To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset of a finite set of filling curves on a surface is not necessarily filling. However, when a filling set spans homology and curves intersect pairwise at most once, it is shown that one can always add a curve and subtract a different curve to obtain a filling set that spans homology. A motivation for filling sets of curves that span homology comes from the Thurston spine and the Steinberg module of the mapping class group.
We study the relative $\mathrm {SU}(2,1)$-character varieties of the one-holed torus, and the action of the mapping class group on them. We use an explicit description of the character variety of the free group of rank two in $\mathrm {SU}(2,1)$ in terms of traces, which allow us to describe the topology of the character variety. We then combine this description with a generalization of the Farey graph adapted to this new combinatorial setting, using ideas introduced by Bowditch. Using these tools, we can describe an open domain of discontinuity for the action of the mapping class group which strictly contains the set of convex cocompact characters, and we give several characterizations of representations in this domain.
We study quotients of mapping class groups of punctured spheres by suitable large powers of Dehn twists, showing an analogue of Ivanov’s theorem for the automorphisms of the corresponding quotients of curve graphs. Then we use this result to prove quasi-isometric rigidity of these quotients, answering a question of Behrstock, Hagen, Martin, and Sisto in the case of punctured spheres. Finally, we show that the automorphism groups of our quotients of mapping class groups are “small”, as are their abstract commensurators. This is again an analogue of a theorem of Ivanov about the automorphism group of the mapping class group.
In the process, we develop techniques to extract combinatorial data from a quasi-isometry of a hierarchically hyperbolic space, and use them to give a different proof of a result of Bowditch about quasi-isometric rigidity of pants graphs of punctured spheres.
We give a criterion for separability of subgroups of certain outer automorphism groups. This answers questions of Hagen and Sisto, by strengthening and generalizing a result of theirs on mapping class groups.
We consider the space $\mathcal{P}_d$ of smooth complex projective plane curves of degree $d$. There is the tautological family of plane curves defined over $\mathcal{P}_d$, which has an associated monodromy representation $\rho _d: \pi _1(\mathcal{P}_d) \to \textrm{Mod}(\Sigma _g)$ into the mapping class group of the fiber. For $d \le 4$, classical algebraic geometry implies the surjectivity of $\rho _d$. For $d \ge 5$, the existence of a $(d-3)^{rd}$ root of the canonical bundle implies that $\rho _d$ cannot be surjective. The main result of this paper is that for $d = 5$, the image of $\rho _5$ is as large as possible, subject to this constraint. This requires combining the algebro-geometric work of Lönne with Johnson’s theory of the Torelli subgroup of $\textrm{Mod}(\Sigma _g)$.
Let $M$ be an oriented smooth manifold and $\operatorname{Homeo}\!(M,\omega )$ the group of measure preserving homeomorphisms of $M$, where $\omega$ is a finite measure induced by a volume form. In this paper, we define volume and Euler classes in bounded cohomology of an infinite dimensional transformation group $\operatorname{Homeo}_0\!(M,\omega )$ and $\operatorname{Homeo}_+\!(M,\omega )$, respectively, and in several cases prove their non-triviality. More precisely, we define:
• Volume classes in $\operatorname{H}_b^n(\operatorname{Homeo}_0\!(M,\omega ))$, where $M$ is a hyperbolic manifold of dimension $n$.
• Euler classes in $\operatorname{H}_b^2(\operatorname{Homeo}_+(S,\omega ))$, where $S$ is an oriented closed hyperbolic surface.
We show that Euler classes have positive norms for any closed hyperbolic surface and volume classes have positive norms for all hyperbolic surfaces and certain hyperbolic $3$-manifolds; hence, they are non-trivial.
The Dehn quandle of a closed orientable surface is the set of isotopy classes of nonseparating simple closed curves with a natural quandle structure arising from Dehn twists. In this paper, we consider the finiteness of some canonical quotients of these quandles. For a surface of positive genus, we give a precise description of the 2-quandle of its Dehn quandle. Further, with some exceptions for genus more than 2, we determine all values of n for which the n-quandle of its Dehn quandle is finite. The result can be thought of as the Dehn quandle analogue of a similar result of Hoste and Shanahan for link quandles [‘Links with finite n-quandles’, Algebr. Geom. Topol.17(5) (2017), 2807–2823]. We also compute the size of the smallest nontrivial quandle quotient of the Dehn quandle of a surface. Along the way, we prove that the involutory quotient of an Artin quandle is precisely the corresponding Coxeter quandle, and also determine the smallest nontrivial quotient of a braid quandle.
The Ceresa cycle is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the Ceresa class. Describing the Ceresa class explicitly for nonhyperelliptic curves is in general not easy. We present a ‘combinatorialization’ of this problem, explaining how to define a Ceresa class for a tropical algebraic curve and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over $\mathbb {C}(\!(t)\!)$ and show that the Ceresa class in each of these settings is torsion.
