To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The article discusses a passage in chapter 49 of the Hippocratic treatise On Regimen. It defends the transmitted text against a conjecture proposed by R. Joly, the author of the Corpus Medicorum Graecorum edition.
Climate change is expected to affect parasitic nematodes and hence possibly parasite–host dynamics and may have far-reaching consequences for animal health, livestock production, and ecosystem functioning. However, there has been no recent overview of current knowledge to identify how studies could contribute to a better understanding of terrestrial parasitic nematodes under changing climates. Here we screened almost 1,400 papers to review 57 experimental studies on the effects of temperature and moisture on hatching, development, survival, and behaviour of the free-living stages of terrestrial parasitic nematodes with a direct life cycle in birds and terrestrial mammals. Two major knowledge gaps are apparent. First, research should study the temperature dependency curves for hatching, development, and survival under various moisture treatments to test the interactive effect of temperature and moisture. Second, we specifically advocate for more studies that investigate how temperature, and its interaction with moisture, affect both vertical and horizontal movement of parasitic nematodes to understand infection risks. Overall, we advocate for more field experiments that test environmental effects on life-history traits and behaviour of parasitic nematodes in their free-living stages under natural and realistic circumstances. We also encourage studies to expand the range of used hosts and parasitic nematodes because 66% of results described in the available studies use sheep and cattle as hosts and 32% involve just three nematode species. This new comprehension brings attention to understudied abiotic impacts on terrestrial parasitic nematodes and will have broader implications for livestock management, wildlife conservation, and ecosystem functioning in a rapidly warming climate.
Wet winter conditions can create animal welfare issues in feedlots if the pen surface becomes a deep, wet, penetrable substrate. Feedlot pens with a clay and gravel base (N = 30) bedded with 150 mm (W15) and 300 mm (W30) depth of woodchips were compared to a control treatment with no bedding over a 109-day feeding period, while irrigated to supplement natural rainfall. The pad substrate was measured for variables which would affect cattle comfort and value of the substrate for composting. The penetrable depth of control pens was higher than both woodchip-bedded treatments from week 2, and increased until the end of the experiment. Meanwhile these scores were steady for W30 throughout the experiment, and increased for W15 only after week 10. Moisture content of the pad was higher throughout the experiment in the control pens than in the woodchip-bedded pens. In the control pens, the force required to pull a cattle leg analogue out of the pen substrate was three times that required in woodchip-bedded treatments. The W15 treatment increased C : N in the substrate to the upper limit of suitability for composting, and in W30, C : N was too high for composting after a 109-day feeding period. Overall, providing feedlot cattle with 150 or 300 mm of woodchip bedding during a 109-day feeding period improved the condition of the pad substrate for cattle comfort by reducing penetrable depth and moisture content of the substrate surface stratum, but composting value decreased in W30 over this feeding period duration.
The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a univoltine species that undergoes obligatory summer–winter diapause at pupal stage in the soil (2–5 cm) beneath host trees. To study the effects of photoperiod and relative humidity on diapause termination and post-winter developmental duration of R. cerasi, pupae collected from Dossenheim (Germany) were exposed to different photoperiod or relative humidity regimes during a chilling period ranging from 2 to 8.5 months. Specifically, pupae were exposed to four photoperiod regimes: (a) light conditions (24L:00D), (b) dark conditions (00L:24D), (c) short photoperiod (08L:16D) and (d) long photoperiod (16L:08D), as well as to three relative humidity regimes: (a) low (40% RH), (b) medium (60% RH) and (c) high (70–80% RH). Data revealed that relative humidity is not a significant predictor of diapause termination, but it affects the post-winter developmental period. Higher relative humidity promotes post-winter pupae development. On the other hand, photoperiod significantly affected both diapause termination and post-winter development of R. cerasi pupae. Light conditions (24L:00D) accelerate adult emergence, particularly for females. Regardless of the photoperiod (24L:00D, 00L:24D, 08L:16D), rates of adult emergence were high (>75%) for chilling intervals longer than 6.5 months. Nonetheless, exposure to a long day photoperiod (16L:08D), during chilling, dramatically reduced the proportion of adult emergence following 6 months exposure to chilling. Our findings broaden the understanding of factors regulating diapause responses in European cherry fruit fly, local adaptation and synchronization of adult emergence with the ripening period of major hosts.
