To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
After more than three decades of research by archaeologist Phil Weigand, the pre-Hispanic west of Mexico is now renowned for the presence of the Teuchitlán tradition, characterized by concentric circular pyramids associated with the shaft-tombs tradition. Shaft tombs are characterized by vertical shafts and horizontal chambers. This makes them potential targets for geophysical exploration. This research reviewed what had been written so far about the Teuchitlán tradition, and, considering that shaft tombs are an important element of that tradition, employed electrical resistivity tomography (ERT) to investigate these subterranean structures at the Los Guachimontones and Santa Quiteria archaeological sites. The ERT data were forward modeled and inverted. Forward modeling was carried out to enhance the understanding of these archaeological structures in real contexts. The modeled the tombs imitated the typical boot and bottle designs found in western Mexico, and they demonstrated high resistivity values. ERT data from Los Guachimontones successfully identified resistivity anomalies associated with the tombs, supported by forward-modeling results. However, at Santa Quiteria, while clear subsurface disturbances were detected, conclusive evidence of intact shaft tombs remained elusive. These findings underscore the potential of ERT for detecting shaft tombs but also highlight the challenges posed by complex geological conditions and potential site disturbance.
Saflufenacil, atrazine, and pyroxasulfone represent herbicides with a relative field persistence of low, medium, and high, respectively. Field studies were conducted over 2 yr when herbicides and rates were assembled in a factorial arrangement of treatments, and herbicides were applied at rates of 100, 1,000, and 10,000 g ai ha−1. Soil samples were collected over the course of 365 d and analyzed to detect dissipation of the herbicides. Regression analysis was used to quantify the dissipation of each herbicide. The initial herbicide concentration had no effect on the observed dissipation rates of atrazine or saflufenacil; however, pyroxasulfone dissipation was slower at the highest field dosage in both years. Soils from Georgia, Illinois, and Tennessee were fortified with known concentrations of the three herbicides dissolved in water and incubated at 22 C for 154 d. Laboratory studies generally demonstrated slower dissipation compared to field studies, which is plausible because the important loss mechanisms of volatilization or photodegradation do not occur in the laboratory test system. Pyroxasulfone and saflufenacil exhibited no effect of half-life from various initial concentrations, but atrazine exhibited slower degradation occurring at lower initial concentrations. Findings from these studies suggest that initial herbicide concentration has a limited effect on the dissipation of some herbicides: pyroxasulfone in the field and atrazine in the laboratory. This finding is important for researchers who use herbicide degradation rates in simulation modeling because herbicide degradation is often assumed to be independent of the rate applied. Another aspect of this research was the application of each herbicide alone and in combination with the others. Under field and laboratory conditions, there was no change in dissipation if the herbicides were applied alone or in combination.
In this chapter, we review approaches to model climate-related migration including the multiple goals of modeling efforts and why modeling climate-related migration is of interest to researchers, commonly used sources of climate and migration data and data-related challenges, and various modeling methods used. The chapter is not meant to be an exhaustive inventory of approaches to modeling climate-related migration, but rather is intended to present the reader with an overview of the most common approaches and possible pitfalls associated with those approaches. We end the chapter with a discussion of some of the future directions and opportunities for data and modeling of climate-related migration.
Homeostats are important to control homeostatic conditions. Here, we have analyzed the theoretical basis of their dynamic properties by bringing the K homeostat out of steady state (i) by an electrical stimulus, (ii) by an external imbalance in the K+ or H+ gradient or (iii) by a readjustment of transporter activities. The reactions to such changes can be divided into (i) a short-term response (tens of milliseconds), where the membrane voltage changed along with the concentrations of ions that are not very abundant in the cytosol (H+ and Ca2+), and (ii) a long-term response (minutes and longer) caused by the slow changes in K+ concentrations. The mechanistic insights into its dynamics are not limited to the K homeostat but can be generalized, providing a new perspective on electrical, chemical, hydraulic, pH and Ca2+ signaling in plants. The results presented here also provide a theoretical background for optogenetic experiments in plants.
This article reports from an interdisciplinary, archaeological and philosophical research project developing and using an analogue model in archaeological research. With prominent uses outside of archaeology, analogue models can offer a unique participatory perspective to prehistoric processes. As such the paper contributes to recent discussions in this journal and elsewhere on the role of games, play and gamification in archaeological research, teaching and cultural heritage. Our analogue model critically discusses cultural-evolution-based models of selected European Neolithic and Bronze Age models and develops a perspective based on the life history and the Capability Approaches. In times of climate and war stress, our model can offer a hopeful perspective of the human past, present and future without compromising on scientific insights.
