To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The close proximity of the Sun, and its extreme apparent brightness, makes it by far the most important star for lives here on Earth. In modern times we have access to powerful telescopes, both on the ground and in space, that observe and monitor the Sun over a wide range of wavelength bands. These vividly demonstrate that the Sun is in fact highly structured and variable over a wide range of spatial and temporal scales.
The model photosphere is the core of the theoretical side of our studies.It is a numerical theory from which we compute the theoretical spectrum to be compared to the observations.Our model photospheres are based on hydrostatic equilibrium.To compute such models, we need the temperature distribution, a value for the surface gravity, and the chemical abundances of the electron donors.This chapter reveals how this process is done.
The close proximity of the Sun, and its extreme apparent brightness, makes it by far the most important star for lives here on Earth. In modern times we have access to powerful telescopes, both on the ground and in space, that observe and monitor the Sun over a wide range of wavelength bands. These vividly demonstrate that the Sun is, in fact, highly structured and variable over a wide range of spatial and temporal scales.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.