We study the $E_2$-algebra $\Lambda \mathfrak {M}_{*,1}:= \coprod _{g\geqslant 0}\Lambda \mathfrak {M}_{g,1}$ consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion $\Omega B\Lambda \mathfrak {M}_{*,1}$: it is the product of $\Omega ^{\infty }\mathbf {MTSO}(2)$ with a certain free $\Omega ^{\infty }$-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups $\Gamma _{g,n}$ with $g\geqslant 0$ and $n\geqslant 1$.
We construct the first examples of normal subgroups of mapping class groups that are isomorphic to non-free right-angled Artin groups. Our construction also gives normal, non-free right-angled Artin subgroups of other groups, such as braid groups and pure braid groups, as well as many subgroups of the mapping class group, such as the Torelli subgroup. Our work recovers and generalizes the seminal result of Dahmani–Guirardel–Osin, which gives free, purely pseudo-Anosov normal subgroups of mapping class groups. We give two applications of our methods: (1) we produce an explicit proper normal subgroup of the mapping class group that is not contained in any level $m$ congruence subgroup and (2) we produce an explicit example of a pseudo-Anosov mapping class with the property that all of its even powers have free normal closure and its odd powers normally generate the entire mapping class group. The technical theorem at the heart of our work is a new version of the windmill apparatus of Dahmani–Guirardel–Osin, which is tailored to the setting of group actions on the projection complexes of Bestvina–Bromberg–Fujiwara.
The germ of the universal isomonodromic deformation of a logarithmic connection on a stable $n$-pointed genus $g$ curve always exists in the analytic category. The first part of this article investigates under which conditions it is the analytic germification of an algebraic isomonodromic deformation. Up to some minor technical conditions, this turns out to be the case if and only if the monodromy of the connection has finite orbit under the action of the mapping class group. The second part of this work studies the dynamics of this action in the particular case of reducible rank 2 representations and genus $g>0$, allowing to classify all finite orbits. Both of these results extend recent ones concerning the genus 0 case.
We give a proof that there exists a universal constant K such that the disc graph associated to a surface S forming a boundary component of a compact, orientable 3-manifold M is K-quasiconvex in the curve graph of S. Our proof does not require the use of train tracks.
The goal of this survey is to define and explain the Morse boundary of a geodesic space, a generalisation of the Gromov boundary of a hyperbolic space that records the “hyperbolic directions” in the space.This article relates Morse boundaries to the notion of stability, which generalises to arbitrary geodesic spaces the notion of quasiconvexity in hyperbolic spaces.
These notes on semihyperbolicity in group theory are based on a series of lectures given at the meeting Beyond Hyperbolicity at Cambridge in June 2016.
The first part of this survey is a heuristic, non-technical discussion of what an HHS is, and the aim is to provide a good mental picture both to those actively doing research on HHSs and to those who only seek a basic understanding out of pure curiosity. It can be read independently of the second part, which is a detailed technical discussion of the axioms and the main tools to deal with HHSs.
We give a new proof of a theorem of D. Calegari that says that the Cayley graph of a surface group with respect to any generating set lying in finitely many mapping class group orbits has infinite diameter. This applies, for instance, to the generating set consisting of all simple closed curves.
The group of ${\mathcal{C}}^{1}$-diffeomorphisms of any sparse Cantor subset of a manifold is countable and discrete (possibly trivial). Thompson’s groups come out of this construction when we consider central ternary Cantor subsets of an interval. Brin’s higher-dimensional generalizations $nV$ of Thompson’s group $V$ arise when we consider products of central ternary Cantor sets. We derive that the ${\mathcal{C}}^{2}$-smooth mapping class group of a sparse Cantor sphere pair is a discrete countable group and produce this way versions of the braided Thompson groups.
We prove that either the images of the mappingclass groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann.294 (1992), 235–265) and of Gambaudo and Ghys (Bull. Soc. Math. France133(4) (2005), 541–579). These quasi-homomorphisms are pull-backs of the Dupont–Guichardet–Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.
Let C be a proper smooth geometrically connected hyperbolic curve over a field of characteristic 0 and ℓ a prime number. We prove the injectivity of the homomorphism from the pro-ℓ mapping class group attached to the two dimensional configuration space of C to the one attached to C, induced by the natural projection. We also prove a certain graded Lie algebra version of this injectivity. Consequently, we show that the kernel of the outer Galois representation on the pro-ℓ pure braid group on C with n strings does not depend on n, even if n = 1. This extends a previous result by Ihara–Kaneko. By applying these results to the universal family over the moduli space of curves, we solve completely Oda's problem on the independency of certain towers of (infinite) algebraic number fields, which has been studied by Ihara, Matsumoto, Nakamura, Ueno and the author. Sequentially we obtain certain information of the image of this Galois representation and get obstructions to the surjectivity of the Johnson–Morita homomorphism at each sufficiently large even degree (as Oda predicts), for the first time for a proper curve.