In this autobiography I describe how I became – via Teachers College (TC) -- a developmental psychologist. At the TC I was stimulated by a teacher to read and study scientific works on psychology. I was so enthusiastic about the then leading scholars of Dutch psychology that I decided to move to Groningen University to study psychology. I was particularly attracted by the philosophical and empirical-analytic work of Professor B. J. Kouwer. Coming from a phenomenological background Kouwer was convinced that a psychologist should be able to philosophically understand human subjectivity, while as a researcher he was radically empirical- analytical. During my entire career I followed this Kouwerian ambivalence: for me, the core of psychology consists of the tension between the humanities and the sciences, between alpha- and beta-sciences. I dedicated much of my career as a researcher to change Dutch (clinical) child psychology into a scientific developmental psychology. At the same time, I tried to do humanistic research: the study of the cultural-historical context of childhood and child development.
The Arctic is undergoing increased warming compared to the global mean, with major implications for the mass balance of glaciers. Direct observations of mass balance in the Russian Arctic are sparse and remotely sensed volume changes do not provide information about climatic drivers. Here, we present simulations of the climatic mass balance and meltwater runoff from glaciers in Franz Josef Land and Novaya Zemlya from 1991 to 2022. Based on simulations of glacier climatic mass balance over the period 1991–2022, we present a first detailed view of mass balance evolution in Franz Josef Land and Novaya Zemlya. The simulations are conducted at a 2.5 km resolution using the CryoGrid model forced by the Copernicus Arctic Regional ReAnalysis (CARRA) product. Over the 30 year simulation period, the climatic mass balance of both Franz Josef Land (0.21 m w.e. a−1) and Novaya Zemlya (0.07 m w.e. a−1) is positive on average without a significant trend in annual climatic mass balance. There is still a tendency towards more frequent high-melt years after 2010 and the associated glacier runoff has intensified with record melt years occurring during the model period.
A reflective analysis is presented on the potential added value that actuarial science can contribute to the field of health technology assessment. This topic is discussed based on the experience of several experts in health actuarial science and health economics. Different points are addressed, such as the role of actuarial science in health, actuarial judgment, data inputs and their quality, modeling methodologies and the use of decision-analytic models in the age of artificial intelligence, and the development of innovative pricing and payment models.
This chapter describes approaches to psychotherapy that grew from learning theory and cognitive psychology, as well as acceptance-based approaches that have a long history in Eastern faiths and philosophies. They are frequently combined in practice and share a strong record of empirical support for their efficacy. The chapter describes behavior therapists’ use of learning-based techniques designed to identify and change maladaptive behavior, and cognitive therapists’ efforts to change clients’ unhelpful thinking patterns about events and themselves that serve to maintain many disorders. The chapter also explains that because behavioral and cognitive approaches are compatible, they are often combined into various forms of cognitive behavior therapy, which is one of today’s most popular approaches to psychological treatment. The chapter also describes acceptance-based approaches, which are central to acceptance and commitment therapy, dialectical behavior therapy, and mindfulness treatments, all of which emphasize the value of accepting thoughts, feelings, and experiences (even negative ones) and learning how to observe reactions without judging them.
The evolutionary development of advanced systems (AS) leads to a necessary rethinking of how they can be supported methodically and in terms of processes in product development. Advanced systems engineering (ASE) offers a novel and holistically adaptive approach to facing such challenges in a structured way. However, many of the ASE use cases relate to the development of systems as products, product networks or individual projects. The additional consideration of entire modular product families within AS offers a further decisive advantage for companies, organisations and the people in ASE. By considering modular product families along the entire life cycle in a product family engineering (PFE), the approaches of ASE can bring their impact and potential to additional system levels occurring when considering product families. The systems, which become complex through variety and collaboration, are broken down into their system elements in a structured way and prepared for a common interdisciplinary understanding, as conveyed by ASE. In this paper, the PFE is presented in excerpts using examples of various aspects and points in time of the product’s life as a complementary approach for ASE.
Wild oat is a long-standing weed problem in Australian grain cropping systems, potentially reducing the yield and quality of winter grain crops significantly. The effective management of wild oat requires an integrated approach comprising diverse control techniques that suit specific crops and cropping situations. This research aimed to construct and validate a bioeconomic model that enables the simulation and integration of weed control technologies for wild oat in grain production systems. The Avena spp. integrated management (AIM) model was developed with a simple interface to provide outputs of biological and economic data (crop yields, weed control costs, emerged weeds, weed seedbank, gross margins) on wild oat management data in a cropping rotation. Uniquely, AIM was validated against real-world data on wild oat management in a wheat and sorghum cropping rotation, where the model was able to reproduce the patterns of wild oat population changes as influenced by weed control and agronomic practices. Correlation coefficients for 12 comparison scenarios ranged between 0.55 and 0.96. With accurate parameterization, AIM is thus able to make useful predictions of the effectiveness of individual and integrated weed management tactics for wild oat control in grain cropping systems.