Popa focuses on the role of the two basic active dunameis, the hot and the cold, in Aristotle, Meteorology IV. There, the dispositional properties of the homoeomers are often defined and explained in virtue of bodies’ reactions to heat and cold: some homogeneous bodies are solidifiable by heat, others by cold. Popa argues that Meteor. IV aims to account for the coming about and persistence of uniform stuffs by appealing to what he calls “thermic equilibrium” (summetria, logos). The main purpose of this chapter is to clarify the ways in which Aristotle puts this notion to work in his study of homogeneous materials (especially in Meteor. IV) and, through this clarification, to contribute to a better understanding of the role played by proper or internal natural heat in his scientific works.
Adding corn silage (CS) instead of alfalfa hay (AH) to the finely ground starter diet would improve calf performance if feed intake or feed efficiency is increased. We investigated the effects of replacing AH with CS in the starter diet on nutrient intake, digestibility, growth performance, rumen fermentation and selected blood metabolites in Holstein calves. Newborn male calves (n = 30; 3 days of age; 40.2 ± 1.28 kg BW) were assigned randomly to three groups receiving starter diets containing chopped AH (10% dry matter (DM) basis; AH diet), CS (10% DM, CS diet) or their combination (each at 5% level; AHCS diet). The starter diets had the same nutrient composition but differed in DM content (91.2%, 87.5% and 83.8% for AH, AHCS and CS, respectively). The calves were weaned on day 50, and the study continued until day 70. Nutrient intake, BW (at weaning and at the end of the study) and body measurements were not affected by the diet. During the post-weaning period, average daily gain tended to be greater on CS than on AH diet. Feed efficiency was greater in CS than in AH or AHCS calves during the post-weaning period. Digestibility of neutral detergent fiber was greater in AHCS and CS compared with AH during the post-weaning period. Concentration and profile of volatile fatty acids and ruminal fluid pH were not affected by the diet. Replacing AH with CS in the starter diet had no effect on feed intake, growth performance and general health of the calves. These results indicate that AH and CS can be used interchangeably in dairy calf starter diets until 70 days of age, allowing dairy producers more choices in selecting the feed ingredients.
Here we report a new find of abundant woody debris and cones in stratum of two sections located to the east of the Qinghai Lake basin in China. Analysis of the anatomical structure of the wood and cones confirmed that they are Picea crassifolia Kom. The results of accelerator mass spectrometry 14C dating indicate that the buried Qinghai spruce grew during 9.7–4.2 ka, and the ages of the large trunks or branches are mainly concentrated within the interval 7.5–6.5 ka. This finding gives direct evidence at the species level about the presence of coniferous forest in the early–middle Holocene in Qinghai lake basin. In addition, the buried cones suggest that the early-middle Holocene environment was suitable for the propagation of Picea crassifolia Kom. The variations in the occurrence of Qinghai spruce forest in the Holocene probably reflect changes in humidity/moisture. The humid early-middle Holocene was suitable for the growth and reproduction of Qinghai spruce forest, while a shift toward an increasingly arid climate during the late Holocene resulted in the disappearance of Picea crassifolia Kom. from the Qinghai Lake basin, although human activities may also have contributed to the environmental change.
The present study was aimed at stimulating the growth and yield of Sri Lankan tea cultivar TRI 2025 grown in different climatic regions in the country. The model was developed and calibrated using weather, crop and soil data collected from different climatic zones. The model is designed to simulate shoot replacement cycle, leaf area of a shoot, shoot growth, dry matter partitioning and tea shoot yield. The model was validated using shoot development and growth data not used for model calibration. These validation data were collected from low, mid and high elevations representing temperature and rainfall gradients in the country. Model calibration showed that thermal time required to initiate the fish leaf, 1st, 2nd and 3rd normal leaf in a tea shoot from the time of natural senescence of the scale leaves were 129, 188, 235, 296 °C days, respectively, and a tea shoot reached the harvestable stage after 393 °C days. The model simulated leaf area (cm2) and fresh weight (g/m2) of tea shoots at different developmental stages and locations which were in good agreement with the measured values at the validation stage (R2 > 0.92 and 0.98, respectively). Similarly, simulated shoot yields (g/m2/month) at the validation stage were strongly correlated with the measured values (n = 12, R2 > 0.58, RMSE = 5–17 g/m2/month). Thus, the model can be used to estimate the shoot yield of tea cultivar TRI 2025 grown in different climatic conditions in Sri Lanka. Areas requiring further improvements to the model are also discussed.
