In this paper the authors consider the weighted estimates for the Calderón commutator defined by \mathcal{C}_{m+1, A}(a_1,\ldots,a_{m};f)(x)={\rm p. v.} \displaystyle\int_{\mathbb{R}}\displaystyle\frac{P_2(A; x, y)\prod\nolimits_{j=1}^m(A_j(x)-A_j(y))}{(x-y)^{m+2}}f(y){\rm d}y,
\mathcal{C}_{m+1, A}(a_1,\ldots,a_{m};f)(x)={\rm p. v.} \displaystyle\int_{\mathbb{R}}\displaystyle\frac{P_2(A; x, y)\prod\nolimits_{j=1}^m(A_j(x)-A_j(y))}{(x-y)^{m+2}}f(y){\rm d}y, $L^{p_1}(\mathbb {R},w_1) \times \cdots \times L^{p_{m+1}}(\mathbb {R},w_{m+1})$ to
$L^{p_1}(\mathbb {R},w_1) \times \cdots \times L^{p_{m+1}}(\mathbb {R},w_{m+1})$ to  $L^{p}(\mathbb {R},\nu _{\vec {\kern 1pt w}})$, with p1, …, pm+1 ∈ (1, ∞), 1/p = 1/p1 + · · · + 1/pm+1, and
$L^{p}(\mathbb {R},\nu _{\vec {\kern 1pt w}})$, with p1, …, pm+1 ∈ (1, ∞), 1/p = 1/p1 + · · · + 1/pm+1, and  $\vec {\kern 1pt w}=(w_1, \ldots , w_{m+1})\in A_{\vec {P}}(\mathbb {R}^{m+1})$. The authors also obtain the weighted weak type endpoint estimates for
$\vec {\kern 1pt w}=(w_1, \ldots , w_{m+1})\in A_{\vec {P}}(\mathbb {R}^{m+1})$. The authors also obtain the weighted weak type endpoint estimates for  $\mathcal {C}_{m+1, A}$.
$\mathcal {C}_{m+1, A}$.