To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For Maxwell’s equations with nonlinear polarization we prove the existence of time-periodic breather solutions travelling along slab or cylindrical waveguides. The solutions are TE-modes which are localized in one (slab case) or both (cylindrical case) space directions orthogonal to the direction of propagation. We assume a magnetically inactive and electrically nonlinear material law with a linear $\chi^{(1)}$- and a cubic $\chi^{(3)}$-contribution to the polarization. The $\chi^{(1)}$-contribution may be retarded in time or instantaneous whereas the $\chi^{(3)}$-contribution is always assumed to be retarded in time. We consider two different cubic nonlinearities which provide a variational structure under suitable assumptions on the retardation kernels, in particular we require that for time-periodic solutions Maxwell’s equations are invariant under time-inversion. By choosing a sufficiently small propagation speed along the waveguide the second order formulation of the Maxwell system becomes essentially elliptic for the E-field so that solutions can be constructed by the mountain pass theorem. The compactness issues arising in the variational method are overcome by either the cylindrical geometry itself or by extra assumptions on the linear and nonlinear parts of the polarization in case of the slab geometry. Our approach to breather solutions in the presence of time-retardation is systematic in the sense that we look for general conditions on the Fourier-coefficients in time of the retardation kernels. Our main existence result is complemented by concrete examples of coefficient functions and retardation kernels.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.