Field experiments were conducted to evaluate placement techniques for preemergence applications of pendimethalin [N-(1-ethylpropyl)-3,4-dimethyl-2,6-dinitrobenzenamine] in grain sorghum [Sorghum bicolor (L.) Moench.]. The first technique consisted of row shields mounted behind the planter units. Shields maintained an untreated strip over the crop drill and allowed successful crop establishment with pendimethalin at 1.1 kg ai/ha, despite a simulated, intense rainfall of 3.8 cm within 24 h after planting. A second technique, which consisted of a special nozzle arrangement, was evaluated in no-till grain sorghum. The nozzle arrangement allowed a broadcast herbicide application but maintained an untreated strip over the crop drill. No stand reductions occurred using this technique at pendimethalin rates of 1.1 and 2.2 kg/ha. In a growth chamber experiment, preemergence applications of pendimethalin severely injured grain sorghum when the soil was wet at the time of emergence, but injury was reduced under hot, dry conditions.
The overall degradation of chlorimuron was very similar at −0.1 and −1.5 MPa and slightly less in air-dry soil. Degradation rates increased with increasing temperature. The primary 14C-labeled compounds observed in moist-soil extracts were desmethyl chlorimuron and saccharin, while the primary 14C-labeled compound observed in air-dry soil extracts was saccharin. Saccharin is formed quantitatively from ethyl 2-(aminosulfonyl)benzoate (phenylsulfonamide) during extraction and therefore represents phenylsulfonamide formed in the soil as a result of chemical hydrolysis of the sulfonylurea bridge. These degradation products suggest that chemical hydrolysis of the sulfonylurea bridge is the primary mode of degradation in air-dry soil, while microbial degradation and chemical hydrolysis both occur in moist soil. These laboratory results demonstrate that chlorimuron will degrade in air-dry soil at a temperature-dependent rate by chemical hydrolysis.
An oat (Avena sativa L. ‘Dal’) primary root bioassay procedure was used to study the persistence of eight dinitroaniline herbicides in soil. Sensitivity of the bioassay to the herbicides depended on the length of time roots were exposed to the herbicide treatments. Root inhibition increased with time of exposure. Herbicide persistence was studied under growth chamber, greenhouse, and field conditions. The herbicides remained biologically active the longest under dry and cool soil conditions. At 5 C, little change in herbicide activity was observed over an 8-month period. Under greenhouse conditions, the herbicides in wet soil dissipated rapidly, as compared with those in dry soil. Soil samples taken from depths of 0 to 7.5 cm and from 7.5 to 15 cm in the field showed that the herbicides were retained primarily in the surface 7.5 cm. Small amounts were found from 7.5 to 15 cm only shortly after the herbicides were applied. Dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) was the only herbicide tested of which soil residues from spring field applications were not detected the following fall.
The methyl ester of thiameturon {3-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] carbonyl] amino] sulfonyl]-2-thiophencarboxylic acid} toxicity to kochia [Kochia scoparia (L.) Schrad. # KCHSC] increased with surfactant concentration in the spray to 0.25% (v/v). High soil nitrogen fertility (165 ppm) enhanced kochia susceptibility to thiameturon compared to low nitrogen fertility (65 ppm). Nitrogen plus surfactant in the spray only partially overcame the effect of low soil nitrogen but did enhance thiameturon toxicity to kochia at all fertilities. Petroleum oil plus surfactant enhanced thiameturon so that kochia fresh weight reduction was similar regardless of soil fertility. Thiameturon toxicity to kochia generally increased with an increase in temperature regardless of relative humidity (RH) or adjuvants. An RH of 90 to 95% enhanced thiameturon toxicity to kochia regardless of temperature or adjuvants, except for petroleum oil plus surfactant with the low (10:8 C day:night) temperature regime. A simulated rain of 2 mm within 24 h after treatment reduced thiameturon toxicity to kochia. Drought stress (≤25% of field capacity) after thiameturon application reduced toxicity regardless of spray additives. The results of the various experiments indicated that thiameturon phytotoxicity would be greatest to kochia growing with high temperature and high RH, adequate soil moisture and nitrogen fertility, and when applied with petroleum oil plus surfactant.
The effects of soil temperature, moisture, and herbicide concentration on the rate of degradation of dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine) were measured in clay loam and sandy loam in the laboratory. In sandy loam, the rate of degradation increased with increasing temperature. In clay loam, the rate of degradation increased from 10 to 30 C and decreased at 40 C. Soil moisture content influenced the rate of degradation in the following order: 22>11>>2.2% (air-dry) for clay loam and 12.0 = 6.0>>0.5% (air-dry) for sandy loam. First-order half-lives ranged from 3.2 at 30 C to 47 weeks at 10 C in clay loam, and 2.3 at 40 C to 31 weeks at 10 C in sandy loam. Applications in 2 yr did not cause buildup of dinitramine in the field. A mathematical model was used in an attempt to correlate laboratory and field data.
