet unstart value to the normal working state value. When the depressurisation time decreases, it becomes easier for the inlet to restart. However, the inlet cannot restart if the depressurisation time is too long. When the depressurisation time and value were large enough, a short buzz period occurred before the inlet restarted. Both the time and value of depressurisation affected the restart characteristics.
A local positional system (LPS) is proposed, in which particles are launched at given velocities, and a sensor system measures the trajectory of the particles in the platform frame. These measurements allow us to restore the position and orientation of the platform in the frame of the rotating Earth, without solving navigation equations. When the platform velocity is known and if the platform orientation stays the same, the LPS technique allows a navigational accuracy of 100 $\mu$m per one hour to be achieved. In this case, the LPS technique is insensitive to the type of platform trajectory. If there are also velocimeters installed on the platform, then one can restore the platform velocity and angular rate of the platform rotation with respect to the Earth. Instead of navigational equations, it is necessary to obtain the classical trajectory of a particle in the field of a rotating gravity source. Taking into account the gravity-gradient, Coriolis, and centrifugal forces, the exact expression for this trajectory is derived, which can be widely used in atomic interferometry. A new iterative method for restoring the orientation of the platform without using gyroscopes is developed. The simulation allows us to determine the conditions under which the LPS navigation error per hour is approximately $10$ m.