Nancy Cartwright's 1983 book How the Laws of Physics Lie argued that theories of physics often make use of idealisations, and that as a result many of these theories were not true. The present paper looks at idealisation in logic and argues that, at least sometimes, the laws of logic fail to be true. That might be taken as a kind of skepticism, but I argue rather that idealisation is a legitimate tool in logic, just as in physics, and recognising this frees logicians up to use false laws where these are helpful.
Yucca Mountain, Nevada, is being investigated to determine its suitability to host a potential high-level radioactive waste respository. An important reason for its choice as a potential repository site was the presence of thick zeolite-rich horizons in the altered volcanic tufts that compose the mountain. Clinoptilolite is the most abundant zeolite at Yucca Mountain and may be important in radionuclide retardation and in determining hydrologic properties. Therefore, it is necessary to understand the geochemical conditions affecting its long-term stability. For example, it has been suggested that long-term, repository-induced heating of the rocks at Yucca Mountain may lead to the transformation of clinoptilolite to analcime, thereby significantly affecting the hydrologic properties and retardation capabilities of the rock.
Thermodynamic modeling of clinoptilolite-analcime equilibria was conducted with the program Ge0-Calc PTA-SYSTEM using estimated thermodynamic data for measured chemical compositions of clinoptilolite and analcime at Yucca Mountain. Log[aK+)2/aCa2+] versus log[aNa+)2/aCa2+] diagrams were calculated to model the conditions under which clinoptilolite may transform to analcime. Temperature, relative cation abundances and silica activity are all important factors in determining clinoptilolite-analcime equilibria. Increased Na+ concentrations in either clinoptilolite or the fluid phase, increased clinoptilolite K+ concentration, increased temperature and decreased aqueous silica activity all stabilize analcime relative to clinoptilolite, assuming present-day Yucca Mountain water compositions. However, increased Ca2+ concentrations in either clinoptilolite or the fluid phase, increased aqueous K+ concentration and increased Al:Si ratios in clinoptilolite (heulandite) all stabilize clinoptilolite with respect to analcime.
Assuming well J-13 water as the analog chemistry for Yucca Mountain water, clinoptilolite should remain stable with respect to analcime if temperatures in the clinoptilolite-bearing horizons do not significantly exceed 100 °C. Even if temperatures rise significantly (for example, to 150 °C not all clinoptilolite should alter to analcime. Perhaps more importantly, thermodynamic modeling suggests that some Yucca Mountain clinoptilolites, particularly those rich in Ca and Al, will remain stable at elevated temperatures, even with an aqueous silica activity at quartz saturation.
The effect of three organic ligands on the adsorption of Cu on Ca-montmorillonite was studied. The results indicate that these effects include three different processes:
1) Enhanced uptake of positively charged Cu-ligand complexes by ion-exchange.
2) Formation of ternary surface complexes involving surface aluminol groups.
3) Inhibited uptake due to competition between the surface ligands and the dissolved ligands for dissolved copper.
Ethylenediamine promotes Cu uptake by ion-exchange at low pH but tends to suppress adsorption at aluminol groups by ligand competition at high pH. The same mechanisms are operative for β-alanine; however, the uptake of Cu(β-ala)+ by ion-exchange is not promoted by the attached ligand. The influence of malonate includes both ligand competition and formation of ternary complexes. A quantitative interpretation based on the surface complexation model using the least-square programs FITEQL (Westall, 1982) and GRFIT (Ludwig, 1992) is presented. The obtained equilibrium constants are listed in Tables 2b and 3.
The interaction of H+- and Cu2+-ions with Ca-montmorillonite was investigated in 0.1 mol/dm3 solutions of Ca(CIO4)2 at 298.2 K by Potentiometrie titrations using both glass electrodes (for H+) and ion specific electrodes (for Cu2+ ). The experimental data were interpreted on the basis of the surface complexation model. The calculations were performed with the least-squares program FITEQL (Westall, 1982) using the constant capacitance approximation. The best fit was obtained with a set of equilibria of the general form
and the constants log β1,0(int)S = 8.16 (± 0.04), log β-1,0(int)S = −8.71 (± 0.08), log β0,1(int)S = 5.87 (± 0.06), log β−1,1(int)S = −0.57 (± 0.12), log β−2,1(int)S = −6.76 (± 0.02). An appropriate modeling of the H+ adsorption data requires the introduction of a second surface group ≡ TOH with the acidity constant
In addition, the ion exchange equilibria Ca2+ − Cu2+ and Ca2+ − H+ had to be taken into account. Arguments are presented to identify the groups ≡ SOH and ≡ TOH as surface aluminol groups =Al(OH)(H2O) and surface silanol groups ≡ Si-OH, respectively.