The influence of hot-dry and cool-moist environments on primisulfuron efficacy on giant foxtail and quackgrass was compared at the University of Wisconsin Biotron. Primisulfuron was applied POST at 20 and 40 g ai ha-1 with nonionic surfactant (NIS) or crop oil concentrate (COC) and with or without 28% nitrogen fertilizer (28% N). Giant foxtail control 3 wk after treatment was not affected by primisulfuron rates or adjuvants. Adding 28% N tended to improve quackgrass control with primisulfuron plus NIS or COC. Primisulfuron was more injurious to both giant foxtail and quackgrass in the cool-moist than the hot-dry environment. Absorption of 14C-primisulfuron into giant foxtail tissue 3 days after treatment (DAT) was greater in the cool-moist than the hot-dry environment Translocation of 14C out of treated leaf of quackgrass 3 DAT was greater in the cool-moist than the hot-dry environment. More 14C was absorbed and translocated in giant foxtail than quackgrass. Absorbed 14C was translocated equally to underground and above treated leaf sections of quackgrass, whereas more 14C was translocated above the treated leaf of giant foxtail.
Postemergence applications of flufenprop-methyl [methyl-N-benzoyl-N (3-chloro-4-fluorophenyl)-2-amino-propionate] for wild oat (Avena fatua L.) control in spring wheat (Triticum aestivum L.), durum wheat (Triticum durum L.), and barley (Hordeum vulgare L.) were evaluated in the field, greenhouse, and controlled environmental chambers. Wild oat control with flufenprop-methyl was greater at the five-leaf stage than three and one-half or two-leaf stage of growth. Wild oat control was not reduced when flufenprop-methyl was tank-mixed with bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4) 3H-one, 2,2-dioxide]. Tolerance of spring and durum wheat cultivars to flufenprop-methyl was acceptable; however, tolerance of barley cultivars was considerably more variable. Air temperature after treatment, soil fertility, and moisture did not influence wild oat control with flufenprop-methyl; however, a simulated rainfall of 1 mm within 1/2 h or 4 mm within 4 h after application reduced wild oat control.
Musk thistle is an invasive weed that is widely distributed throughout much of North America, including grasslands in temperate climates of the midwest USA. A series of laboratory and greenhouse experiments were conducted to determine the effect of various environmental factors on germination of musk thistle seeds. In temperature-fluctuation experiments, seed germination was greater than 65% in both alternating (30/20 C) and constant (20 or 25 C) temperature regimes with an 8-h day but less (33%) in warmer regimes (35/20 C). Germination of musk thistle seeds was 37% in alternating temperature regimes of 30/20 C in total darkness, but less than 67% in pots in the greenhouse. Differences of 10 and 15 C between day and night temperatures resulted in 91 and 75% maximum germination of musk thistle, respectively. Increasingly dryer soils reduced germination of musk thistle seeds from 35% (−0.03 MPa) to 0% (−1.2 MPa), whereas saline soils (> 80 mM) reduced maximum germination to less than 10%. Musk thistle seeds collected from populations in a bare-ground area had 96% germination, which was greater than that of seeds collected from populations growing in a perennial grass pasture (71%). A residence time (i.e., period that seeds remained on the parent plant) of 9 to 12 wk after capitulum maturity resulted in seeds germinating more quickly than those dispersed earlier. Overall, reduced light levels, cool and fluctuating temperatures, and amount of time seeds remained in residence are some of the most important factors that contribute to germination of musk thistle seeds. Information on germination dynamics of musk thistle seeds provides an understanding of the interactions that affect this process and underscores the importance of timely management strategies in temperate grasslands.
