To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Erdős–Simonovits stability theorem is one of the most widely used theorems in extremal graph theory. We obtain an Erdős–Simonovits type stability theorem in multi-partite graphs. Different from the Erdős–Simonovits stability theorem, our stability theorem in multi-partite graphs says that if the number of edges of an $H$-free graph $G$ is close to the extremal graphs for $H$, then $G$ has a well-defined structure but may be far away from the extremal graphs for $H$. As applications, we strengthen a theorem of Bollobás, Erdős, and Straus and solve a conjecture in a stronger form posed by Han and Zhao concerning the maximum number of edges in multi-partite graphs which does not contain vertex-disjoint copies of a clique.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.