The electrochemical properties of kaolinite before and after modification with chlorodimethyl-octadecylsilane have been studied by electrophoretic mobility, surface charge titration, and extrapolated yield stress measurements as a function of pH and ionic strength. A heteropolar model of kaolinite, which views the particles as having a pH-independent permanent negative charge on the basal planes and a pH-dependent charge on the edges, has been used to model the data. The zeta potential and surface charge titration experimental data have been used simultaneously to calculate acid and ion complexation equilibrium constants using a surface complex model of the oxide-solution interface. The experimental data were modeled following subtraction of the basal plane constant negative charge, describing only the edge electrical double layer properties. Extrapolated yield stress measurements along with the electrochemical data were used to determine the edge isoelectric points for both the unmodified and modified kaolinite and were found to occur at pH values of 5.25 and 6.75, respectively. Acidity and ion complexation constants were calculated for both sets of data before and after surface modification. The acidity constants, pKa1 = 5.0 and pKa2 = 6.0, calculated for unmodified kaolinite, correlate closely with acidity constants determined by oxide studies for acidic sites on alumina and silica, respectively, and were, therefore, assigned to pH-dependent specific chemical surface hydroxyl groups on the edges of kaolinite. The parameters calculated for the modified kaolinite indicate that the silane has reacted with these pH-dependent hydroxyl groups causing both a change in their acidity and a concomitant decrease in their ionization capacity. Infrared data show that the long chain hydrocarbon silane is held by strong bonding to the kaolinite surface as it remains attached after washing with cyclohexane, heating, and dispersion in an aqueous environment.
The effects of three organic ligands on the adsorption of copper on Ca-montmorillonite were studied. The results indicate that these effects include three different processes:
1) Enhanced uptake of positively charged copper-ligand complexes by ion-exchange.
2) Formation of ternary surface complexes involving surface aluminol groups.
3) Inhibited uptake due to competition between the surface ligands and the dissolved ligands for dissolved copper.
Ethylenediamine promotes copper uptake by ion-exchange at low pH but tends to suppress adsorption at aluminol groups by ligand competition at high pH. The same mechanisms are operative for β-alanine; however, the uptake of Cu(β-ala)+ by ion-exchange is not promoted by the attached ligand. The influence of malonate includes both ligand competition and formation of ternary complexes. A quantitative interpretation based on the surface complexation model using the least-squares programs FITEQL (Westall, 1982) and GRFIT (Ludwig, 1992) is presented. The obtained equilibrium constants are listed in Tables 2b and 3.
The aim of this study was to examine the suitability of different growth functions (linear, sinusoidal, Gompertz, Schumacher and Richards) to fit cumulative milk production data from buffalo cows. Cumulative milk production at each day in milk was calculated from two published datasets reporting (i) fortnightly test-day milk yield records of the first lactation of Murrah buffalo that had calved during 1977–2012 and (ii) the first lactation records of Jaffarabadi buffalo collected from history-cum-pedigree registers for each quinquennium between 1991 and 2010. Each function was fitted to the lactation curves using nonlinear regression procedures. The Richards and sinusoidal equations provided the smallest root mean square error values, Akaike's and Bayesian information criteria and, therefore, the best fit for the cumulative lactation curves for milk yield. The Richards equation appeared to provide the most accurate estimate of the cumulative milk production at peak milk yield. Sinusoidal and flexible classical growth functions are appropriate to describe cumulative milk production curves and estimate lactation traits in buffalo.
This chapter is divided into two main parts. The first part presents various resilience modeling approaches for critical infrastructures, with a focus on power grids and communication networks. However, as is explained, a main modeling framework relying on graph theory is applicable to most other critical infrastructure systems. The second part discusses various resilience metric approaches, with special attention to those applied to power grids. Metrics for concepts related to resilience that have also been used in the literature are also discussed in this chapter. Discussion of both resilience modeling and metrics is expanded in later chapters, particularly in Chapter 4, where dependencies and interdependencies are taken into consideration.
Power and communications networks are uniquely important in times of disaster. Drawing on twenty years of first-hand experience in critical infrastructure disaster forensics, this book will provide you with an unrivalled understanding of how and why power and communication networks fail. Discover key concepts in network theory, reliability, and resilience, and see how they apply to critical infrastructure modelling. Explore real-world case-studies of power grid and information and communication network (ICN) performance and recovery during earthquakes, wildfires, tsunamis, and other natural disasters; as well as man-made disasters. Understand the fundamentals of disaster forensics, learn how to apply these principles to your own field investigations, and identify practical, relevant strategies, technologies and tools for improving power and ICN resilience. With over 350 disaster-site photographs of real-world power and ICN equipment, this is the ideal introduction to resilience engineering for professional engineers and academic researchers working in power and ICN system resilience.