Vigorous stands of perennial grasses can effectively provide long-term control of many invasive plants on rangelands. However, in degraded conditions, successful reestablishment of perennial grasses can be compromised by invasive annual grasses, such as downy brome. Propoxycarbazone-sodium is a selective herbicide currently labeled for downy brome control in small grains, but its potential use on rangelands is unknown. Studies were conducted from 2004 through 2008 at three rangeland sites in Colorado and Nebraska to evaluate downy brome control and perennial grass injury with propoxycarbazone-sodium and imazapic. Propoxycarbazone-sodium provided satisfactory downy brome control with grass injury equal to or less than imazapic when rainfall followed the fall application. A second set of studies was conducted from 2007 to 2008 at Lingle, WY, and Scottsbluff, NE, to determine the plant-back interval and postemergence application response of seven perennial grass species to propoxycarbazone-sodium and imazapic. Grass tolerance to both herbicides was good when applied 90 and 120 d before planting (DBP). However, grass injury increased as plant-back interval decreased. The greatest impact on plant biomass was observed from herbicide applied at planting or after planting. Crested and intermediate wheatgrass (Agropyron cristatum and Thinopyrum intermedium) biomass production was not affected when herbicides were applied 90 or 120 DBP. Western wheatgrass (Pascopyrum smithii) and Russian wildrye (Psathyrostachys juncea) showed tolerance to imazapic applied before planting. Smooth brome (Bromus inermis), sheep fescue (Festuca ovina), and orchardgrass (Dactylis glomerata) showed the least amount of tolerance to propoxycarbazone-sodium and imazapic.
2-D graphene nanosheets (GNS) not only have superior mechanical properties, but stacking of GNS in composites is expected to inhibit moisture absorption. In this paper, moisture effect on tensile strength of graphene/epoxy nanocomposites is investigated. Two kinds of graphene reinforcements are used including graphene oxide (GO) and reduced graphene oxide (RGO) with reinforcement weight fraction WGO or WRGO in the range of 0.5 to 3.0wt%. A dispersion agent acetone is added in nanocomposites to enhance graphene dispersion. To evaluate moisture influence, those nanocomposites are soaked in two kinds of liquid including deionized water (DIW) and salt water (saline solution) for seven kinds of soaking periods of time including 24, 48, 72, 100, 400 hours, 30 days, and 60 days. After soaking test, diffusion coefficients of various composites are evaluated; besides tensile strengths of composites are measured by microforce testing machine. In order to correlate the strength with microstructure evolution, several techniques are adopted to analyze morphologies and functionalities of reinforcements and fracture surface of composites. They include Raman spectroscope, X-ray photoelectron spectroscope, and SEM. 2-D GNS are found to effectively enhance nanocomposites by moisture attack, and their corresponding reinforcing mechanisms are proposed.
There are many challenges and opportunities in composting poultry litter removed from broiler houses. These include reducing operational costs and managing compost moisture, NH3-N losses, and odours. This review paper reports on systems for composting broiler litter that require little or no amendment, while controlling N emissions. Poultry litter, as removed from broiler houses, has a moisture range of 22-50%, N content of 3-5.9%, and a carbon to nitrogen ratio of 9-12. Recommendations, based on field studies and economic analysis, have concluded that composting broiler litter is most economically done with little or no amendment and at starting moisture levels around 40% or less. Pilot and field studies using various composting methods, some of which employ continuous or intermittent aeration regimes as well as static windrows or piles, have been reported. Related studies based on composting un-amended caged layer manure are discussed along with their application to broiler litter. Results suggest the most applicable system for broiler litter for producing a low moisture, high N product would be an in-vessel system with forced aeration, mechanical turning, and a high NH3 level (>160 ppm) in the ambient environment surrounding the compost. Such a system would not produce a mature compost, but would lead to a stabilised (10-18.6% dry matter loss), dry product (10-18% moisture), with high nitrogen content (12-15% total N loss) that could be marketed to nurserymen and gardeners, as well as general farmers.
Indoor transmission of Ascaris suum partly depends on the physico-chemical conditions in bedding material. Temperature, pH, aqueous ammonia, moisture, occurrence and development of A. suum eggs were therefore compared in different areas (resting, intermediate and latrine) of two deep litter pens on an organic farm in four seasons. There was some variation, but mean ammonia levels were generally very low (1·0–2·6 mm) and pH levels were moderate (8·04–8·88) in all three areas. Relatively, resting areas were characterized by overall moderate moisture (36%) and moderately high temperature (35·7 °C) levels. The area contained few eggs (50 eggs g−1 DM) of which 17% were viable, and though only 4% were larvated and 0·7% appeared infective, it was more than in the other areas. Intermediate areas had moderate moisture (43%) and high temperature (43·6 °C) levels. There were many eggs (523 eggs g−1 DM), but overall viability was very low (5%) and few eggs were larvated (0·004%) or even infective (0·002%). Latrines typically had high moisture (79%) and moderate temperature (30 °C) levels. The concentration of eggs was very high (1444 egg g−1 DM) and though 32% were viable, none had developed larval stages. The large majority of A. suum eggs appear to die and only few become infective while in the deep litter. However, a large fraction of eggs may remain viable for some time and could thus contaminate agricultural land and develop to infectivity, if the manure is not composted appropriately.